帳號:guest(3.15.1.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李銘晃
作者(外文):Li, Ming-Huang
論文名稱(中文):全整合式CMOS微機電震盪器設計
論文名稱(外文):Design of Monolithic CMOS-MEMS Oscillators
指導教授(中文):李昇憲
指導教授(外文):Li, Sheng-Shian
口試委員(中文):戴慶良
方維倫
劉深淵
楊燿州
洪崇智
口試委員(外文):Dai, Ching-Liang
Fang, Weileun
Liu, Shen-Iuan
Yang, Yao-Joe
Hung, Chung-Chih
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:100035807
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:189
中文關鍵詞:金氧半導體微機電共振器震盪器相位雜訊溫度補償非線性動態
外文關鍵詞:CMOS-MEMSResonatorOscillatorPhase NoiseTemperature CompensationNonlinear Dynamics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:464
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
金氧半導體微機電(CMOS-MEMS)震盪器電路為組成感測器系統單晶片的重要元件之一,然而此電路於相位雜訊與溫度穩定性兩方面卻略顯低落。本論文針對全整合式CMOS-MEMS震盪器電路提出改進之設計方法,以其能改善現存CMOS-MEMS震盪器的不足之處。
本文首先提出一整合微型加熱器之雙鉗音叉式共振器,其頻率約為1.2 MHz並內嵌於標準CMOS後段製程。由於借助半導體製程中二氧化矽高熱阻絕率的特性,此溫控共振器的加熱效率高達 266 °C/mW。此外,此共振器之溫度係數亦經過特殊設計,經由材料之被動補償後,其本質溫度係數約僅 +5.1 ppm/°C。因此,結合上述兩項特點並輔以定電阻控溫之概念,此溫控共振器於溫差125°C的範圍內操作時總頻飄約小於120ppm並消耗低於0.5mW的加熱功率,其等效溫度係數低於1 ppm/°C。我們亦設計了低雜訊CMOS震盪器電路,搭配此共振器後其相位雜訊於距震盪頻率1kHz之偏移處為-112 dBc/Hz,於距震盪頻率1kHz之偏移處為-120 dBc/Hz,其消耗功率低於1.3mW。此震盪器之性能與其他state-of-the-art相當。
除了溫控震盪器以外,我們也針對CMOS-MEMS震盪器之相位雜訊做深入的探討,可發現震盪器之近端相位雜訊與共振器的非線性程度高度相關。當我們將震盪器系統操作於極度非線性之區域時,近端相位雜訊能獲得相當程度的改善。此論文中1.2 MHz的CMOS-MEMS雙鉗樑式震盪器最佳的近端相位雜訊為:於距震盪頻率10Hz之偏移處為-77 dBc/Hz,於距震盪頻率100Hz之偏移處為-97 dBc/Hz,其性能指標(FOM)為-176.9dB。而遠端相位雜訊則於共振器之熱雜訊以及電路雜訊相關,無法利用非線性效應改善。
為了徹底改善振盪器性能,本文亦提出了一組新型的CMOS-MEMS後製程。利用CMOS製程中之氮化鈦層,我們可以同時實現較強的機電耦合並能改善震盪器的頻率穩定度。此製程不但解決了傳統CMOS-MEMS共振器中因介電質誘捕多餘電荷所造成頻率隨時間飄移的問題,並可實現高度複雜的共振器結構設計,例如超低溫度係數(sub-ppm/°C TCf)之共振器元件。雖然我們使用0.35 um製程驗證此平台,其概念仍可以向下相容至其他以鋁為後段製程主體的CMOS高階製程節點,例如0.18 um或0.25 um。
This work presents the design and characterization of the monolithic CMOS-MEMS oscillators for temperature compensated clocks. An innovative ovenized double-ended tuning fork (DETF) resonator with an embedded heater trace is implemented for high heating efficiency. The heating efficiency of the resonator is greater than 266 °C/mW, which consumes less than 0.5 mW for 125°C temperature span (-40°C to 85°C). In addition, the resonator is designed to achieve a low temperature coefficient of frequency (TCf) of +5.1 ppm/°C. Combined with micro-oven operations, frequency variation less than 120 ppm across 125°C temperature span is demonstrated under a constant-resistance control. As a result, the compensated TCf less than 1 ppm/°C in this work outperforms other single-chip, BEOL-embedded CMOS-MEMS resonators to date. The monolithic CMOS-MEMS oscillator based on the 1.2-MHz DETF ovenized resonator is also realized in this work. The oscillator phase noise of -112 dBc/Hz at 1-kHz offset and -120 dBc/Hz at 1-MHz offset is demonstrated, which is on par with the state-of-the-art flexural-mode MEMS oscillators but with better circuit integration scheme.

In addition to the ovenized oscillator, the phase noise spectrum of the monolithic CMOS-MEMS resonator is studied in this work. It is recognized that the close-to-carrier phase noise for the MEMS oscillator is mainly dominated by the nonlinear amplitude-to-phase noise conversion effect. By operating the nonlinear oscillator under proper conditions, the nonlinear noise conversion can be suppressed, resulting an improved phase noise. With the 1.2 MHz CMOS-MEMS DETF resonator, the best-case phase noise of -77 dBc/Hz at 10-Hz offset and -97 dBc/Hz at 100-Hz offset is demonstrated, featuring a figure of merit of -176.9 dB.

To further improve the performance for CMOS-MEMS oscillator systems in the future implementations, a titanium nitride composite (TiN-C) MEMS platform is proposed not only for enhanced electrostatic transduction but also for improved frequency stability. The dielectric charging issue for traditional CMOS-MEMS resonators is solved in this platform by means of TiN-based electrodes. Moreover, the sub-ppm/°C TCf is also demonstrated in this work with only passive temperature compensation scheme. Importantly, the proposed platform can be scaled to advanced technology nodes for more functionality and improved performance.
LIST OF FIGURES vi
LIST OF TABLES xiv
CHAPTER 1 Introduction 1
1.1 Micromechanical Resonators 3
1.1.1 Capacitive MEMS Resonators 3
1.1.2 Piezoelectric MEMS Resonators 5
1.2 Micromechanical Oscillators 6
1.3 CMOS-MEMS Technologies 9
1.4 Thesis Organization 13
CHAPTER 2 Mechanical And Electrical Modeling of MEMS Resonators 15
2.1 Modeling of MEMS Resonators 16
2.1.1 Mechanical Resonator Transfer Function 17
2.1.2 Input and Output Transducers 19
2.1.3 Mechanical Resonator Modeling with Electro-Softening Effect 21
2.1.4 Equivalent Series-RLC Circuit Model 23
2.1.5 Modeling the One-Port and Two-Port Resonator 24
2.1.6 Design of Low Impedance Resonators 27
2.2 Temperature Dependency of the MEMS Resonators 28
2.3 Nonlinearity of the MEMS Resonators 31
2.4 Feedthrough Capacitance 33
2.5 Summary 35
CHAPTER 3 Fundamental of MEMS Oscillators 36
3.1 MEMS Oscillator Overview 37
3.2 Topology Selection for the Front-end TIA 38
3.3 Post-TIA Amplifiers 40
3.4 Phase Noise of the CMOS-MEMS Oscillators 42
3.5 Phase Noise of the Nonlinear MEMS Oscillators 45
3.6 Summary 46
CHAPTER 4 Design of Double-Ended Tuning Fork (DETF) CMOS-MEMS Resonator 47
4.1 Resonator Description and CMOS-MEMS Fabrication Process 48
4.2 Resonator Design for Ultra-Low-Power Ovenization 49
4.2.1 Equivalent Circuit Modeling 49
4.2.2 Temperature Coefficient of Frequency (TCf) 52
4.2.3 Design of Ultra-Low-Power Micro-Oven 55
4.3 Q-factor of the CMOS-MEMS Resonator 60
4.3.1 Anchor (Acoustic) Loss 60
4.3.2 Thermoelastic Damping (TED) 61
4.3.3 Material and Interface Loss 62
4.4 CMOS-MEMS Fabrication Results 64
4.5 Measurement Results 65
4.5.1 Measurement Setup 65
4.5.2 Resonator Characterizations 66
4.5.3 Ultra-Low-Power Micro-Oven 68
4.5.4 Ovenized Resonator Characterization 73
4.5.4 Q-Factor of the CMOS-MEMS DETF Resonator 75
4.6 Discussions 77
4.6.1 Discussions on Current Design 77
4.6.2 Suggestions for Future Improvement 78
4.7 Summary 79
4.8 Acknowledgements 79
CHAPTER 5 CMOS-MEMS Oscillator Circuit Design 80
5.1 Symbolic Analysis for the Oscillation Sustaining TIA 80
5.1.1 Shunt-Shunt Feedback Front-End TIA 80
5.1.2 Post-TIA Amplifier 84
5.2 Oscillator Circuit Design 85
5.2.1 Transistor-level Circuit Design 85
5.2.2 Phase Noise of the Oscillator 88
5.3 Experimental Results 89
5.3.1 DETF CMOS-MEMS Oscillator in Vacuum 89
5.3.2 Oscillator Performance with Various Biasing and Environmental Conditions 92
5.4 Discussions 95
5.4.1 Comparison on Oscillator Performance 95
5.4.2 Suggestions for Future Improvement 96
5.5 Summary 97
5.6 Acknowledgements 97
CHAPTER 6 Phase Noise in Nonlinear CMOS-MEMS Oscillators 98
6.1 Background 99
6.1.1 CMOS-MEMS Resonator and Oscillator 100
6.1.2 General Phase Noise Spectrum of CMOS-MEMS Oscillators 101
6.2 Analysis of CMOS-MEMS Oscillators 104
6.2.1 Effect of Gain Compression from the Sustaining Amplifier 104
6.2.2 Effect of Resonator Nonlinearity 105
6.3 CMOS Circuit Design for the Prototype 108
6.3.1 Circuit Topology 108
6.3.2 Noise Analysis 109
6.4 Measurement Results and Discussions 110
6.4.1 Amplitude Controlled CMOS-MEMS Oscillator (OSC-I) 111
6.4.2 Nonlinear CMOS-MEMS Oscillator (OSC-II) 114
6.4.3 Discussions 119
6.5 Summary 121
6.6 Acknowledgements 122
CHAPTER 7 Titanium Nitride (TiN) Based CMOS-MEMS Resonator Platform 123
7.1 TiN in Standard Al-based BEOL 124
7.2 Fabrication Process 126
7.3 Prototyping Resonator Designs 126
7.4 Preliminary Measurement Results 129
7.4.1 Fabrication Results 130
7.4.2 Resonator Frequency and Impedance Characterizations 132
7.4.3 Charging Effects 134
7.4.4Temperature Stability 135
7.5 Summary 136
CHAPTER 8 Conclusions and Future Work 138
8.1 Achievements 138
8.2 Future Research Directions 140
8.2.1 CMOS-MEMS Oscillator with PLL-based Jitter Cleaner 140
8.2.2 Low-Power CMOS-MEMS Oscillator 141
8.2.3 Resistance-Locked-Loop (RLL) for Temperature Compensation 143
8.3 Concluding Remarks 144
APPENDICES 145
BIBLIOGRAPHY 153
PUBLICATION LIST 168
A. Journal Papers (1st author: 5) 168
B. Conference Proceedings (1st author: 9) 169
[1] S. D. Piazza, “Quartz tuning forks: a high-volume, low-cost, high-tech MEMS product,” 2011 ESSCIRC/ESSDERC Presentation, Helsinki, Finland, Sep. 12 – 16, 2011.
[2] TXC Corporation. “Technical terminology: quartz frequency-temperature characteristics,” http://www.txc.com.tw/en/d_support/01.html.
[3] W. Marrison, “The evolution of the quartz crystal clock,” Bell System Technical Journal (AT&T), vol. 27, pp. 510–588, 1948.
[4] R. D. Kolasinski, J. E. Polk, D. Goebel, and L. K. Johnson, “Sputtering yield measurements at glancing incidence using a quartz crystal microbalance,” J. Vac. Sci. Technol. A, vol. 25, no. 2, pp. 236, Apr. 2007.
[5] D. S. Ballantine, R. M. White, S. J. Martin, A. J. Ricco, E. T. Zellers, G. C. Frye, H. Wohltjen, M. Levy, and R. Stern, “Acoustic wave sensors-Theory, Design and Physico-Chemical Applications,” Academic Press, 1996.
[6] M. Penza, G. Cassano, P. Aversa, A. Cusano, M. Consales, M. Giordano, and L. Nicolais, “Acoustic and optical VOCs sensors incorporating carbon nanotubes,” IEEE Sensors J., vol. 6, no. 4, pp. 867–875, Aug. 2006.
[7] EURO QUARTZ, “TS Series Miniature quartz temperature sensors,” data sheet available online: http://www.euroquartz.co.uk/Portals/0/t-sensors.pdf
[8] QUARTZDYNE, “Frequency output pressure transducers,” manual available online: http://www.quartzdyne.com/pdfs/FreqManual.pdf
[9] E. Hwang and S. A. Bhave, “Transduction of high frequency micromechanical resonators using depletion forces in pn-diodes,” IEEE Trans. Electron. Devices, vol. 58, no. 8, pp. 2770–2776, Aug. 2011.
[10] C.-M. Lin, Y.-Y. Chen, V. V. Felmetsger, D. G. Senesky, and A. P. Pisano, “AlN/3C–SiC composite plate enabling high-frequency and high-Q micromechanical resonators,” Adv. Mater., vol. 24, pp.2722–2727, May 2012.
[11] S. Gong, N.-K. Kuo, and G. Piazza, “GHz high-Q lateral overmoded bulk acousticwave resonators using epitaxial SiC thin film,” J. Microelectromech. Syst., vol. 21, no. 2, pp. 253–255, Apr. 2012.
[12] W.-C. Li, Y. Lin, B. Kim, Z. Ren, and C. T.-C. Nguyen, “Quality factor enhancement in micromechanical resonators at cryogenic temperatures,” Tech. Dig., the 15th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers’09), Denver, Colorado, pp. 1445-1448, Jun. 2009.
[13] L.-W. Hung and C. T.-C. Nguyen, “Q-boosted AlN array-composite resonator with Q > 10,000,” Tech. Dig. IEEE Int. Electron Devices Mtg. (IEDM’10), San Francisco, California, pp. 162-165, Dec. 2010.
[14] R. Melamud, S. A. Chandorkar, B. Kim, H. K. Lee, J. C. Salvia, G. Bahl, M. A. Hopcroft, and T.W. Kenny, “Temperature-insensitive composite micromechanical resonators,” J. Microelectromech. Syst., vol. 18, no. 6, pp. 1409-1419, Dec. 2009.
[15] R. Tabrizian, G. Casinovi, and F. Ayazi, “Temperature-stable silicon oxide (SilOx) micromechanical resonators,” IEEE Trans. Electron. Devices, vol. 60, no. 8, pp. 2656-2663, Aug. 2013.
[16] B. Kim, R. N. Candler, M. Hopcroft, M. Agarwal, W.-T. Park, T. W. Kenny, “Frequency stability of wafer-scale encapsulated MEMS resonators,” Tech. Dig., the 13th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers’05), vol. 2, pp. 1965-1968, Jun. 2005.
[17] T. L. Naing, T. O. Rocheleau; E. Alon; and C. T.-C. Nguyen, “A 78-W GSM phase noise-compliant pierce oscillator referenced to a 61-MHz wine-glass disk resonator,” Proc., IEEE UFFC Joint Symposia (UFFC’13), Prague, Czech Republic, pp. 562-565, Jul. 2013.
[18] M. S. Hanay, S. Kelber, A. K. Naik, D. Chi, S. Hentz, E.C. Bullard, E. Colinet, L. Duraffourg, and M. L. Roukes, “Single-protein nanomechanical mass spectrometry in real time,” Nature Nanotechnology, vol. 7, no. 9, pp. 602-608, Aug. 2012.
[19] W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators, vol. 20, no. 1, pp. 25–32, Nov. 1989.
[20] A. A. Seshia, M. Palaniapan, T. A. Roessig, R. T. Howe, R. Gooch, T. Schimert, and S. Montague, “A vacuum-packaged surface micromachined resonant accelerometer”, J. Microelectromech. Syst., vol. 11, no. 6, pp. 784-793, Dec. 2002.
[21] A. Sharma, M. F. Zaman, and F. Ayazi, “A 0.1 deg/hr bias drift micromechanical silicon gyroscope with automatic CMOS mode-matching,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1593-1608, May 2009.
[22] S.-S. Li, Y.-W. Lin, Y. Xie, Z. Ren, and Clark T.-C. Nguyen, “Micromechanical hollow-disk ring resonators,” Proc, 17th IEEE Int. Conf. MEMS (MEMS’04), Maastricht, The Netherlands, pp. 821-824, Jan. 2004.
[23] L. C. Popa and D. Weinstein, “Switchable piezoelectric transduction in AlGaN/GaN MEMS resonators”, Tech. Dig., the 17th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers’13), Barcelona, Spain, pp. 2461-2464, Jun. 2013.
[24] R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 59, no. 3, pp. 334-345, Mar. 2012.
[25] G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators”, J. Microelectromech. Syst., vol. 15, no.6, pp. 1406-1418, Dec. 2006.
[26] C.-M. Lin, V. Yantchev, J. Zou, Y.-Y. Chen, and A. P. Pisano, “Micromachined one-port aluminum nitride Lamb wave resonators utilizing the lowest-order symmetric mode,” J. Microelectromech. Syst., vol. 23, no. 1, pp. 78-91, Feb. 2014.
[27] Y. Hui, Z. Qian, and M. Rinaldi, “A 2.8 GHz combined mode of vibration aluminum nitride MEMS resonator with high figure of merit exceeding 45”, Proc., IEEE UFFC Joint Symposia (UFFC’13), Prague, Czech Republic, pp. 930-932, Jul. 2013.
[28] C.-M. Lin, T.-T. Yen, Y.-J. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Temperature-compensated aluminum nitride Lamb wave resonators,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 57, no. 3, pp. 524-532, Mar. 2010.
[29] Y.-W. Lin, “Low phase noise micromechanical reference oscillators for wireless communication,” Ph.D. Dissertation, University of Michigan, 2004.
[30] C. T.-C. Nguyen and R. T. Howe, “CMOS Micromechanical Resonator Oscillator,” Tech. Dig. IEEE Int. Electron Devices Mtg. (IEDM’93), Washington, DC, pp. 199-202, Dec. 1993.
[31] V. Kaajakari, T. Mattila, A. Oja, J. Kiihamäki, and H. Seppä, “Square-extensional mode single-crystal silicon micromechanical resonator for low phase noise oscillator applications”, IEEE Electron Device Lett., vol. 25, no. 4, pp. 173-175, Apr. 2004.
[32] Y.-W. Lin, S.-S. Li, Z. Ren, and C. T.-C. Nguyen, “Low phase noise array-composite micromechanical wine-glass disk oscillator,” Tech. Dig. IEEE Int. Electron Devices Mtg. (IEDM’05), Washington, DC, pp. 287-290, Dec. 2005.
[33] W.-L. Huang, Z. Ren, Y.-W. Lin, H.-Y. Chen, J. Lahann, and C. T.-C. Nguyen, “Fully monolithic CMOS nickel micromechanical resonator oscillator,” Proc. the 21st IEEE Int. Conf. MEMS (MEMS’08), Tucson, AZ, pp. 10-13, Jan. 2008.
[34] K. E. Wojciechowski, R. H. Olsson, T. A. Hill, M. R. Tuck, and E. Roherty-Osmun, “Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators,” Tech. Dig., the 15th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers’09), Denver, Colorado, pp. 2126-2130, Jun. 2009.
[35] Si504 CMEMS® Oscillator Datasheet: [Online] http://www.silabs.com/Support%20Documents/TechnicalDocs/Si504.pdf
[36] S.-S. Li, “CMOS-MEMS resonators and their applications,” Proc., IEEE UFFC Joint Symposia (UFFC’13), Prague, Czech Republic, pp.915-921, Jul. 2013.
[37] W. Fang, S.-S. Li, C.-L. Cheng, C.-I. Chang, W.-C. Chen, Y.-C. Liu, M.-H. Tsai, and C. Sun, “CMOS-MEMS: A key technology towards the “More than Moore” era,” Tech. Dig., the 17th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers’13), Barcelona, Spain, pp. 2513-2518, Jun. 2013.
[38] J. Verd, A. Uranga, G. Abadal, J. L. Teva, F. Torres, J. L. López, F. Pérez-Murano, J. Esteve, and N. Barniol, “Monolithic CMOS MEMS oscillator circuit for sensing in the attogram range,” IEEE Electron Device Lett., vol.29, no. 2, pp.146-148, Feb. 2008.
[39] J. L. López, J. Verd, E. Marigó, A. Uranga, G. Murillo, J. Giner, F. Torres, G.Abadal, and N. Barniol, “Monolithically integrated double-ended tuning fork- based oscillator with low bias voltage in air conditions,” Proc. Chemistry (Eurosens. XXIV), no.1, pp. 614-617, Sep. 2009.
[40] J. Verd, A. Uranga, J. Segura, and N. Barniol, “A 3V CMOS-MEMS oscillator in 0.35m CMOS technology,” Tech. Dig., the 17th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers’13), Barcelona, Spain, pp. 806-809, Jun. 2013.
[41] G. K. Fedder, R. T. Howe, T. J.-K. Liu, and E. P. Quevy, “Technologies for cofabricating MEMS and electronics,” Proc. of the IEEE, vol. 96, no. 2, pp. 306-322, Feb. 2008.
[42] C.-C. Lo, “CMOS-MEMS Resonators for Mixer-Filter Applications,” Ph.D. Dissertation, Carnegie Mellon University, 2008.
[43] R. Marathe, B. Bahr, W. Wang, Z. Mahmood, L. Daniel, and D. Weinstein, “Resonant body transistors in IBM’s 32 nm SOI CMOS Technology,” J. Microelectromech. Syst., vol. 23, no. 3, pp. 636-650, Jun. 2014.
[44] R. Sunier, T. Vancura, Y. Li, K. Kirstein, H. Baltes, and O. Brand, “Resonant magnetic field sensor with frequency output,” J. Microelectromech. Syst., vol. 15, no. 5, pp. 1098-1107, Oct. 2006.
[45] J. Teva, G. Abadal, A. Uranga, J. Verd, F. Torres, J. L. Lopez, J. Esteve, F. Perez-Murano, and N. Barniol, “From VHF to UHF CMOS-MEMS monolithically integrated resonators,” Proc. the 21st IEEE Int. Conf. MEMS (MEMS’08), Tucson, AZ, pp. 82-85, Jan. 2008.
[46] W.-C. Chen, W. Fang, and S.-S. Li, “VHF CMOS-MEMS oxide resonators with Q > 10,000,” Proc. IEEE Int. Freq. Contr. Symp. (IFCS’12), Baltimore, MD, pp. 1-4, May 2012.
[47] Y.-C. Liu, M.-H. Tsai, W.-C. Chen, M.-H. Li, S.-S. Li, and W. Fang, “Temperature-compensated CMOS-MEMS oxide resonators,” J. Microelectromech. Syst., vol. 22, no. 5, pp. 1054-1065, Oct. 2013.
[48] R. A. Johnson, Mechanical Filters in Electronics. New York: Wiley, 1983.
[49] F. D. Bannon III, J. R. Clark, and C. T.-C. Nguyen, “High frequency micromechanical filters,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 512-526, Apr. 2000.
[50] R. Ludwig and P. Bretchko, RF Circuit Design: Theory and Applications, Prentice Hall, Upper Saddle River, NJ: Prentice Hall, 2006.
[51] M.-H. Li, W.-C. Chen, and S.-S. Li, “Mechanically-coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 59, no. 3, pp. 346-357, Mar. 2012.
[52] W.-C. Chen, W. Fang, and S.-S. Li, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,” J. Micromech. Microeng., vol. 21, no. 6, pp. 065012, May 2011.
[53] V. A. Thakar, Z. Z. Wu, A. Peczalski, and M. Rais-Zadeh, “Piezoelectrically transduced temperature-compensated flexural-mode silicon resonators,” J. Microelectromech. Syst., vol. 22, no. 3, pp. 819-823, Jun. 2013.
[54] S. Lee and C. T.-C. Nguyen, “Mechanically-coupled micromechanical arrays for improved phase noise,” Proc., IEEE UFFC Joint Symposia (UFFC’04), pp. 280-286, Aug. 2004.
[55] M. Agarwal, K. K. Park, B. Kim, M. A. Hopcroft, S. Chandorkar, R. N. Candler, C. M. Jha, R. Melamud, B. Murrman, and T. W. Kenny, “Amplitude Noise induced Phase Noise in MEMS Resonators,” Solid-State Sensors, Actuators, and Microsystems Workshop, (Hilton Head’06), Hilton Head, SC, USA, pp 90-93, Jun. 2006.
[56] H. K. Lee, P. A. Ward, A. E. Duwel, J. C. Salvia, Y. Q. Qu, R. Melamud, S. A. Chandorkar, M. A. Hopcroft, B. Kim, and T. W. Kenny, “Verification of the phase-noise model for MEMS oscillators operating in the nonlinear regime,” Tech. Dig., the 16th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers’11), Beijing, China, pp. 510-513, Jun. 2011.
[57] V. Kaajakari, T. Mattila, A. Oja, and H. Seppä, “Nonlinear limits for single-crystal silicon microresonators”, J. Microelectromech. Syst., vol. 13, no. 5, pp. 715-724, Oct. 2004.
[58] V. Kaajakari, T. Mattila, A. Lipsanen, and A. Oja, “Nonlinear mechanical effects in silicon longitudinal mode beam resonators”, Sens. Actuators A: Phys., vol. 120, no. 1, pp. 64-70, Apr. 2005.
[59] K. E. Wojciechowski, B. E. Boser and A. P. Pisano, “A MEMS resonant strain sensor operated in air,” Proc. the 11st IEEE Int. Conf. MEMS (MEMS’04), pp. 841-845, Jan. 2004.
[60] P. Shao, C. L. Mayberry, X. Gao, V. Tavassoli, F. Ayazi, “A polysilicon microhemispherical resonating gyroscope,” J. Microelectromech. Syst., In Press.
[61] J. E.-Y. Lee and A. A. Seshia, “Parasitic feedthrough cancellation techniques for enhanced electrical characterization of electrostatic microresonators,” Sens. Actuator A:Phys., vol. 156, no. 1, pp. 36-42, Nov 2009.
[62] G. Jourdan, E. Colinet, J. Arcamone, A. Niel, C. Marcoux, and L. Duraffourg, “NEMS-based heterodyne self-oscillator”, Sens. Actuator A:Phys., vol. 189, no. 1, pp. 512-518, Jan. 2013.
[63] V. Pachkawade, M.-H. Li, C.-S. Li, and S.-S. Li, “A CMOS-MEMS resonator integrated system for oscillator application,” IEEE Sens. J., vol. 13, no. 8, pp. 2882-2889, Aug. 2013.
[64] M. Dalal, “Low noise, low power interface circuits and systems for high frequency resonant micro-gyroscopes,” Ph.D. Dissertation, Georgia Institute of Technology, 2012.
[65] E. Sackinger, Broadband circuits for optical fiber communication, Hoboken, NJ, John Wiley & Sons, 2004.
[66] H. M. Lavasani, W. Pan, B. Harrington, R. Abdolvand, and F. Ayazi, “A 76dB 1.7GHz 0.18m CMOS tunable TIA using broadband current preamplifier for high frequency lateral MEMS oscillators,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 224–235, Jan. 2011.
[67] F. Nabki, K. Allidina, F. Ahmad, P.-V. Cicek, and M. N. El-Gamal, “A highly integrated 1.8 GHz frequency synthesizer based on a MEMS resonator,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2154–2168, Aug. 2009.
[68] J. Salvia, P. Lajevardi, M. Hekmat, and B. Murmann, “A 56M-Ohm CMOS TIA for MEMS applications,” Proc. IEEE Custom Integrated Circ. Conf. (CICC’09), San Jose, CA, USA, pp. 199-202, Sep. 2009.
[69] S. Seth, S. Wang, T. W. Kenny, and B. Murmann, “A -131-dBc/Hz, 20-MHz MEMS Oscillator with a 6.9-mW, 69-kOhm, Gain-Tunable CMOS TIA,” Proc. ESSCIRC, Bordeaux, France, pp. 249-252, Sep. 2012.
[70] B. Razavi, Design of Integrated Circuits for Optical Communications, New York, NY, McGraw-Hill, 2003.
[71] B. Yurke, D. S. Greywall, A. N. Pargellis, and P. A. Busch, “Theory of amplifier noise evasion in an oscillator employing a nonlinear resonator,” Phys. Rev. A, vol. 51, pp. 4211-4229, May 1995.
[72] E. Kenig, M. C. Cross, L. G. Villanueva, R. B. Karabalin, M. H. Matheny, R. Lifshitz, and M. L. Roukes, “Optimal operating points of oscillators using nonlinear resonators,” Phys. Rev. E, vol. 86, pp. 056207, Nov. 2012.
[73] L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross, and M. L. Roukes, “Surpassing Fundamental Limits of Oscillators Using Nonlinear Resonators,” Phys. Rev. Lett., vol. 110, pp. 177208, Apr. 2013.
[74] M.-H. Li, C.-Y. Chen, C.-H. Chin, C.-S. Li, and S.-S. Li, “Optimizing the close-to-carrier phase noise of monolithic CMOS-MEMS oscillators using bias-dependent nonlinearity,” Tech. Dig. IEEE Int. Electron Devices Mtg. (IEDM’14), San Francisco, CA, pp. 558-561, Dec. 2014.
[75] C. T.-C. Nguyen, “MEMS technology for timing and frequency control,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, no. 2, pp. 251-270, Feb. 2007.
[76] F. S. Lee, et al., “A programmable MEMS-based clock generator with sub-ps jitter performance,” Proc. VLSI Circuits Symp., pp.158-159, Jun. 2011.
[77] F. Ayazi, “MEMS for integrated timing and spectral processing,” Proc. IEEE Custom Integrated Circ. Conf. (CICC’09), San Jose, CA, pp. 65-72, Sep. 2009.
[78] M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin, and S.-S. Li, “A monolithic CMOS-MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator,” J. Microelectromech. Syst., vol. 24, no. 2 pp. 360-372, Apr. 2015.
[79] L. G. Villanueva, B. Amato, T. Larsen, and S. Schmid, “Interface losses in mul-timaterial resonators,” Proc. the 27th IEEE Int. Conf. MEMS (MEMS’14), San Francisco, CA, pp. 632-635, Jan. 2014.
[80] M. von Arx, O. Paul, and H. Baltes, “Process-dependent thin film thermal conductivities for thermal CMOS-MEMS,” J. Microelectromech. Syst., vol. 9, no.1, pp. 175-184, Mar. 2000.
[81] G. P. Škoro, J. R. J. Bennett, T. R. Edgecock, S. A. Gray, A. J. McFarland, C. N. Booth, K. J. Rodgers, and J. J. Back, “Dynamic Young’s moduli of tungsten and tantalum at high temperature and stress,” J. Nuclear Mater., vol. 409, no. 1 pp. 40-46, Feb. 2011.
[82] M. von Arx, O. Paul, and H. Baltes, “Test structures to measure the heat capacity of CMOS layer sandwiches,” IEEE Trans. Semiconduct. Manufact., vol. 11, no.2, pp. 217-224, May 1998.
[83] W. T. Lee, A. C. Fowler, O. Power, S. Healy, and J. Browne, “Blowing of polycrystalline silicon fuses,” Appl. Phys. Lett., vol. 97, no. 2, pp. 023502, Jul. 2010.
[84] C. M. Jha, M. A. Hopcroft, S. A. Chandorkar, J. C. Salvia, M. Agarwal, R. N. Candler, R. Melamud, B. Kim, and T. W. Kenny, “Thermal isolation of encapsulated MEMS resonators,” J. Microelectromech. Syst., vol. 17, no.1, pp. 175-184, Feb. 2008.
[85] A. Tazzoli, M. Rinaldi, and G. Piazza, “Ovenized high frequency oscillators based on aluminum nitride contour-mode MEMS resonators,” Tech. Dig. IEEE Int. Electron Devices Mtg. (IEDM’11), Washington, DC, pp. 20.2.1-20.2.4, Dec. 2011.
[86] J. Lim, H. Kim, T. N. Jackson, K. Choi, and D. Kenny, “An ultra-compact and low-power oven-controlled crystal oscillator design for precision timing applications,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 57, no. 9, pp. 1906-194, Sep. 2010.
[87] B. Kim, M. Hopcroft, R. N. Candler, C. M. Jha, M. Agarwal, R. Melamud, S. A. Chandorkar, G. Yama, T. W. Kenny, “Temperature dependence of quality factor in MEMS resonators,” J. Microelectromech. Syst., vol. 17, No. 3, pp. 755-766, Jun. 2008.
[88] A. Duwel, R. N. Candler, T. W. Kenny, and M. Varghese, “Engineering MEMS resonators with low thermoelastic damping,” J. Microelectromech. Syst., vol. 15, no. 6, pp. 1437-1445, Dec. 2006.
[89] S. Prabhakar and S. Vengallatore, “Thermoelastic damping in hollow and slotted microresonators,” J. Microelectromech. Syst., vol. 18, no. 3, pp. 725-735, Jun. 2009.
[90] M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin, and S.-S. Li, “Design and charac-terization of a dual-mode CMOS-MEMS resonator for TCF manipulation,” J. Microelectromech. Syst., vol. 24, no. 2, pp. 446-457, Apr. 2015.
[91] M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin, C.-C. Chen, and S.-S. Li, “Foundry-CMOS integrated oscillator circuits based on ultra-low power ovenized CMOS-MEMS resonators,” Tech. Dig. IEEE Int. Electron Devices Mtg. (IEDM’13), Washington, DC, pp. 475-478, Dec. 2013.
[92] M. Li, V. T. Rouf, and D. A. Horsley, “Substrate effect in squeeze film damping of lateral oscillating microstructures,” Proc. IEEE 26th Int. Conf. MEMS (MEMS’13), Taipei, Taiwan, pp. 393-396, Jan. 2013.
[93] R. Jansen, M. Libois, X. Rottenberg, M. Lofrano, J. De Coster, R. Van Hoof, S. Severi, G. Van der Plas, W. de Raedt, H.A.C. Tilmans, S. Donnay and J. Borremans, “A CMOS-compatible 24 MHz poly-SiGe MEMS oscillator with low-power heating for frequency stabilization over temperature,” Proc. 2011 Joint Conf. IEEE Int. Freq. Contr. Symp. – Eur. Freq. Time Forum (IFCS-EFTF’11), San Francisco, CA, pp.11-15, May 2011.
[94] C. T.-C. Nguyen and R. T. Howe, “Microresonator frequency control and stabilization using an integrated micro oven,” Tech. Dig., the 7th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers’93), Yokohama, Japan, pp. 1040-1043, Jun. 1993.
[95] J. Salvia, R. Melamud, S. Chandorkar, S. F. Lord, and T. W. Kenny, “Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop,” J. Microelectromech. Syst., vol. 19, no. 1, pp. 192-201, Feb. 2010.
[96] B. Kim, R. H. Olsson, K. E. Wojciechowski, “Ovenized and thermally tunable aluminum nitride microresonators,” Proc. IEEE Int. Ultrasonics Symp. (IUS’10), San Diego, CA, pp. 974 – 978, Oct. 2010.
[97] J. Borremans, “Towards a low power ovenized MEMS TCXO (OCMO),” 2011 ESSCIRC/ESSDERC Presentation, Sep. 2011. [Online]
http://www.go4time.eu/images/stories/2011_09_workshop_presentantion_borremans.pdf
[98] J. Vig and Y. Kim., “The low-power potential of oven-controlled MEMS oscillators,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 60, no. 4, pp. 851-853, Apr. 2013.
[99] S. Mandal, S. Arfin, and R. Sarpeshkar, “Fast startup CMOS current references,” Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’06), pp.2845-2848, May 2006.
[100] M.-D. Ker and S.-L. Chen, “Ultra-high-voltage charge pump circuit in low-voltage bulk CMOS processes with polysilicon diodes,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 1, pp. 47–51, Jan. 2007.
[101] J. Pettine, V. Petrescu, D. M. Karabacak, M. Vandecasteele, M. Crego-Calama, and C. Van Hoof, “Power-efficient oscillator-based readout circuit for multichannel resonant volatile sensors,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 6, pp. 542-551, Dec. 2012.
[102] M. McCorquodale, et al., “A monolithic and self-referenced RF LC clock generator compliant with USB 2.0,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 385-399, Feb. 2007.
[103] Y.-H. Chiang and S.-I. Liu, “Nanopower CMOS relaxation oscillators with sub-100ppm/°C temperature coefficient”, IEEE Trans. Circuits and Syst.-II: Express Briefs, vol. 61, pp. 661-665, Sep. 2014.
[104] L.-J. Hou, C.-S. Li, and S.-S. Li, “High-stiffness-driven micromechanical resonator oscillator with enhanced phase noise performance,” Proc. IEEE 25th Int. Conf. MEMS (MEMS’12), Paris, France, pp. 700-703, Jan. 2012.
[105] K. Sundaresan, G. K. Ho, S. Pourkamali, and F. Ayazi, “Electronically temperature compensated Silicon bulk acoustic resonator reference oscillators,” IEEE J. of Solid-State Circuits, vol. 42, no. 6, pp. 1425-1434, Jun. 2007.
[106] A. Tocchio, A. Caspani, and G. Langfelder, “Mechanical and electronic amplitude-limiting techniques in a MEMS resonant accelerometer,” IEEE Sensors J., vol. 12, no. 6, pp. 1719-1725, Jun. 2012.
[107] M. Pardo, L. Sorenson, and F. Ayazi, “An empirical phase-noise model for MEMS oscillators operating in nonlinear regime,” IEEE Trans. Circuits and Syst. I, vol. 59, no. 5, pp. 979-988, May 2012.
[108] D. T. Chang, H. P. Moyer, R. G. Nagele, R. L. Kubena, R. J. Joyce, D. J. Kirby, P. D. Brewer, H. D. Nguyen, and F. P. Stratton, “Nonlinear UHF quartz MEMS oscillator with phase noise reduction,” Proc. IEEE 26th Int. Conf. MEMS (MEMS’13), Taipei, Taiwan, pp. 781-784, Jan. 2013.
[109] P. Ward and A. Duwel, “Oscillator phase noise: systematic construction of an analytical model encompassing nonlinearity,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 58, no. 1, pp. 195-205, Jan. 2011.
[110] D. K. Agrawal, J. Woodhouse, and A. A. Seshia, “Modeling nonlinearities in MEMS oscillators,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 60, no. 8, pp. 1646-1659, Aug. 2013.
[111] C.-H. Chin, C.-S. Li, M.-H. Li, Y.-L. Wang, and S.-S. Li, “Fabrication and characterization of a charge-biased CMOS-MEMS resonant gate field effect transistor,” J. Micromech. Microeng., vol. 24, no. 9, pp. 095005, Sep. 2014.
[112] R. Henry and D. Kenny, “Comparative analysis of MEMS, programmable, and synthesized frequency control devices versus traditional quartz based devices” Proc. IEEE Int. Freq. Contr. Symp. (IFCS’08), Honolulu, Hawaii, pp. 396-401, May 2008.
[113] G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromech. Syst., vol. 19, no. 1, pp. 162-174, Feb. 2010.
[114] G. Bahl, J. C. Salvia, R. Melamud, B. Kim, R. T. Howe, and T. W. Kenny, “AC polarization for charge-drift elimination in resonant electrostatic MEMS and oscillators,” J. Microelectromech. Syst., vol. 20, no. 2, pp. 355-364, Apr. 2011.
[115] K. L. Dorsey and G. Fedder, “Dielectric charging effects in electrostatically actuated CMOS MEMS resonators,” Proc. IEEE Sens. Conf. (Sensors’10), Honolulu, Hawaii, pp. 197-200, Nov. 2010.
[116] A. Uranga,G. Sobreviela, N. Barniol, E. Marigó, C. Tay-Wee-Song, M. Shunmugam, A. A. Zainuddin, A. Kumar-Kantimahanti, V. Madhaven and M. Soundara-Pandian, “Dual-clock with single and monolithical 0-level vacuum packaged mems-on-cmos resonator,” Proc. IEEE 28th Int. Conf. MEMS (MEMS’15), Estoril, Portugal, pp. 1004-1007, Jan. 2015.
[117] AN-1734 Using the LMK03000C to Clean Recovered Clocks, TI Application Report [Online]. www.ti.com/lit/an/snoa508b/snoa508b.pdf
[118] R. Wu, Y. I. Chae, J. H. Huijsing, K. A. A. Makinwa, “A 20-b ±40-mV range read-out IC with 50-nV offset and 0.04% gain error for bridge transducers,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2152-2163, Sep. 2012.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *