帳號:guest(18.191.34.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅士杰
作者(外文):Lo, Shih-Jie
論文名稱(中文):智慧型手機相容之紙基核酸螢光檢測裝置開發
論文名稱(外文):Development of a Paper-based Nucleotide Assay with a Smartphone-compatible Fluorescent Image Recording Device
指導教授(中文):饒達仁
鄭兆珉
指導教授(外文):Yao, Da-Jeng
Cheng, Chao-Min
口試委員(中文):顏宗海
萬德輝
賴伯亮
口試委員(外文):Yen, Tzung-Hai
Wan, Dehui
Lai, Po-Liang
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:100035808
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:101
中文關鍵詞:紙基分析裝置核酸檢測可攜式裝置
外文關鍵詞:Paper-based analytical deviceNucleotide assayPortable device
相關次數:
  • 推薦推薦:0
  • 點閱點閱:447
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
發展一個可靠、有效並且拋棄式的感測裝置,對於無論是在醫師早期診斷疾病或是一般大眾在家檢測疾病相關的因子都是極有幫助的。重要的是感測裝置的價錢決定了民眾是否可以負擔得起這種醫療照護,而操作的簡易度決定了這個裝置是否可以被應用在資源貧乏的地區。在過去發展平價裝置的研究中,有一部份致力於利用高分子材料(如:聚二甲基矽氧烷)製作平價裝置,值得一提的是紙基分析裝置在發展平價裝置的研究中展現出亮眼的成果。然而,在過去紙基分析裝置的研究中對於核酸檢測的相關研究仍然相對匱乏,導致紙基分析裝置應用在診斷病毒相關疾病時受到限制。在此,我們想要發展一個簡單且有效的方法在紙基分析裝置上檢測特定的核酸序列並且得到定量分析的結果,藉由完成以下步驟: 1) 我們利用一種叫做反轉錄環介導等溫擴增的分子生物技術,在同一溫度下增幅病毒的特定核酸序列以提高核酸濃度用於檢測,並且在紙基平台上利用螢光染劑做為檢測結果的呈色。這部分的研究可幫助我們發展一個可用於檢測病毒相關疾病的紙基檢驗法。 2) 我們發展了一個可以與智慧型手機整合的拋棄式的螢光取像裝置,用於分析先前的病毒檢測實驗中所得到的螢光影像。我們試著去證實裝置在截取不同螢光波長影像的準確性,且在不影響這個拋棄式螢光取像裝置的性能下,簡化裝置所需的元件,藉此達到降低成本且使紙基分析裝置也能利用螢光呈色反應。在所有的研究架構下,我們希望這些研究成果在未來可以達到利用智慧型手機以及紙基裝置做到準確檢測病毒相關的疾病。而在本研究論文的最後,我們也探討紙基分析平台應用於自動化液體操作機器的可行性,希望未來可以將紙基平台用於大量自動化篩選化學分子的實驗中,利用簡單便宜的材料,減少化學分子篩選過程中所需的成本花費。
The development of a reliable, effective and portable sensor is useful no matter for doctors to diagnose disease at early stage, or for the general public to monitor the amount of disease-relating factor at home. Most importantly, the price of sensor decides whether people can afford for this healthcare, and also the device operation decides whether this product can be used in resource limited area. Previous studies of developing low-cost devices partially focused on the polymer (i.e., PDMS) made device, and it is worth noting that the paper-based analytical device (PAD) showed outstanding achievement of the low-cost device development. However, the studies of paper-based analytical device were lack of nucleotides based assay that restricted the application of diagnosing virus related diseases. Here, we would like to develop a simple and efficient approach for detecting specific sequence of nucleic acids on paper-based analytical device with analyzed reports via the following procedures: 1) We employed a molecular biotechnology called RT-LAMP (reverse transcription loop-mediated isothermal amplification) for amplifying the specific sequence of nucleic acids from viruses at a constant temperature (dengue virus serotype-2 RNA in this study) and to utilize the fluorescent probes for revealing the detecting results on paper-based platform. This part helps us to develop a paper-based assay that could detect virus relevant disease. 2) We developed a portable fluorescent image recording device that is compatible with smart phone, in order to analyze the fluorescent images that are captured from the results of virus detecting assays. We tried to validate the accuracy in different fluorescent wave length, and simplified the components without affecting the performance in this portable fluorescence recording device. To take together, we hope these studies can achieve a goal that using a smart phone and a paper-based device to diagnose the virus-derived diseases. At the end of this dissertation, we also investigated the feasibility of applying paper-based platform on liquid-handling robot for the screen of specific chemical compound. Hope in the future, a paper-based platform can be employed on massive screening of chemical compounds in order to diminish the cost of chemical selection.
致 謝 3
中 文 摘 要 4
Abstract 5
Chapter 1
Introduction 7
1.1 Paper selection 9
1.2 Fabrication technique 11
1.2.1 Photolithography 12
1.2.2 Flexography printing 12
1.2.3 Wax related fabrication 13
1.2.4 Inkjet etching and plasma treatment 14
1.2.5 Screen printing and inkjet printing 15
1.2.6 Cutting technique 15
1.2.7 Three-dimensional (3D) paper-based microfluidic devices 16
1.3 Quantitative analysis 19
1.3.1 Colorimetric detection 19
1.3.2 Electrochemical detection 22
1.3.3 Luminescent detection 23
1.3.4 Fluorescence detection 25
1.3.5 Electrical conductivity measurement 26
1.4 Application areas 27
1.4.1 Environmental monitoring 27
1.4.2 Food safety 28
1.4.3 Health diagnostics 29
1.5 Overview of this dissertation 31
Chapter 2
Molecular-level dengue fever diagnostic devices made out of paper 35
2.1 Introduction 35
2.2 Materials and methods 38
2.3 Results and discussion 39
2.3.1 Strategies for serotype-2 dengue fever diagnosis in paper 39
2.3.2 Screening the appropriate fluorescence probe used in paper 43
2.3.3 Fluorescence-based examinations of the RT-LAMP products 46
2.4 Conclusions 50
2.5 Chapter 2 Appendix 51
Chapter 3
Portable fluorescence image recording device combined with paper-based platform 53
3.1 Introduction 53
3.2 Materials and Methods 54
3.2.1 Chemicals and materials 54
3.2.2 Portable fluorescent image recording device 55
3.2.3 Image capture and intensity analysis 55
3.3 Results and discussion 56
3.3.1 Design of portable image-recording device 56
3.3.2 Fluorescence detection via portable image recording device 59
3.4 Conclusions 62
Chapter 4
An approach to enhance self-compensation capability in paper-based devices
for chemical sensing 63
4.1 Introduction 63
4.2 Materials and methods 66
4.2.1 Chemicals and materials 66
4.2.2 Tolerance analysing 66
4.2.3 Colorimetric assay 67
4.2.4 Data analysis 68
4.3 Results and discussion 68
4.3.1 Performance of liquid-handling robot 68
4.3.2 Strategy for compensating droplet location 72
4.4 Conclusions 81
Chapter 5
Future works 83
5.1 Amplifying concentrations of DNA in serum or blood by RT-LAMP 83
5.2 Raising the reliability of portable fluorescent image recording device 83
5.3 Increasing available types of fluorescent probe on paper-based device 85
Reference 87
List of publications 100

[1] P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, "Microfluidic diagnostic technologies for global public health," Nature, vol. 442, pp. 412-418, 2006.
[2] P. J. Bracher, M. Gupta, and G. M. Whitesides, "Patterning precipitates of reactions in paper," Journal of Materials Chemistry, vol. 20, pp. 5117-5122, 2010.
[3] H. Yagoda, "Applications of confined spot tests in analytical chemistry: preliminary paper," Industrial & Engineering Chemistry Analytical Edition, vol. 9, pp. 79-82, 1937.
[4] R. H. Müller and D. L. Clegg, "Automatic paper chromatography," Analytical Chemistry, vol. 21, pp. 1123-1125, 1949.
[5] J. P. Comer, "Semiquantitative specific test paper for glucose in urine," Analytical Chemistry, vol. 28, pp. 1748-1750, 1956.
[6] P. von Lode, "Point-of-care immunotesting: approaching the analytical performance of central laboratory methods," Clinical Biochemistry, vol. 38, pp. 591-606, 2005.
[7] A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, "Patterned paper as a platform for inexpensive, low-volume, portable bioassays," Angewandte Chemie-International Edition, vol. 46, pp. 1318-1320, 2007.
[8] E. Carrilho, A. W. Martinez, and G. M. Whitesides, "Understanding wax printing: a simple micropatterning process for paper-based microfluidics," Analytical Chemistry, vol. 81, pp. 7091-7095, 2009.
[9] A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, "Diagnostics for the developing world: microfluidic paper-based analytical devices," Analytical Chemistry, vol. 82, pp. 3-10, 2010.
[10] D. Mabey, R. W. Peeling, A. Ustianowski, and M. D. Perkins, "Diagnostics for the developing world," Nature Reviews Microbiology, vol. 2, pp. 231-240, 2004.
[11] P. J. Bracher, M. Gupta, and G. M. Whitesides, "Shaped films of ionotropic hydrogels fabricated using templates of patterned paper," Advanced Materials, vol. 21, pp. 445-450, 2009.
[12] P. J. Bracher, M. Gupta, and G. M. Whitesides, "Patterned paper as a template for the delivery of reactants in the fabrication of planar materials," Soft Matter, vol. 6, pp. 4303-4309, 2010.
[13] J. H. Yu, L. Ge, J. D. Huang, S. M. Wang, and S. G. Ge, "Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid," Lab on a Chip, vol. 11, pp. 1286-1291, 2011.
[14] E. M. Fenton, M. R. Mascarenas, G. P. Lopez, and S. S. Sibbett, "Multiplex lateral-flow test strips fabricated by two-dimensional shaping," Acs Applied Materials & Interfaces, vol. 1, pp. 124-129, 2009.
[15] R. F. Carvalhal, M. S. Kfouri, M. H. D. Piazetta, A. L. Gobbi, and L. T. Kubota, "Electrochemical detection in a paper-based separation device," Analytical Chemistry, vol. 82, pp. 1162-1165, 2010.
[16] A. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas, H. Sindi, and G. M. Whitesides, "Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis," Analytical Chemistry, vol. 80, pp. 3699-3707, 2008.
[17] A. Apilux, W. Dungchai, W. Siangproh, N. Praphairaksit, C. S. Henry, and O. Chailapakul, "Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron," Analytical Chemistry, vol. 82, pp. 1727-1732, 2010.
[18] A. K. Ellerbee, S. T. Phillips, A. C. Siegel, K. A. Mirica, A. W. Martinez, P. Striehl, N. Jain, M. Prentiss, and G. M. Whitesides, "Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper," Analytical Chemistry, vol. 81, pp. 8447-8452, 2009.
[19] A. W. Martinez, S. T. Phillips, Z. H. Nie, C. M. Cheng, E. Carrilho, B. J. Wiley, and G. M. Whitesides, "Programmable diagnostic devices made from paper and tape," Lab on a Chip, vol. 10, pp. 2499-2504, 2010.
[20] T. Songjaroen, W. Dungchai, O. Chailapakul, and W. Laiwattanapaisal, "Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping," Talanta, vol. 85, pp. 2587-2593, 2011.
[21] R. E. Luckham and J. D. Brennan, "Bioactive paper dipstick sensors for acetylcholinesterase inhibitors based on sol-gel/enzyme/gold nanoparticle composites," Analyst, vol. 135, pp. 2028-2035, 2010.
[22] C. M. Cheng, A. D. Mazzeo, J. L. Gong, A. W. Martinez, S. T. Phillips, N. Jain, and G. M. Whitesides, "Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape," Lab on a Chip, vol. 10, pp. 3201-3205, 2010.
[23] C. M. Cheng, A. W. Martinez, J. L. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, "Paper-based ELISA," Angewandte Chemie-International Edition, vol. 49, pp. 4771-4774, 2010.
[24] X. Y. Liu, C. M. Cheng, A. W. Martinez, K. A. Mirica, X. J. Li, S. T. Phillips, M. Mascarenas, and G. M. Whitesides, "A portable microfluidic paper-based device for Elisa," 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (Mems), pp. 75-78, 2011.
[25] X. Li, J. F. Tian, G. Garnier, and W. Shen, "Fabrication of paper-based microfluidic sensors by printing," Colloids and Surfaces B-Biointerfaces, vol. 76, pp. 564-570, 2010.
[26] M. Cretich, V. Sedini, F. Damin, M. Pelliccia, L. Sola, and M. Chiari, "Coating of nitrocellulose for colorimetric DNA microarrays," Analytical Biochemistry, vol. 397, pp. 84-88, 2010.
[27] Y. Lu, B. C. Lin, and J. H. Qin, "Patterned paper as a low-cost, flexible substrate for rapid prototyping of PDMS microdevices via "liquid molding"," Analytical Chemistry, vol. 83, pp. 1830-1835, 2011.
[28] A. Arena, N. Donato, G. Saitta, A. Bonavita, G. Rizzo, and G. Neri, "Flexible ethanol sensors on glossy paper substrates operating at room temperature," Sensors and Actuators B-Chemical, vol. 145, pp. 488-494, 2010.
[29] Z. H. Nie, C. A. Nijhuis, J. L. Gong, X. Chen, A. Kumachev, A. W. Martinez, M. Narovlyansky, and G. M. Whitesides, "Electrochemical sensing in paper-based microfluidic devices," Lab on a Chip, vol. 10, pp. 477-483, 2010.
[30] R. Bongiovanni, E. Zeno, A. Pollicino, P. Serafini, and C. Tonelli, "UV light-induced grafting of fluorinated monomer onto cellulose sheets," Cellulose, vol. 18, pp. 117-126, 2011.
[31] E. Princi and S. Vicini, "Graft polymerisation of ethyl acrylate/methyl methacrylate copolymers: A tool for the consolidation of paper-based materials," European Polymer Journal, vol. 44, pp. 2392-2403, 2008.
[32] M. Agarwal, Y. Lvov, and K. Varahramyan, "Conductive wood microfibres for smart paper through layer-by-layer nanocoating," Nanotechnology, vol. 17, pp. 5319-5325, 2006.
[33] C. Q. Peng, Y. S. Thio, and R. A. Gerhardt, "Conductive paper fabricated by layer-by-layer assembly of polyelectrolytes and ITO nanoparticles," Nanotechnology, vol. 19, 2008.
[34] A. Vesel, M. Mozetic, A. Hladnik, J. Dolenc, J. Zule, S. Milosevic, N. Krstulovic, M. Klanjsek-Gunde, and N. Hauptmann, "Modification of ink-jet paper by oxygen-plasma treatment," Journal of Physics D-Applied Physics, vol. 40, pp. 3689-3696, 2007.
[35] M. A. Xu, B. R. Bunes, and L. Zang, "Paper-Based Vapor Detection of Hydrogen Peroxide: Colorimetric sensing with tunable interface," Acs Applied Materials & Interfaces, vol. 3, pp. 642-647, 2011.
[36] C. Legnani, C. Vilani, V. L. Calil, H. S. Barud, W. G. Quirino, C. A. Achete, S. J. L. Ribeiro, and M. Cremona, "Bacterial cellulose membrane as flexible substrate for organic light emitting devices," Thin Solid Films, vol. 517, pp. 1016-1020, 2008.
[37] M. Nogi and H. Yano, "Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry," Advanced Materials, vol. 20, pp. 1849-1852, 2008.
[38] J. Kim, H. Lee, and H. S. Kim, "Beam vibration control using cellulose-based Electro-Active Paper sensor," International Journal of Precision Engineering and Manufacturing, vol. 11, pp. 823-827, 2010.
[39] J. Kim, H. Lee, H. S. Kim, and J. Kim, "Vibration sensor characteristics of piezoelectric electro-active paper," Journal of Intelligent Material Systems and Structures, vol. 21, pp. 1123-1130, 2010.
[40] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, "Three-dimensional microfluidic devices fabricated in layered paper and tape," Proceedings of the National Academy of Sciences of the United States of America, vol. 105, pp. 19606-19611, 2008.
[41] S. A. Klasner, A. K. Price, K. W. Hoeman, R. S. Wilson, K. J. Bell, and C. T. Culbertson, "Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva," Analytical and Bioanalytical Chemistry, vol. 397, pp. 1821-1829, 2010.
[42] A. W. Martinez, S. T. Phillips, B. J. Wiley, M. Gupta, and G. M. Whitesides, "FLASH: a rapid method for prototyping paper-based microfluidic devices," Lab on a Chip, vol. 8, pp. 2146-2150, 2008.
[43] D. A. Bruzewicz, M. Reches, and G. M. Whitesides, "Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper," Analytical Chemistry, vol. 80, pp. 3387-3392, 2008.
[44] A. C. Araujo, Y. J. Song, J. Lundeberg, P. L. Stahl, and H. Brumer, "Activated paper surfaces for the rapid hybridization of DNA through capillary transport," Analytical Chemistry, vol. 84, pp. 3311-3317, 2012.
[45] M. S. Khan, D. Fon, X. Li, J. F. Tian, J. Forsythe, G. Garnier, and W. Shen, "Biosurface engineering through ink jet printing," Colloids and Surfaces B-Biointerfaces, vol. 75, pp. 441-447, 2010.
[46] K. Abe, K. Suzuki, and D. Citterio, "Inkjet-printed microfluidic multianalyte chemical sensing paper," Analytical Chemistry, vol. 80, pp. 6928-6934, 2008.
[47] B. Balu, A. D. Berry, D. W. Hess, and V. Breedveld, "Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications," Lab on a Chip, vol. 9, pp. 3066-3075, 2009.
[48] S. M. Z. Hossain and J. D. Brennan, "β-galactosidase-based colorimetric paper sensor for determination of heavy metals," Analytical Chemistry, vol. 83, pp. 8772-8778, 2011.
[49] S. M. Z. Hossain, R. E. Luckham, A. M. Smith, J. M. Lebert, L. M. Davies, R. H. Pelton, C. D. M. Filipe, and J. D. Brennan, "Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks," Analytical Chemistry, vol. 81, pp. 5474-5483, 2009.
[50] M. S. Li, J. F. Tian, M. Al-Tamimi, and W. Shen, "Paper-based blood typing device that reports patient's blood type "in writing"," Angewandte Chemie-International Edition, vol. 51, pp. 5497-5501, 2012.
[51] Y. Lu, W. W. Shi, L. Jiang, J. H. Qin, and B. C. Lin, "Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay," Electrophoresis, vol. 30, pp. 1497-1500, 2009.
[52] V. Leung, A. A. M. Shehata, C. D. M. Filipe, and R. Pelton, "Streaming potential sensing in paper-based microfluidic channels," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 364, pp. 16-18, 2010.
[53] Z. W. Zhong, Z. P. Wang, and G. X. D. Huang, "Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 18, pp. 649-659, 2012.
[54] Y. Lu, W. W. Shi, J. H. Qin, and B. C. Lin, "Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing," Analytical Chemistry, vol. 82, pp. 329-335, 2010.
[55] J. Olkkonen, K. Lehtinen, and T. Erho, "Flexographically printed fluidic structures in paper," Analytical Chemistry, vol. 82, pp. 10246-10250, 2010.
[56] A. Maattanen, D. Fors, S. Wang, D. Valtakari, P. Ihalainen, and J. Peltonen, "Paper-based planar reaction arrays for printed diagnostics," Sensors and Actuators B-Chemical, vol. 160, pp. 1404-1412, 2011.
[57] W. Dungchai, O. Chailapakul, and C. S. Henry, "A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing," Analyst, vol. 136, pp. 77-82, 2011.
[58] G. Chitnis, Z. W. Ding, C. L. Chang, C. A. Savran, and B. Ziaie, "Laser-treated hydrophobic paper: an inexpensive microfluidic platform," Lab on a Chip, vol. 11, pp. 1161-1165, 2011.
[59] K. M. Schilling, A. L. Lepore, J. A. Kurian, and A. W. Martinez, "Fully enclosed microfluidic paper-based analytical devices," Analytical Chemistry, vol. 84, pp. 1579-1585, 2012.
[60] W. Wang, W. Y. Wu, W. Wang, and J. J. Zhu, " Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration," Journal of Chromatography A, vol. 1217, pp. 3896-3899, 2010.
[61] J. H. Yu, S. M. Wang, L. Ge, and S. G. Ge, "A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination," Biosensors & Bioelectronics, vol. 26, pp. 3284-3289, 2011.
[62] P. J. Bracher, M. Gupta, E. T. Mack, and G. M. Whitesides, "Heterogeneous films of ionotropic hydrogels fabricated from delivery templates of patterned paper," Acs Applied Materials & Interfaces, vol. 1, pp. 1807-1812, 2009.
[63] S. Couderc, O. Ducloux, B. J. Kim, and T. Someya, "A mechanical switch device made of a polyimide-coated microfibrillated cellulose sheet," Journal of Micromechanics and Microengineering, vol. 19, 2009.
[64] K. M. Schilling, D. Jauregui, and A. W. Martinez, "Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-of-care diagnostics," Lab on a Chip, vol. 13, pp. 628-631, 2013.
[65] L. Ge, S. M. Wang, X. R. Song, S. G. Ge, and J. H. Yu, "3D Origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device," Lab on a Chip, vol. 12, pp. 3150-3158, 2012.
[66] K. Abe, K. Kotera, K. Suzuki, and D. Citterio, "Inkjet-printed paperfluidic immuno-chemical sensing device," Analytical and Bioanalytical Chemistry, vol. 398, pp. 885-893, 2010.
[67] X. Li, J. F. Tian, and W. Shen, "Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors," Cellulose, vol. 17, pp. 649-659, 2010.
[68] X. Li, J. F. Tian, T. Nguyen, and W. Shen, "Paper-based microfluidic devices by plasma treatment," Analytical Chemistry, vol. 80, pp. 9131-9134, 2008.
[69] Z. H. Nie, F. Deiss, X. Y. Liu, O. Akbulut, and G. M. Whitesides, "Integration of paper-based microfluidic devices with commercial electrochemical readers," Lab on a Chip, vol. 10, pp. 3163-3169, 2010.
[70] W. Dungchai, O. Chailapakul, and C. S. Henry, "Electrochemical detection for paper-based microfluidics," Analytical Chemistry, vol. 81, pp. 5821-5826, 2009.
[71] H. Liu and R. M. Crooks, "Three-dimensional paper microfluidic devices assembled using the principles of origami," Journal of the American Chemical Society, vol. 133, pp. 17564-17566, 2011.
[72] H. Liu, Y. Xiang, Y. Lu, and R. M. Crooks, "Aptamer-based origami paper analytical device for electrochemical detection of adenosine," Angewandte Chemie-International Edition, vol. 51, pp. 6925-6928, 2012.
[73] G. G. Lewis, M. J. DiTucci, M. S. Baker, and S. T. Phillips, "High throughput method for prototyping three-dimensional, paper-based microfluidic devices," Lab on a Chip, vol. 12, pp. 2630-2633, 2012.
[74] N. Ratnarathorn, O. Chailapakul, C. S. Henry, and W. Dungchai, "Simple silver nanoparticle colorimetric sensing for copper by paper-based devices," Talanta, vol. 99, pp. 552-557, 2012.
[75] L. Y. Shiroma, M. Santhiago, A. L. Gobbi, and L. T. Kubota, "Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device," Analytica Chimica Acta, vol. 725, pp. 44-50, 2012.
[76] J. Lankelma, Z. H. Nie, E. Carrilho, and G. M. Whitesides, "Paper-based analytical device for electrochemical flow-injection analysis of glucose in urine," Analytical Chemistry, vol. 84, pp. 4147-4152, 2012.
[77] J. L. Delaney, C. F. Hogan, J. F. Tian, and W. Shen, "Electrogenerated chemiluminescence detection in paper-based microfluidic sensors," Analytical Chemistry, vol. 83, pp. 1300-1306, 2011.
[78] L. Ge, J. X. Yan, X. R. Song, M. Yan, S. G. Ge, and J. H. Yu, "Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing," Biomaterials, vol. 33, pp. 1024-1031, 2012.
[79] J. Yu, S. Wang, L. Ge, and S. Ge, "A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination," Biosensors and Bioelectronics, vol. 26, pp. 3284-3289, 2011.
[80] P. B. Allen, S. A. Arshad, B. L. Li, X. Chen, and A. D. Ellington, "DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform," Lab on a Chip, vol. 12, pp. 2951-2958, 2012.
[81] X. D. Wang, H. X. Chen, T. Y. Zhou, Z. J. Lin, J. B. Zeng, Z. X. Xie, X. Chen, K. Y. Wong, G. N. Chen, and X. R. Wang, "Optical colorimetric sensor strip for direct readout glucose measurement," Biosensors & Bioelectronics, vol. 24, pp. 3702-3705, 2009.
[82] N. K. Thom, K. Yeung, M. B. Pillion, and S. T. Phillips, ""Fluidic batteries" as low-cost sources of power in paper-based microfluidic devices," Lab on a Chip, vol. 12, pp. 1768-1770, 2012.
[83] C. Steffens, A. Manzoli, E. Francheschi, M. L. Corazza, F. C. Corazza, J. V. Oliveira, and P. S. P. Herrmann, "Low-cost sensors developed on paper by line patterning with graphite and polyaniline coating with supercritical CO2," Synthetic Metals, vol. 159, pp. 2329-2332, 2009.
[84] W. Dungchai, O. Chailapakul, and C. S. Henry, "Use of multiple colorimetric indicators for paper-based microfluidic devices," Analytica Chimica Acta, vol. 674, pp. 227-233, 2010.
[85] X. E. Fang, S. S. Wei, and J. L. Kong, "Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays," Lab on a Chip, vol. 14, pp. 911-915, 2014.
[86] P. Fossati, L. Prencipe, and G. Berti, "Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine," Clinical Chemistry, vol. 26, pp. 227-31, 1980.
[87] M. Y. Hsu, C. Y. Yang, W. H. Hsu, K. H. Lin, C. Y. Wang, Y. C. Shen, Y. C. Chen, S. F. Chau, H. Y. Tsai, and C. M. Cheng, "Monitoring the VEGF level in aqueous humor of patients with ophthalmologically relevant diseases via ultrahigh sensitive paper-based ELISA," Biomaterials, vol. 35, pp. 3729-3735, 2014.
[88] R. Pelton, "Bioactive paper provides a low-cost platform for diagnostics," Trac-Trends in Analytical Chemistry, vol. 28, pp. 925-942, 2009.
[89] L. B. Wang, W. Chen, D. H. Xu, B. S. Shim, Y. Y. Zhu, F. X. Sun, L. Q. Liu, C. F. Peng, Z. Y. Jin, C. L. Xu, and N. A. Kotov, "Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA," Nano Letters, vol. 9, pp. 4147-4152, 2009.
[90] S. M. Z. Hossain, R. E. Luckham, M. J. McFadden, and J. D. Brennan, "Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples," Analytical Chemistry, vol. 81, pp. 9055-9064, 2009.
[91] X. Li, J. F. Tian, and W. Shen, "Quantitative biomarker assay with microfluidic paper-based analytical devices," Analytical and Bioanalytical Chemistry, vol. 396, pp. 495-501, 2010.
[92] M. S. Khan, G. Thouas, W. Shen, G. Whyte, and G. Garnier, "Paper diagnostic for instantaneous blood typing," Analytical Chemistry, vol. 82, pp. 4158-4164, 2010.
[93] C. Z. Li, K. Vandenberg, S. Prabhulkar, X. N. Zhu, L. Schneper, K. Methee, C. J. Rosser, and E. Almeide, "Paper based point-of-care testing disc for multiplex whole cell bacteria analysis," Biosensors & Bioelectronics, vol. 26, pp. 4342-4348, 2011.
[94] B. A. Rohrman and R. R. Richards-Kortum, "A paper and plastic device for performing recombinase polymerase amplification of HIV DNA," Lab on a Chip, vol. 12, pp. 3082-3088, 2012.
[95] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, 2006.
[96] M. Al-Tamimi, W. Shen, R. Zeineddine, H. Tran, and G. Garnier, "Validation of paper-based assay for rapid blood typing," Analytical Chemistry, vol. 84, pp. 1661-1668, 2012.
[97] X. X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, "Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices," Lab on a Chip, vol. 12, pp. 274-280, 2012.
[98] World Health Organization, "Global strategy for dengue prevention and control: 2012- 2020," WHO report, 2012
[99] E. A. Henchal and J. R. Putnak, "The dengue viruses," Clinical Microbiology Reviews, vol. 3, pp. 376-396, 1990.
[100] P. R. Young, P. A. Hilditch, C. Bletchly, and W. Halloran, "An antigen capture enzyme-linked immunosorbent assay reveals high levels of the dengue virus protein NS1 in the sera of infected patients," Journal of Clinical Microbiology, vol. 38, pp. 1053-1057, 2000.
[101] T. P. Monath and F. X. Heinz, Fields virology , pp.978-984, 1996.
[102] S. B. Halstead, "Dengue virus - Mosquito interactions," Annual Review of Entomology, vol. 53, pp. 273-291, 2008.
[103] E. A. Hunsperger, S. Yoksan, P. Buchy, V. C. Nguyen, S. D. Sekaran, D. A. Enria, J. L. Pelegrino, S. Vazquez, H. Artsob, M. Drebot, D. J. Gubler, S. B. Halstead, M. G. Guzman, H. S. Margolis, C. M. Nathanson, N. R. R. Lic, K. E. Bessoff, S. Kliks, and R. W. Peeling, "Evaluation of commercially available anti-dengue virus immunoglobulin M tests," Emerging Infectious Diseases, vol. 15, pp. 436-440, 2009.
[104] S. Vazquez, G. Hafner, D. Ruiz, N. Calzada, and M. G. Guzman, "Evaluation of immunoglobulin M and G capture enzyme-linked immunosorbent assay Panbio kits for diagnostic dengue infections," Journal of Clinical Virology, vol. 39, pp. 194-198, 2007.
[105] C. Klungthong, R. V. Gibbons, B. Thaisomboonsuk, A. Nisalak, S. Kalayanarooj, V. Thirawuth, N. Nutkumhang, M. P. Mammen, Jr., and R. G. Jarman, "Dengue virus detection using whole blood for reverse transcriptase PCR and virus isolation," Journal of Clinical Microbiology, vol. 45, pp. 2480-2485, 2007.
[106] H. W. Godoy dos Santos, T. R. Ramos Silva Poloni, K. P. Souza, V. D. Menjon Muller, F. Tremeschin, L. C. Nali, L. R. Fantinatti, A. A. Amarilla, H. L. Alfonso Castro, M. R. Nunes, S. M. Casseb, P. F. Vasconcelos, S. J. Badra, L. T. Moraes Figueiredo, and V. H. Aquino, "A simple one-step real-time RT-PCR for diagnosis of dengue virus infection," Journal of Medical Virology, vol. 80, pp. 1426-1433, 2008.
[107] T. R. Poloni, A. S. Oliveira, H. L. Alfonso, L. R. Galvao, A. A. Amarilla, D. F. Poloni, L. T. Figueiredo, and V. H. Aquino, "Detection of dengue virus in saliva and urine by real time RT-PCR," Virology Journal, vol. 7, 2010.
[108] T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase, "Loop-mediated isothermal amplification of DNA," Nucleic Acids Research, vol. 28, 2000.
[109] K. Nagamine, T. Hase, and T. Notomi, "Accelerated reaction by loop-mediated isothermal amplification using loop primers," Molecular and Cellular Probes, vol. 16, pp. 223-229, 2002.
[110] M. Parida, K. Horioke, H. Ishida, P. K. Dash, P. Saxena, A. M. Jana, M. A. Islam, S. Inoue, N. Hosaka, and K. Morita, "Rapid detection and differentiation of dengue virus serotypes by a real-time reverse transcription-loop-mediated isothermal amplification assay," Journal of Clinical Microbiology, vol. 43, pp. 2895-2903, 2005.
[111] M. Parida, G. Posadas, S. Inoue, F. Hasebe, and K. Morita, "Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus," Journal of Clinical Microbiology, vol. 42, pp. 257-263, 2004.
[112] J. Compton, "Nucleic-acid sequence-based amplification," Nature, vol. 350, pp. 91-92, 1991.
[113] J. C. Guatelli, K. M. Whitfield, D. Y. Kwoh, K. J. Barringer, D. D. Richman, and T. R. Gingeras, "Isothermal, invitro amplification of nucleic-acids by a multienzyme reaction modeled after retroviral replication," Proceedings of the National Academy of Sciences of the United States of America, vol. 87, pp. 1874-1878, 1990.
[114] G. T. Walker, M. C. Little, J. G. Nadeau, and D. D. Shank, " Isothermal invitro amplification of DNA by a restriction enzyme DNA-polymerase system," Proceedings of the National Academy of Sciences of the United States of America, vol. 89, pp. 392-396, 1992.
[115] H. C. Hao, K. T. Tang, P. H. Ku, J. S. Chao, C. H. Li, C. M. Yang, and D. J. Yao, "Development of a portable electronic nose based on chemical surface acoustic wave array with multiplexed oscillator and readout electronics," Sensors and Actuators B-Chemical, vol. 146, pp. 545-553, 2010.
[116] C. H. Chen, D. J. Yao, S. H. Tseng, S. W. Lu, C. C. Chiao, and S. R. Yeh, "Micro-multi-probe electrode array to measure neural signals," Biosensors & Bioelectronics, vol. 24, pp. 1911-1917, 2009.
[117] N. R. Pollock, J. P. Rolland, S. Kumar, P. D. Beattie, S. Jain, F. Noubary, V. L. Wong, R. A. Pohlmann, U. S. Ryan, and G. M. Whitesides, "A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing," Science Translational Medicine, vol. 4, 2012.
[118] S. J. Lo, S. C. Yang, D. J. Yao, J. H. Chen, and C. M. Cheng, "Molecular-level dengue fever diagnostics: developing a combination of RT-LAMP and paper-based devices," Nanotechnology Magazine, IEEE, vol. 6, pp. 26-30, 2012.
[119] X. Y. Liu, C. M. Cheng, A. W. Martinez, K. A. Mirica, X. J. Li, S. T. Phillips, M. Mascarenas, G. M. Whitesides, and Ieee, "A portable microfluidic paper-based device for ELISA," 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, pp. 75-78, 2011.
[120] P. B. Allen, S. A. Arshad, B. Li, X. Chen, and A. D. Ellington, "DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform," Lab on a Chip, vol. 12, pp. 2951-2958, 2012.
[121] Z. Nie, F. Deiss, X. Liu, O. Akbulut, and G. M. Whitesides, "Integration of paper-based microfluidic devices with commercial electrochemical readers," Lab on a Chip, vol. 10, pp. 3163-3169, 2010.
[122] N. Lopez-Ruiz, V. F. Curto, M. M. Erenas, F. Benito-Lopez, D. Diamond, A. J. Palma, and L. F. Capitan-Vallvey, "Smartphone-Based Simultaneous pH and Nitrite Colorimetric Determination for Paper Microfluidic Devices," Analytical Chemistry, vol. 86, pp. 9554-9562, 2014.
[123] S.-J. Lo, S.-C. Yang, D.-J. Yao, J.-H. Chen, W.-C. Tu, and C.-M. Cheng, "Molecular-level dengue fever diagnostic devices made out of paper," Lab on a Chip, vol. 13, pp. 2686-2692, 2013.
[124] X. Chen, J. Chen, F. B. Wang, X. Xiang, M. Luo, X. H. Ji, and Z. K. He, "Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices," Biosensors & Bioelectronics, vol. 35, pp. 363-368, 2012.
[125] B. Veigas, J. M. Jacob, M. N. Costa, D. S. Santos, M. Viveiros, J. Inacio, R. Martins, P. Barquinha, E. Fortunato, and P. V. Baptista, "Gold on paper-paper platform for Au-nanoprobe TB detection," Lab on a Chip, vol. 12, pp. 4802-4808, 2012.
[126] H.-K. Wang, C.-H. Tsai, K.-H. Chen, C.-T. Tang, J.-S. Leou, P.-C. Li, Y.-L. Tang, H.-J. Hsieh, H.-C. Wu, and C.-M. Cheng, "Cellulose-Based Diagnostic Devices for Diagnosing Serotype-2 Dengue Fever in Human Serum," Advanced Healthcare Materials, vol. 3, pp. 187-196, 2014.
[127] J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge, and C. S. Henry, "Development of a Paper-Based Analytical Device for Colorimetric Detection of Select Foodborne Pathogens," Analytical Chemistry, vol. 84, pp. 2900-2907, 2012.
[128] J. Yan, L. Ge, X. Song, M. Yan, S. Ge, and J. Yu, "Paper-Based Electrochemiluminescent 3D Immunodevice for Lab-on-Paper, Specific, and Sensitive Point-of-Care Testing," Chemistry – A European Journal, vol. 18, pp. 4938-4945, 2012.
[129] S. M. Wang, L. Ge, X. R. Song, J. H. Yu, S. G. Ge, J. D. Huang, and F. Zeng, "Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing," Biosensors & Bioelectronics, vol. 31, pp. 212-218, 2012.
[130] B. S. Miranda, E. M. Linares, S. Thalhammer, and L. T. Kubota, "Development of a disposable and highly sensitive paper-based immunosensor for early diagnosis of Asian soybean rust," Biosensors & Bioelectronics, vol. 45, pp. 123-128, 2013.
[131] T. T. Tsai, S. W. Shen, C. M. Cheng, and C. F. Chen, "Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles," Science and Technology of Advanced Materials, vol. 14, 2013.
[132] F. Deiss, W. L. Matochko, N. Govindasamy, E. Y. Lin, and R. Derda, "Flow-Through Synthesis on Teflon-Patterned Paper To Produce Peptide Arrays for Cell-Based Assays," Angewandte Chemie-International Edition, vol. 53, pp. 6374-6377, 2014.
[133] C. M. Cheng and P. R. LeDuc, "Micropatterning polyvinyl alcohol as a biomimetic material through soft lithography with cell culture," Molecular Biosystems, vol. 2, pp. 299-303, 2006.
[134] http://www.sciencedirect.com/science/article/pii/S0039914015003434?np=y.
[135] J. Fredonnet, J. Foncy, S. Lamarre, J. C. Cau, E. Trevisiol, J. P. Peyrade, J. M. Francois, and C. Severac, "Dynamic PDMS inking for DNA patterning by soft lithography," Microelectronic Engineering, vol. 111, pp. 379-383, 2013.
[136] D. L. Tian, Y. L. Song, and L. Jiang, "Patterning of controllable surface wettability for printing techniques," Chemical Society Reviews, vol. 42, pp. 5184-5209, 2013.
[137] T. M. Blicharz, D. M. Rissin, M. Bowden, R. B. Hayman, C. DiCesare, J. S. Bhatia, N. Grand-Pierre, W. L. Siqueira, E. J. Helmerhorst, J. Loscalzo, F. G. Oppenheim, and D. R. Walt, "Use of colorimetric test strips for monitoring the effect of hemodialysis on salivary nitrite and uric acid in patients with end-stage renal disease: A proof of principle," Clinical Chemistry, vol. 54, pp. 1473-1480, 2008.
[138] M. Carlstrom, A. E. G. Persson, E. Larsson, M. Hezel, P. G. Scheffer, T. Teerlink, E. Weitzberg, and J. O. Lundberg, "Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension," Cardiovascular Research, vol. 89, pp. 574-585, 2011.
[139] J. Xu, R. Rong, H. Q. Zhang, C. J. Shi, X. Q. Zhu, and C. M. Xia, "Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP)," International Journal for Parasitology, vol. 40, pp. 327-331, 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *