帳號:guest(3.133.109.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃鈺雯
作者(外文):Huang, Yu-Wen
論文名稱(中文):介電式液態透鏡之非線性LEM模型
論文名稱(外文):Nonlinear Lumped Element Model of Dielectric Liquid Lens
指導教授(中文):葉哲良
指導教授(外文):Yeh, J. Andrew
口試委員(中文):楊耀州
黃國政
蔡智偉
口試委員(外文):Yao-Joe Joseph Yang
Kuo-Cheng Huang
Chih-wei Tsai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:100035514
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:82
中文關鍵詞:介電力液態透鏡液體參數接觸角
外文關鍵詞:Dielectric forceLiquid lensLiquid parametersContact angle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:303
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
可調焦介電式液態透鏡,目前已達成微小化且搭載於各式電子產品之中。如何用最快速方式預測液態透鏡內的液珠行為,將是一項重要的角色。液態透鏡內兩種液體間的重力影響因素,可藉由讓兩液維持等密度而消除;其餘表面張力、介電力與摩擦力,則受到液體基本特性及環境的影響(如:施加電壓大小),因需進一步的探討。
由於實驗測試上,如針對各種配方的混合液體進行測試,將是一項勞心勞力的大工程。有鑒於此,本論文欲以能量轉換的觀點,進而建立出介電式液態透鏡之非線性LEM模型,包括擬合準確度高的液體基本性質公式(密度、表面張力、界面張力、折射度、介電常數與黏度),以及液體性質與液態透鏡中各個變因(如:接觸角、驅動電壓)之間的相關性。使之後的實驗得以快速分析封裝特定液體時,最適切之液態透鏡參數;期許能有效地減少材料或試品上的花費,用最少的實驗成本,模擬及展現出最佳的實驗成果
有關液體基本性質公式的擬合,依照實驗結果,密度、表面張力、界面張力、折射度、介電常數與黏度,分別得以線性(醇水混合溶液則為二次多項式函數)、對數函數、對數函數、線性、二次多項式函數與指數函數進行擬合。
至於接觸角與驅動電壓之間的相關性,依照實驗結果,無論是改變工作液體或封裝液體配方,驅動電壓對液珠的接觸角餘弦值,其結果皆與理論值的趨勢線相符,而電壓對液珠的接觸角餘弦值,則可以線性函數歸納。
Focus tunable dielectric liquid lens, its size is miniaturized and is applied to kinds of electrical products now. Hence, the way to quickly predict the behavior of the droplet of the liquid lens becomes important. In the dielectric liquid lens, the gravitational factor of two immiscible liquids could be eliminated by identical/similar density. Other forces, such as surface tension force, dielectric force, friction, are affected by liquid basic properties and environments, for example, actuating voltage, so that it should be discussed more deeply.
It will be a time consuming work if we test every different kind of liquid mixture. In this study, we try to use the view of energy transferring and built a nonlinear lumped element model of dielectric liquid lens, including equation fittings of basic liquid property, such as density, surface tension, interfacial surface tension, refraction, dielectric constant and viscosity, and the relationship between basic liquid properties and parameters of dielectric liquid lens like contact angle and actuating voltage. By doing so, we could quickly choose the appropriate parameters and conduct the experiment, instead of time and material waste.
With regard to equation fittings of basic liquid property, density, surface tension, interfacial surface tension, refraction, dielectric constant and viscosity could be fitted in linear, logarithm, logarithm, linear, 2ndpolynomial and exponential equation, respectively.
The relationship between actuating voltage and the cosine value of the contact angle of working droplet could be fitted by 2ndpolynomial equation, based on the experimental results conforming to the trend chart of theoretical values.
中文摘要 ................................................................ii
英文摘要 ................................................................iii
目錄 ................................................................... iv
圖目錄 ................................................................. vi
表目錄 ................................................................. xi
符號表.................................................................. xii
第一章 緒論 ............................................................. 1
1.1 研究背景 .........................................................1
1.2 文獻回顧 .........................................................3
1.2.1 液態透鏡概要 ............................................... 3
1.2.2 液態透鏡的調焦機制 ......................................... 4
1.3研究動機與目標 ................................................... 6
1.4實驗架構 ......................................................... 9
1.5論文架構 ......................................................... 9
第二章 基本原理 ........................................................ 10
2.1 非線性LEM模型 (non-linear Lumped Element Model) .................10
2.2 驅動電壓(V) 對液珠的接觸角餘弦值(cosθ)公式........................ 11
2.3 密度 ............................................................13
2.3.1 兩液混合之密度公式 .........................................13
2.4 表面張力 ........................................................15
2.4.1 兩液混合之表面張力公式 .....................................16
2.5 折射率 ...........................................................17
2.5.1 兩液混合之折射率公式 .......................................17
2.6 介電常數 .........................................................18
2.6.1 兩液混合之介電常數公式 .....................................18
2.7 黏度 ............................................................19
2.7.1 兩液混合之黏度公式 .........................................19
第三章 量測儀器介紹 .....................................................21
3.1 KEM DA-645 高精度液體密度計.....................................21
3.2 LAUDA TD1C表面張力計 ..........................................21
3.3 ATAGO DR-M2/1550折射度計.......................................22
3.4 Agilent E4980A精密型LCR METER .................................23
3.5 LAUDA DV-III Ultra CP流變儀......................................23
3.6 軟體Origin Pro 8 曲線擬合..........................................24
3.7 接觸角量測系統...................................................24
第四章 實驗果與討論......................................................26
4.1 密度 .............................................................26
4.2 表面張力..........................................................32
4.3 界面張力..........................................................38
4.4 折射度............................................................40
4.5 介電常數..........................................................46
4.6 黏度..............................................................52
4.7 電壓對液珠的接觸角餘弦值(cosθ) ....................................58
第五章 結論與討論........................................................76
第六章 未來工作..........................................................77
參考文獻.................................................................78
1. R. A. Hayes, and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,”
Nature 425, 383-385 (2003).
2. U. C. Yi, and C. J. Kim, “Characterization of electrowetting actuation on addressable
single-side coplanar electrodes,” Journal of Micromechanics and Microengineering 16,
2053-2059 (2006).
3. C. C. Cheng, and J. A. Yeh, “Dielectrically actuated liquid lens,” Optics Express 15,
7140-7145 (2007).
4. C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar
liquid confinement for optical centering of dielectric liquid lens,” IEEE Photonics
Technology Letters 21, 1396-1398 (2009).
5. Z. He, T. Nose, and S. Sato, “Cylindrical liquid crystal lens and its applications in optical
pattern correlation systems,” Japanese Journl of Applied Physics 34, 2392-2395 (1995).
6. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens
with high focal length tenability,” Applied Physics Letters 82, 3171-3172 (2003).
7. D. Graham-Rowe, “Liquid lenses make a splash,” Nature Photonics, 2-4 (2006).
8. F. Mugele, and J. C. Baret, “Electrowetting: from basics to applications,” Journal of
Physics: Condensed Matter 17, R705-R774 (2005).
9. A. Frumkin, N. Nikolajeva-Fedorovich, and R. Ivanova, “The influence of surface active
anions on the electroreduction of the persulohate anion at negative potentials,” Canadian
Journal of Chemistry 37, 253-256 (1959).
10. C. Gorman, H. Biebuyck, and G. Whitesides, “Control of the shape of liquid lenses on a
modified gold surface using an applied electrical potential across a self-assembled
monolayer,” Langmuir 11, 2242-2246 (1995).
11. C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid-crystal microlenswith hybrid alignment,” Journal of Optics A: Pure and Applied Optics 8, S365-S369
(2006).
12. I. Gatland, “Thin lens ray tracing,” American Journal of Physics 70, 1184 (2002).
13. S. Kuiper, B. Hendriks, L. Huijbregts, A. Hirschberg, C. Renders, and M. van As,
“Variable-focus liquid lens for portable applications,” Proceedings of SPIE 5523,
100-109 (2004).
14. B. H. Hendriks, S. Kuiper, M. A. J. Van, C. A. Renders, and T. W. Tukker,
“Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255-259
(2005).
15. 彭巧伶,“兩百萬畫素液態透鏡手機對焦鏡頭” 國立清華大學奈米工程與微系統
研究所碩士論文 (2008).
16. 楊志誠,“介電液態透鏡微小化研究” 國立清華大學 奈米工程與微系統研究所博
士論文 (2011).
17. Stephen D. Senturia, “Microsystem Design,” Ch.5 (2000)
18. 蔡智偉,“介電式液態透鏡與光圈之研究” 國立清華大學 奈米工程與微系統研究
所博士論文 (2010).
19. A.Z.Taslc, B.D.Djordjevic, and D.K.Grozdanic, “Use of Mixing Rules in Predicting
Refractive Indices and Specific Refractivities for Some Binary Liquid Mixtures,” J.
Chem. Eng. 37, 310-313 (1992)
20. Y. G. Liu, and P. H. Daum, “Relationship of refractive index to mass density and
self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,”
Aerosol Science 39, 974-986 (2008)
21. The MEGlobal Group of Companies, “Specific Gravities of Aqueous Ethylene Glycol
Solutions,” Ethylene Glycol Product Guide, 28 (2008)
22. A. Bateni, S. Susnar, A. Amirfazli, and A. Neumann, “A novel methodology to study
shape and surface tension of drops in electric fields,” Microgravity Science and Technology 16, 153-157 (2005).
23. Willi H. Hager, “Wilfrid Noel Bond and the Bond number,” Journal of Hydraulic
Research, 50:1, 3-9 (2012)
24. K. A. Connors, and J. L. Wright, “Dependence of Surface Tension on Composition of
Binary Aqueous-Organic Solutions,” Anal. Chem. 61, 194-198 (1989)
25. K. M. Bober, R. H. Giles, and J. Waldman, “Tailoring The Microwave Permittivity And
Permeability Of Composite Materials,” University of Massachusetts (1997)
26. Duk, H. Padleckas, and Stannered, “Laminar shear in a fluid” (2008)
27. N. S. Cheng, and W. K.A. Law, “Exponential formula for computing effective viscosity,”
Powder technology, (2003)
28. “KEM DA-645 高精度液體密度計” 寧波坤寧計量檢測儀器有限公司
29. “LAUDA Tensionmeter TD1C Product information” LAUDA Corp.
30. “ATAGO DR-M2/1550 折射度計” 全華精密 (CHUAN HUA PRECISION CORP.)
31. “Agilent E4980A精密型LCR METER” 品勛科技有限公司
32. “LAUDA DV-III Ultra CP流變儀(黏滯度計)” 碁進儀器股份有限公司
33. “Origin Pro 8 曲線擬合” OriginLab Corporation
34. R. E. Fisher, B. T.-G., and P. R. Yoder, “Optical System Design. 2 ed.,” Mc Graw Hill
(2008)
(此全文未開放授權)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *