帳號:guest(18.116.14.35)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林尚錡
作者(外文):Lin, Shang Chi
論文名稱(中文):Low-cost paper and cotton-based Biochips applied to in vitro diagnosis
論文名稱(外文):低成本棉基與紙基平台應用於體外醫學檢測
指導教授(中文):曾繁根
鄭兆珉
指導教授(外文):Tseng, Fan Gang
Cheng, Chao Min
口試委員(中文):顏宗海
賴伯亮
陳致真
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:100035803
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:97
中文關鍵詞:低成本生醫晶片體外檢測C蛋白乳膠尿液全血
外文關鍵詞:Low costpapercottonBiochipsin vitro diagnosisCRPLatexUrinalysiswhole blood
相關次數:
  • 推薦推薦:0
  • 點閱點閱:72
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們探討紙和棉基應用於診斷裝置的開發是價格低廉的,易於使用的,並且能夠在1) 全血與尿液檢體直接測試分析2) 監視相關炎症蛋白的濃度( C-反應蛋白在這項研究中)和血型檢測,尿液中亞硝酸鹽,全蛋白,尿膽素原和尿酸等測定。在我的研究中,我們利用複合材料(棉花和層析紙)與蠟染的方法於紙為基礎的診斷裝置。因此我們的系統,它專門針對尿液和全血診斷並採用多重生物標定物的方法,不需要電,無須專業訓練人員,並且是在偏遠或家庭環境中的使用非常便利。棉和紙基體外診斷裝置的主要材料是非常便宜的,並通過使用“噴蠟打印機”或是自組裝的方式製作是很快速且方便的。最後希望有機會開發“印刷技術”應用在各種類型的檢測試劑塗布或應用監測疾病診斷裝置的快速製程上且可以普及在便利商店或是賣場中建立一個新的商業模式。
Here, we discuss the development of paper and cotton-based diagnostic devices that is inexpensive, easy-to-use, robust, and capable of simultaneous testing for 1) whole blood and urine assays 2) monitoring the level of a relevant inflammatory protein (C-reactive protein in this study) and blood typing in whole blood, nitrite, BSA, urobilinogen and uric acid assays in urine. In my study, we first attempted to make a paper-based diagnostic device via the wax printing method and a cotton-based diagnostic device via composite material (cotton and choreography paper). Our systems, which specifically targets urinalysis and whole blood diagnostics and employs a multiple biomarker approach, requires no electricity, no professional training, and is exceptionally portable for use in remote or home settings. Developing cotton and paper-based in-vitro point-of-care diagnostic devices are very inexpensive and easy to operate through using an “inkjet printer”. developed the “printing technology” make various types of diagnostic devices for either detecting or monitoring different diseases, use diagnostic devices for diagnosing different diseases and monitoring, in advance, the disease activities, and attempt to easy and fast manufacture of diagnostic devices and ship from the laboratory to the industry and can establish the popularity of a new business model at a convenience store or supermarket.
1. Acknowledgements 2
2. Abstract 3
3. Chapter 1. Introduction of Low-Cost Diagnostic Devices 4
4. Chapter 2. Cotton-Based Diagnostic Devices 10
4.1. Introduction 10
4.2. Materials and Reagents 15
2.2.1. Reagents of Urine-Based Assays 15
2.2.2. Materials of Cotton-Based Diagnostic Device 16
4.3. Methods 17
4.4. Results and Discussion 19
2.4.1. Cotton-Based Diagnosis Devices 19
2.4.2. Cotton-Based Diagnosis Devices for Colorimetric Assays 24
2.4.3. Dilution Effect of a Cotton-Based Fluidic Channel 29
2.4.4. Cotton-Based Diagnostic Devices for Urinalysis 39
4.5. Conclusion 47
5. Chapter 3. Rapid Blood Typing and CRP Assays Monitoring via Paper-Based Diagnostic Devices 49
5.1. Introduction 49
5.2. Method and Material 53
3.2.1. Fabrication of paper-based diagnostic devices. 53
3.2.2. Antibody immobilization in blood typing paper-based diagnostic devices. 53
3.2.3. Immobilization of CRP paper-based diagnostic devices. 56
3.2.4. Analysis of blood typing paper-based diagnostic devices. 58
3.2.5. Analysis of CRP assays using paper-based diagnostic devices. 59
5.3. Results 61
3.3.1 Fabrication for Paper-based diagnosis devices. 61
3.3.2. Paper-based diagnosis devices for blood typing assays. 66
3.3.3. Paper-based diagnosis devices for CRP assays. 71
3.4 Conclusion 81
6. Chapter 4. Future Work 86
6.1. Introduction 86
6.2. Expected Results 88
Reference 92

(1) Yager, P.; Domingo, G. J.; Gerdes, J. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 2008, 10, 107-144.
(2) Soper, S. A.; Brown, K.; Ellington, A.; Frazier, B.; Garcia-Manero, G.; Gau, V.; Gutman, S. I.; Hayes, D. F.; Korte, B.; Landers, J. L. Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosensors and Bioelectronics 2006, 21, 1932-1942.
(3) Peeling, R. WHO programme on the evaluation of diagnostic tests. Bulletin of the World Health Organization 2006, 84, 594.
(4) Peeling, R. W.; Holmes, K. K.; Mabey, D.; Ronald, A. Rapid tests for sexually transmitted infections (STIs): the way forward. Sexually transmitted infections 2006, 82 Suppl 5, v1-6.
(5) Chin, C. D.; Linder, V.; Sia, S. K. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 2007, 7, 41-57.
(6) Sia, S. K.; Linder, V.; Parviz, B. A.; Siegel, A.; Whitesides, G. M. An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angewandte Chemie 2004, 43, 498-502.
(7) Daar, A. S.; Thorsteinsdottir, H.; Martin, D. K.; Smith, A. C.; Nast, S.; Singer, P. A. Top ten biotechnologies for improving health in developing countries. Nature genetics 2002, 32, 229-232.
(8) Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M. R.; Weigl, B. H. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412-418.
(9) Mabey, D.; Peeling, R. W.; Ustianowski, A.; Perkins, M. D. Diagnostics for the developing world. Nature reviews. Microbiology 2004, 2, 231-240.
(10) Labarthe, D.; Grover, B.; Galloway, J.; Gordon, L.; Moffatt, S.; Pearson, T.; Schoeberl, M.; Sidney, S. The Public Health Action Plan to Prevent Heart Disease and Stroke: Ten-Year Update. 2014.
(11) Subramanian, S.; Corsi, D. J.; Subramanyam, M. A.; Smith, G. D. Jumping the gun: the problematic discourse on socioeconomic status and cardiovascular health in India. International journal of epidemiology 2013, 42, 1410-1426.
(12) Soita, D. J. Cardiovascular disease risk profile of the South-African mixed ancestry population with high incidence of diabetes mellitus: baseline and three year follow-up. 2013.
(13) Couser, W. G.; Remuzzi, G.; Mendis, S.; Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 2011, 80, 1258-1270.
(14) Sophie Dupuis, A. R. CHRONIC KIDNEY DISEASE. World Kidney Day 2014.
(15) Hall, P. Kidney facts. baltimoresun 2013.
(16) national health insurance administration ministry of health and welfare. 2012.
(17) Consortium, C. K. D. P. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. The Lancet 2010, 375, 2073-2081.
(18) Kangas, B. Therapeutic itineraries in a global world: Yemenis and their search for biomedical treatment abroad. Medical Anthropology 2002, 21, 35-78.
(19) Macek, K. B., H. Chromatogr. Rev 1971, 15, 1-28.
(20) Pelton, R. T. Anal. Chem. 2009, 28, 925-942.
(21) Giddings, J. C. Critical Inlet Pressure for Separation in Gas Chromatography. Journal of chromatography 1965, 18, 221-225.
(22) Martinez, A. W.; Phillips, S. T.; Carrilho, E.; Thomas, S. W., 3rd; Sindi, H.; Whitesides, G. M. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 2008, 80, 3699-3707.
(23) Martinez, A. W.; Phillips, S. T.; Whitesides, G. M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A 2008, 105, 19606-19611.
(24) Martinez, A. W.; Phillips, S. T.; Butte, M. J.; Whitesides, G. M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie 2007, 46, 1318-1320.
(25) Abe, K.; Suzuki, K.; Citterio, D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 2008, 80, 6928-6934.
(26) Martinez, A. W.; Phillips, S. T.; Wiley, B. J.; Gupta, M.; Whitesides, G. M. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 2008, 8, 2146-2150.
(27) Hossain, S. M.; Luckham, R. E.; Smith, A. M.; Lebert, J. M.; Davies, L. M.; Pelton, R. H.; Filipe, C. D.; Brennan, J. D. Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks. Anal Chem 2009, 81, 5474-5483.
(28) Clegg, D. L. Anal. Chem. 1950
22, 48-59.
(29) Jungreis, E. Spot Test Analysis: Clinical, Environmental, Forensic, and Geochemical Applications, 2nd ed 1997.
(30) Martinez, A. W.; Phillips, S. T.; Nie, Z.; Cheng, C. M.; Carrilho, E.; Wiley, B. J.; Whitesides, G. M. Programmable diagnostic devices made from paper and tape. Lab Chip 2010, 10, 2499-2504.
(31) Cheng, C. M.; Martinez, A. W.; Gong, J.; Mace, C. R.; Phillips, S. T.; Carrilho, E.; Mirica, K. A.; Whitesides, G. M. Paper-based ELISA. Angewandte Chemie 2010, 49, 4771-4774.
(32) Lo, S. J.; Yang, S. C.; Yao, D. J.; Chen, J. H.; Tu, W. C.; Cheng, C. M. Molecular-level dengue fever diagnostic devices made out of paper. Lab Chip 2013, 13, 2686-2692.
(33) Hsu, M. Y.; Yang, C. Y.; Hsu, W. H.; Lin, K. H.; Wang, C. Y.; Shen, Y. C.; Chen, Y. C.; Chau, S. F.; Tsai, H. Y.; Cheng, C. M. Monitoring the VEGF level in aqueous humor of patients with ophthalmologically relevant diseases via ultrahigh sensitive paper-based ELISA. Biomaterials 2014, 35, 3729-3735.
(34) Li, X.; Tian, J. F.; Shen, W. Quantitative biomarker assay with microfluidic paper-based analytical devices. Anal Bioanal Chem 2010, 396, 495-501.
(35) Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 1976, 72, 248-254.
(36) Zor, T.; Selinger, Z. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Analytical biochemistry 1996, 236, 302-308.
(37) Noble, J. E.; Bailey, M. J. Quantitation of protein. Methods in enzymology 2009, 463, 73-95.
(38) Gornall, A. G.; Bardawill, C. J.; David, M. M. Determination of serum proteins by means of the biuret reaction. The Journal of biological chemistry 1949, 177, 751-766.
(39) Martinez, A. W.; Phillips, S. T.; Whitesides, G. M.; Carrilho, E. Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Anal Chem 2010, 82, 3-10.
(40) Cheng, C. M.; Martinez, A. W.; Gong, J. L.; Mace, C. R.; Phillips, S. T.; Carrilho, E.; Mirica, K. A.; Whitesides, G. M. Paper-Based ELISA. Angew Chem Int Edit 2010, 49, 4771-4774.
(41) Ellerbee, A. K.; Phillips, S. T.; Siegel, A. C.; Mirica, K. A.; Martinez, A. W.; Striehl, P.; Jain, N.; Prentiss, M.; Whitesides, G. M. Quantifying Colorimetric Assays in Paper-Based Microfluidic Devices by Measuring the Transmission of Light through Paper. Anal Chem 2009, 81, 8447-8452.
(42) Cheng, C. M.; Mazzeo, A. D.; Gong, J. L.; Martinez, A. W.; Phillips, S. T.; Jain, N.; Whitesides, G. M. Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape. Lab Chip 2010, 10, 3201-3205.
(43) Liu, X. Y.; Cheng, C. M.; Martinez, A. W.; Mirica, K. A.; Li, X. J.; Phillips, S. T.; Mascarenas, M.; Whitesides, G. M. A Portable Microfluidic Paper-Based Device for Elisa. Proc Ieee Micr Elect 2011, 75-78.
(44) Martinez, A. W.; Phillips, S. T.; Nie, Z. H.; Cheng, C. M.; Carrilho, E.; Wiley, B. J.; Whitesides, G. M. Programmable diagnostic devices made from paper and tape. Lab Chip 2010, 10, 2499-2504.
(45) Yang, X.; Forouzan, O.; Brown, T. P.; Shevkoplyas, S. S. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab on a chip 2012, 12, 274-280.
(46) Klasner, S. A.; Price, A. K.; Hoeman, K. W.; Wilson, R. S.; Bell, K. J.; Culbertson, C. T. Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Anal Bioanal Chem 2010, 397, 1821-1829.
(47) Martinez, A. W.; Phillips, S. T.; Whitesides, G. M.; Carrilho, E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Analytical chemistry 2010, 82, 3-10.
(48) Lin, S.-C.; Hsu, M.-Y.; Kuan, C.-M.; Wang, H.-K.; Chang, C.-L.; Tseng, F.-G.; Cheng, C.-M. Cotton-based Diagnostic Devices. Scientific reports 2014, 4.
(49) Khan, M. S.; Thouas, G.; Shen, W.; Whyte, G.; Garnier, G. Paper diagnostic for instantaneous blood typing. Anal Chem 2010, 82, 4158-4164.
(50) Al-Tamimi, M.; Shen, W.; Zeineddine, R.; Tran, H.; Garnier, G. Validation of paper-based assay for rapid blood typing. Anal Chem 2012, 84, 1661-1668.
(51) Li, M.; Tian, J.; Al‐Tamimi, M.; Shen, W. Paper‐Based Blood Typing Device That Reports Patient’s Blood Type “in Writing”. Angewandte Chemie International Edition 2012, 51, 5497-5501.
(52) Du Clos, T. W. Function of C-reactive protein. Annals of medicine 2000, 32, 274-278.
(53) Ugarte, H.; Silva, E.; Mercan, D.; De Mendonca, A.; Vincent, J.-L. Procalcitonin used as a marker of infection in the intensive care unit. Critical care medicine 1999, 27, 498-504.
(54) Sherwood, E. R.; Toliver-Kinsky, T. Mechanisms of the inflammatory response. Best Practice & Research Clinical Anaesthesiology 2004, 18, 385-405.
(55) Koenig, W.; Sund, M.; Fröhlich, M.; Fischer, H.-G.; Löwel, H.; Döring, A.; Hutchinson, W. L.; Pepys, M. B. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 1999, 99, 237-242.
(56) Ridker, P. M.; Hennekens, C. H.; Buring, J. E.; Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. New England Journal of Medicine 2000, 342, 836-843.
(57) Yeh, E. T.; Willerson, J. T. Coming of age of C-reactive protein using inflammation markers in cardiology. Circulation 2003, 107, 370-371.
(58) Lo, S. J.; Yang, S. C.; Yao, D. J.; Chen, J. H.; Tu, W. C.; Cheng, C. M. Molecular-level dengue fever diagnostic devices made out of paper. Lab Chip 2013, 13, 2686-2692.
(59) Wang, H. K.; Tsai, C. H.; Chen, K. H.; Tang, C. T.; Leou, J. S.; Li, P. C.; Tang, Y. L.; Hsieh, H. J.; Wu, H. C.; Cheng, C. M. Cellulose-based diagnostic devices for diagnosing serotype-2 dengue Fever in human serum. Advanced healthcare materials 2014, 3, 187-196.
(60) Pepys, M. B. C-reactive protein fifty years on. The Lancet 1981, 317, 653-657.
(61) Werner, M. Serum protein changes during the acute phase reaction. Clinica chimica acta 1969, 25, 299-305.
(62) Hansen, J. G.; Schmidt, H.; Rosborg, J.; Lund, E. Predicting acute maxillary sinusitis in a general practice population. BMJ 1995, 311, 233-236.
(63) Koj, A.: Acute-phase reactants. In Structure and function of plasma proteins; Springer, 1974; pp 73-131.
(64) CRP, C.-R. P.; TEST, A. L. S. Cortez Diagnostics, Inc.
(65) Fischer, C.; Gill, C. Acute-phase proteins. Serum protein abnormalities: diagnostic and clinical aspects. Boston. MA: Little, Brown and Company, Inc 1975, 331-350.
(66) MedlinePlus: U.S. National Library of Medicine & National Institutes of Health. Retrieved 8 July 2013.
(67) AALTO, K.; ÖSTERMAN, K.; PELTOLA, H.; RÄSÄNEN, J. Changes in erythrocyte sedimentation rate and C-reactive protein after total hip arthroplasty. Clinical orthopaedics and related research 1984, 184, 118-120.
(68) Husain, T. M.; Kim, D. H. C-reactive protein and erythrocyte sedimentation rate in orthopaedics. Univ Pa Orthop J 2002, 15, 13-16.
(69) Lo, S. J.; Yang, S. C.; Yao, D. J.; Chen, J. H.; Cheng, C. M. Molecular-Level Dengue Fever Diagnostics via a Combination of RT-LAMP and Paper-based Devices. 2012 Ieee Nanotechnology Materials and Devices Conference (Nmdc) 2013, 84-87.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *