帳號:guest(3.143.218.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊富翔
作者(外文):Yang, Fu-Shiang
論文名稱(中文):以五環素與白金提升氮化銦對氨氣選擇性
論文名稱(外文):Enhanced Ammonia Selectivity of InN Gas Sensor with Pentacene and Platinum
指導教授(中文):葉哲良
指導教授(外文):Yeh, Jer-Liang
口試委員(中文):何明志
王玉麟
黃國政
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:100035508
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:84
中文關鍵詞:氮化銦氨氣氣體感測器
外文關鍵詞:InNAmmoniaGas Sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:94
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肝癌一直以來是國人十大死因之一。當肝臟發生病變時,如何早期檢測發現並進行治療是有效降低肝癌死亡率相當重要的一環。已有研究指出肝病患者呼出氨氣濃度大於0.7 ppm,而正常人則小於0.3 ppm。本文利用氮化銦(InN)超薄膜(~10 nm)製備具偵測Sub-ppm等級氨氣濃度之氣體感測器,並應用於慢性肝炎患者非侵入性的肝炎呼氣檢測。慢性肝炎患者的呼氣中除了有氨氣外,尚有丙酮、氧氣、二氧化碳及其餘VOC氣體會對氮化銦感測器造成訊號干擾。因此,降低干擾氣體之訊號對低濃度氨氣感測而言益發重要。本文嘗試利用單一感測器以及雙感測器兩種方式提升InN對氨氣選擇性,降低患者呼氣中干擾氣體的影響。
在單一感測器中以五環素(Pentacene)作為表面改質材料提升InN感測器對氨氣的選擇性,並對表面改質前後氨氣與丙酮的訊號差異進行分析。由測量結果可得知,濃度8 ppm之氨氣與丙酮反應比例由1:0.95抑制為1:0.40,證明Pentacene確實具有抑制丙酮氣體的成效;然而對高濃度比例(5 %)的二氧化碳氣體而言,實驗結果可知Pentacene-InN感測器對高濃度二氧化碳並無明顯抑制效果。
為了在高濃度二氧化碳影響下依然能辨別出低濃度氨氣差異,吾人以雙感測器方式進行研究,雙感測器以白金層氮化銦(Pt-InN)以及裸面氮化銦(Bare-InN)組成,利用白金層對氨氣之催化特性,在模擬人體呼氣濃度範圍下:氧氣(16 %–18 %)、二氧化碳(3 %–5 %),區別0.2 ppm氨氣(模擬正常人濃度)以及0.8 ppm氨氣(模擬肝炎患者濃度)兩種氨氣濃度,並以支援向量機(Support Vector Machine)作為分類方法將其分為兩類。當取樣時間點訂為待測氣體通入後500秒時,正確分類資料點占資料點總數的98%,顯示此方法在氧氣與二氧化碳的干擾下,對於0.2 ppm氨氣資料點及0.8 ppm氨氣資料點依然具有很好的辨別能力。

Liver cancer is one of the top ten causes of death in Taiwan. To efficiently increase the survival rate of liver cancer, the development of the detection technique is strongly desired. Some researches indicated that the ammonia concentration in exhaled breath for patients with liver disease was greater than 0.7 ppm, while healthy people have less than 0.3 ppm. We have developed a gas sensor based on ultrathin indium nitride (InN) to detect ammonia at sub-ppm level for diagnosing liver disease. Nevertheless, the InN gas sensor responds to not only ammonia but also other interfering gases (ex: acetone, carbon dioxide, and oxygen) existing in human breath. The interfering gases severely influence the signal captured from the InN sensor, causing difficulty in distinguishing the concentration of ammonia. To reduce the noise from the interfering gases, two methods using single sensor and sensor arrays are proposed in this study to enhance the selectivity of ammonia.
For single sensor, bare InN films have the current variation ratio of 1:0.95 upon exposure to 8 ppm ammonia and 8 ppm acetone, respectively. When the InN surface was decorated with pentacene on the top, the current variation ratio remarkably reduced to 1:0.4, indicating pentacene can suppress acetone signal. However, pentacene cannot be effectively suppressed signals caused by high concentration of carbon dioxide existed in breath. To differentiate sub-ppm ammonia under the variation of high concentrations of carbon dioxide (3-5 %) and oxygen (16-18 %), the sensor arrays composed of Bare-InN and Pt-InN are proposed. The array can differentiate 0.8 ppm and 0.2 ppm ammonia using Support Vector Machine (SVM) in plane formed by different responses of the two sensors. The number of classified data correctly represents 98% of total data points captured at a response time of 500 s.
誌謝 I
中文摘要 II
Abstract III
內容 IV
圖目錄 VI
表目錄 X
符號表 XI
第一章 序論 1
1.1研究背景 :生醫感測器選擇性之重要性 1
1.2肝臟疾病及呼氣檢測 2
1.3氨氣及丙酮氣體簡介 5
1.4研究動機及目的 8
第二章 文獻回顧 9
2.1氮化銦薄膜特性簡介 9
2.2裸面氮化銦薄膜感測氣體機制 11
2.3增進氨氣感測器選擇性之文獻回顧 14
2.3.1表面改質 14
2.3.2溫度調控 18
2.3.3感測器陣列 19
2.3.4表面改質材料選擇 21
2.4五環素(Pentacene)薄膜特性簡介 24
2.5五環素(Pentacene)/氮化銦(InN) 薄膜感測氣體機制 26
2.6白金(Pt)/氮化銦(InN) 薄膜感測氣體機制 27
2.7支援向量機(Support Vector Machines) 29
第三章 元件設計及製作 32
3.1氮化銦感測器概述 32
3.2磊晶成長氮化銦薄膜概述 35
3.3感測器製造流程 37
3.3.1感測元件製程 37
3.3.2加熱器製程 41
3.3.3感測器組裝及打線 44
3.4量測儀器和實驗流程 46
3.4.1儀器設置 46
3.4.2量測方法 55
第四章 結果與討論 56
4.1氨氣與丙酮選擇性之探討 56
4.2氨氣與二氧化碳選擇性之探討 59
4.3二氧化碳與氧氣造成之感測干擾 62
4.4利用Bare-InN與Pt-InN在干擾氣體之下分辨低濃度氨氣 64
4.5 比較不同的取樣時間點所造成的影響 71
4.6在二氧化碳環境下丙酮對氨氣偵測造成之影響: 74
第五章 結論 76
第六章 未來工作 77
參考資料 78

參考資料

[1] B. Timmer, "Ammonia sensors and their applications –a review", Sensors and Actuators B-Chemical, 2005.
[2] A. Manolis, "The diagnostic potential of breath analysis", Clinical Chemistry, 1983.
[3] S. Davies, P. Spanel, and D. Smith, "Quantitative analysis of ammonia on the breath of patients in end-stage renal failure", Kidney International, 1997.
[4] S. Clay, E. Hainline, "Hyperammonemia in the ICU", Chest, 2007.
[5] M. Barker, M. Hengst, J. Schmid, H-J. Buers, B. Mittermaier,D. Klemp and R. Koppmann, "Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis", European Respiratory Journal, 2006.
[6] B. Moser, F. Bodrogi, G. Eibl, M.Lechner, J. Rieder, P.Lirk, "Mass spectrometric profile of exhaled breath—field study by PTR-MS", Respiratory Physiology & Neurobiology, 2005.
[7] B. Buszewski, M. Kesy, T. Ligorand, A. Amann, “Human exhaled air analytics: biomarkers of diseases,” Biomedical Chromatography, 2007.
[8] B.H. Timmera, K.M. van Delft, R.P. Otjes , W. Olthuis, A. van den Berg, "Miniaturized measurement system for ammonia in air", Analytica Chimica Acta, 2004.
[9] S. Pandey, G.K. Goswami and K. K. Nanda, "Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reactions studies", Scientific Reports, 2013.
[10] T. Mitsudom, “Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst,” Angewandte Chemie International Edition, 2008.
[11] M. Besson , P. Gallezot, “Selective oxidation of alcohols and aldehydes on metal catalysts,” Catalysis Today, 2000.
[12] J. H. Kluytmans, A. P. Markusse, B. F. M.Kuster, G. B. Marin, J. C. Schouten, “Engineering aspects of the aqueous noble metal catalysed alcohol oxidation,” Catalysis Today, 2000.
[13] G. K. Mani, J. Bosco, B. Rayappan, "A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film", Sensors and Actuators B, 2013.
[14] S. Hirokazu, K.Yuki, H.Yuk, S.Takeshi, "Ammonia bio-sniffer with flavin-containing monooxygenase", Sensors and Actuators B, 2007.
[15] Z. Chen, K. Colbow, "MgO-doped Cr2O3: solubility limit and the effect of doping on the resistivity and ethanol sensitivity", Sensors and Actuators B, 2007.
[16] Y. Hiranaka, T. Abe, H. Murata, "Gas-dependent response in the temperature transient of SnO2 gas sensors", Sensors and Actuators B: Chemical, 1992.
[17] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, "Indium nitride (InN): A review on growth, characterization, and properties", Journal of Applied Physics, 2003.
[18] H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, "Surface charge accumulation of InN films grown by molecular-beam epitaxy", Applied Physics Letters, 2003.
[19] I. Mahboob, "Origin of electron accumulation at wurtzite InN surfaces", Physical Review B, 2004.
[20] U. N. Barsan, "Conduction model of metal oxide gas sensors", Journal of Electroceramics, 2001.
[21] F. Hellegouarc'h, F. Arefi-Khonsari, R. Planade, and J. Amouroux, "PECVD prepared SnO2 thin films for ethanol sensors", Sensors and Actuators B: Chemical, 2001.
[22] M. E. Franke, T. J. Koplin, and U. Simon, "Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?", Small., 2006.
[23] P. P. Sahay, "Zinc oxide thin film gas sensor for detection of acetone", Journal of Materials Science, 2005.
[24] R. B. Cooper, G. N. Advani, and A. G. Jordan, "Gas sensing mchanisms in SnO2 thin-films", Journal of Electronic Materials, 1981.
[25] M. Aslam, V.A .Chaudhary, I.S. Mulla, S.R. Sainkar, A.B Mandale, A.A. Belhekar, K.Vijayamohanan, "A highly selective ammonia gas sensor using surface-ruthenated zinc oxide", Sensors and Actuators A: Physical., 1997.
[26] A. Salomonsson, K.Uvdal, C. Aulin, P.O. Kall, L. Ojamae, M. Strand, M. Sanati, A. L.Spetz, "Nanocrystalline ruthenium oxide and ruthenium in sensing applications – an experimental and theoretical study", Journal of Nanoparticle Research, 2006.
[27] P. Patil and L. A.Devidas, "Ammonia Sensing Resistors Based on Fe2O3-Modified ZnO Thick Films", IEEE Sensor Journal, 2007.
[28] X. Wang, N. Miura, "Study of WO3-based sensing materials for NH3 and NO detection", Sensors and Actuators B-Chemical, 2000.
[29] X. Huang, F. Meng, Z. Pi, W. Xu, J. Liu., "Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation", Sensors and Actuators B-Chemical, 2004.
[30] W. Gardner, "A brief history of electronic noses", Sensors and Actuators B: Chemical, 1994.
[31] C. Jin, "Chemometric Methods for the Determination of Volatile Organic Compounds with Microsensor Arrays", University of Michigan, 2008.
[32] 張覃軼, "電子鼻:傳感器陣列、系統及應用研究", 華中科技大學, 2005.
[33] H.W. Zan, W.W. Tsai , Y.Lo , Y.M.Wu , and Y.S.Yang, "Pentacene-Based Organic Thin Film Transistors for Ammonia Sensing", IEEE Senors Journal, 2012.
[34] M. Stankova, X. Vilanova, E. Llobet, J. Calderer, C. Bittencourt, J.J. Pireaux, X. Correig, "Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO3 thin-film sensors", Sensor and Actuators B: Chemical, 2005.
[35] E. Llobet, G. Molas, P. Molinas, "Fabrication of Highly Selective Tungsten Oxide Ammonia Sensors", Journal of The Electrochemical Society, 2000.
[36] L. A. Patil , L.S. Sonawane, " Room Temperature Ammonia Gas Sensing Using MnO2-Modified ZnO Thick Film Resistors", Journal of Modern Physics, 2011.
[37] D. R. Patil, L.A. Patil, P.P. Patil, "Cr2O3-activated ZnO thick film resistors for ammonia g as sensing operable at room temperature", Sensor and Actuators B: Chemical, 2007.
[38] H. Tang, M.Yan, H. Zhang, S.Li, X.Ma, M. Wang, D. Yang., "A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature", Sensor and Actuators B: Chemical, 2006.
[39] A.K. Prasada, P.I. Goumaa, D.J. Kubinskib, J.H. Visserb, R.E. Soltisb, P.J. Schmitzb, "Reactively sputtered MoO3 films for ammonia sensing", Thin Solid Films, 2003.
[40] P. Gouma, K. Kalyanasundaram, X. Yun, M. Stanacevi, "Nanosensor and Breath Analyzer for Ammonia", IEEE Sensor Journal, 2010.
[41] M. Bendahan , P. Lauque, K. Aguir, P. Knauth, "Development of an ammonia gas sensor", Chemical, 2003.
[42] Y. Zhang , P. Xu , J. Xu , H. Li , and W. Ma, "NH3 Sensing Mechanism Investigation of CuBr: Different Complex Interactions of the Cu+ Ion with NH3 and O2 Molecules", Journal of physical chemistry C, 2011.
[43] M. Bendahan , C. Jacolin , P. Lauque , J.-L. Seguin , and P. Knauth, "Morphology, Electrical Conductivity, and Reactivity of Mixed Conductor CuBr Films", The Journal of Physical Chemistry B, 2001.
[44] S.G.Pawar, S.L.Patil, A.T.Mane, B.T.Raut, V.B.Patil, "Growth, Characterzation and Gas Sensing Properties Of Polyaniline Thin Films", Archives Of Applied Science Research, 2009.
[45] S. Pawar, M.Chougule1, S.Patil1, B. Raut, D. Dalvi, P. Patil, ,V. Patil, "Fabrication of Nanocrystalline TiO2 Thin Film Ammonia Vapor Sensor", Journal of Sensor Technology, 2011.
[46] 陳石育, "N型有機場效電晶體之高分子閘介電層研究", 成功大學光電科學與工程研究所, 2007.
[47] Y.Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, "Stacked Pentacene Layer Organic Thin-Film", IEEE Electron Device Letters, 1997.
[48] H. Klauk, M. Halik, U. Zschieschang, F. Eder, G. Schmid, and C. Dehm, "Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates", Applied Physics Letters, 2003.
[49] L. A. Majewski, R. Schoeder and M. Grell, "Electron Diffraction Study of Order in the CuAu3 Alloys", Journal of Apply Physis, 2004.
[50] 黃志瑋, "介電層表面修飾對有機蒸鍍薄膜形貌與其場效電晶體性能影響研究", 國立中央大學化學研究所, 2008.
[51] J. Cornil, J.P. Calbert, "Electronic Structure of the Pentacene Single Crystal: Relation to Transport Propertie", Journal of The American Chemical Societys, 2001.
[52] A. B. Nadykto and F. Yu, "Uptake of neutral polar vapor molecules by charged clusters//particles:Enhancement due to dipole-charge interaction", Journal Of Geophysical Research, 2003.
[53] C. C. Cheng, "Study of hydrogen-sensing characteristics of a Pt-oxide-AlGaAs metal-oxide-semiconductor high electron mobility transistor", Journal of Vacuum Science & Technology B, 2005.
[54] I. Lundström and T. DiStefano, "Influence of hydrogen on Pt–SiO2–Si", Solid State Communications, 1976.
[55] Wikipedia.com.
[56] I. Lundstrom, "Why bother about gas-sensitive field-effect devices", Sensors and Actuators A-Physical, 1996.
[57] 許銘哲, "次ppm級丙酮氣體氮化銦薄膜感測器", 國立清華大學電子所, 2011.
[58] 張毓華, "利用氮化銦磊晶超薄膜製作之氫氣感測器", 國立清華大學奈微所, 2010.
[59] 林宗勳, “Support Vector Machines 簡介”.台灣大學資訊工程學系.
[60] C.W. Hsu, C.C. Chang, and C.J. Lin, "A Practical Guide to Support Vector Classification", National Taiwan University,Department of Computer Science, 2003.
[61] M. F. Wu, "High-precision determination of lattice constants and structural characterization of InN thin films", Journal of Vacuum Science & Technology A, 2006.
[62] D. Zhang , C. Li, X. Liu, S. Han, T. Tang, and C. Zhoua, "Doping dependent NH3 sensing of indium oxide nanowires", Applied Physics Letters, 2003.
[63] C. D. Natale, E. Martinelli, G. Pennazza, "Data Analysis For Chamical Sensor Array", University of Roma, 2005.
[64] 胡萬柏, "用於次ppm 級氨氣偵測的超薄氮化銦感測器", 國立清華大學電子所, 2012.
[65] D. Lee, J. Lee, Y. Lee, and D. Lee, "Support Vector Machine In Chemistry", World Scientific Publishing, 2004.
[66] S. V. Velde, F. Nevens, D. Steenberghe, M. Quirynen, “GC–MS analysis of breath odor compounds in liver patients,” Journal of Chromatography B, 2008.
[67] K. Toda, J. Li, and P. K. Dasgupta, “Measurement of Ammonia in Human Breath with a Liquid-Film Conductivity Sensor",” Analytical Chemistry, 2006.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *