帳號:guest(13.59.45.243)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝沃質
作者(外文):Vijeth Sathyanarayana Guptha
論文名稱(中文):Effect of Salt Concentration and Valence on Behavior of Polyelectrolyte Brush Studied by Molecular Dynamics Simulations
論文名稱(外文):以分子動力學模擬研究鹽濃度及鹽價數對高分子電解質刷行為的影響
指導教授(中文):曾繁根
蕭百沂
指導教授(外文):Tseng, Fan-Gang
Hsiao, Pai-Yi
口試委員(中文):黃鎮剛
呂明璋
口試委員(外文):Hwang, Jenn-Kang
Lu, Ming-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:100035422
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:62
中文關鍵詞:高分子電解質刷
外文關鍵詞:Polyelectrolyte Brush
相關次數:
  • 推薦推薦:0
  • 點閱點閱:124
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
In this study, a fully charged polyelectrolyte brush system is examined by means of molecular simulations. The simulation is conducted using Langevin dynamics to investigate the conformation and swelling of the polyelectrolyte (PE) chains inside a brush system under different conditions such as changing the valance of added salt and changing grafting density of chains.
We observe that addition of the monovalent salt induces the structural change of the PE brush. This is due to the screening effect of salt ions surrounding the PE brushes. In this case, the stiffness of the chain gradually decreases from rod-like regime to coil/globule like regime, upon increasing charge ratio of the solution. Consequently, the thickness of the brush decreases monotonically. In multivalent (divalent and trivalent) salt solution, the structural transition is quite different compared to monovalent case. In the region where charge ratio <1, the height of the brush decreases upon increasing the salt concentration. At =1, the chain reach a minimum height, indicating a critical point. Then in >1, the chains swell due to the electrostatic interaction. A charge inversion occurs because of the condensation of multivalent cations which are tightly bound on the PE chains. The effective chain charge reverses its sign and it is the electrostatic repulsion inside the chains which causes the chain swelling.
We also change the grafting density of the PE brush system to study the brush behavior. The height of the brush decreases with increase in grafting density at a given charge ration in the region <1. At charge ratio =1, the chain attains a minimum height in all the grafting density and the value almost the same in all the grafting densities under multivalent (divalent and trivalent) salt solution. But in monovalent case, the brush continues to collapse. In the charge ratio >1, the brush swells and the swelling becomes stronger with the valance in multivalent salt solution. The results show that the brush height can be controlled by changing the valence of the added salt in the solutions or by changing the chain grafting density.
Table of Contents
Abstract i
Acknowledgements ii
Table of Contents iii
List of Figures v
Chapter 1 Introduction 1
1.1 What is Soft Condensed Matter? 1
1.2 What is polyelectrolyte? 1
1.3 What is Polyelectrolyte Brush? 2
1.4 Motivation: Polyelectrolyte Brush 3
1.5 Paper review 4
Chapter 2 Simulation Model and Method 7
2.1 Coarse-grained Model 7
2.1.1 System 7
2.1.2 Interaction of the particles 8
2.2 Simulation Method 9
2.2.1 Molecular dynamics 9
2.2.2 Langevin dynamics 10
2.2.3 Boundary condition 11
2.2.4 Numerical method 11
2.2.5 Verlet neighbor list 12
2.2.6 Ewald sum 12
2.2.7 LAMMPS 13
Chapter 3 Simulation Parameters 14
Chapter 4 Results and Discussion 15
4.1 Height and Structure of the grafted chain 16
4.1.1 Maximum brush height 16
4.1.2 Structure of the brush 18
4.1.3 Polar angle of the brush 20
4.1.4 Brush thickness 21
4.1.5 End-to-end distance 23
4.2 Total charge distribution 24
4.3 Probability distribution of Polar angle 28
4.4 Distribution of monomer and cation concentration 31
4.5 Surface density distribution of monomer and cation 38
4.6 Comparison and Discussion 51
4.6.1 Stoichiometric charge ratio 51
4.6.2 Shape factor / and Polar angle 53
Chapter 5 Conclusion 57
Bibliography 60
[Allen and Tildesley, 1987]
M. P. Allen, Dominic J. Tildesley, “Computer Simulation of Liquids”, ISBN 0198556454 (1987)
[Ballauff 2006] M. Ballauff and O. Borisov, “Polyelectrolyte brushes”, Curr. Opin. Colloid Interface Sci. 11, 316 (2006)
[Bunsow 2010] J. Bunsow, T. S. Kelby, and W. T. S. Huck, “Polymer brushes: Routes toward mechanosensitive surfaces”, Acc. Chem. Res. 43, 466 (2010)
[Cabane 2012] E. Cabane, X.-Y. Zhang, K. Langowska, C. G. Palivan, and W. Meier, “Stimuli-responsive polymers and their applications in nanomedicine”, Biointerphases 7, 9 (2012)
[Cao 2009] Q.-Q. Cao, C.-C. Zuo, H.-W. He and L.-J. Li, “A molecular dynamics study of two apposing polyelectrolyte brushes with mono and multivalent counterions”, Macromol. Theory Simul. 18, 441 (2009)
[Csajka 2000] F. S. Csajka and C. Seidel, “Strongly Charged Polyelectrolyte Brushes: A Molecular Dynamics Study”, Macromolecules 33, 2728-2739 (2000)
[Csajka 2011] F. S. Csajka, R. R. Netz, C. Seidel, and J.-F. Joanny, “Collapse of polyelectrolyte brushes: Scaling theory and simulations”, Eur. Phys. J. E 4, 505 (2001)
[Dapeng Cao 2008] Dapeng Cao, Juan Yang and Wenchuan Wang, “Polyelectrolyte-Macroion Complexation in 1:1 and 3:1 Salt Contents: A Brownian Dynamics Study”, J. Phys. Chem. 112, 16505–16516 (2008)
[Dapeng Cao 2009] Dapeng Cao and Juan Yang, “Counterion Valence-Induced Tunnel Formation in a System of Polyelectrolyte Brushes Grafted on Two Apposing Walls” J. Phys. Chem. 113,11625–11631 (2009)
[Goujon 2012] F. Goujon, A. Ghoufi, P. Malfreyt, and D. J. Tildesley, “Frictional forces in polyelectrolyte brushes: Effects of sliding velocity, solvent quality and salt”, Soft Matter 8, 4635 (2012)
[Huang 2006] J.-H. Huang, Y.-M. Wang, and M. Laradji, “Flow control by smart nanofluidic channels:  A dissipative particle dynamics simulation, Macromolecules 39, 5546 (2006)
[He 2010] S.-Z. He, H. Merlitz, L. Chen, J.-U. Sommer and C.-X. Wu, “Polyelectrolyte brushes: MD simulation and SCF theory”, Macromolecules 43, 7845 (2010)

[Ibergay 2009] C. Ibergay, P. Malfreyt, and D. J. Tildesley, “Electrostatic interactions in dissipative particle dynamics: Toward a mesoscale modeling of the polyelectrolyte brushes”, J. Chem. Theory Comput. 5, 3245 (2009)
[Ibergay 2010] C. Ibergay, P. Malfreyt, and D. J. Tildesley, “Mesoscale modeling of polyelectrolyte brushes with salt”, J. Phys. Chem. B 114, 7274 (2010)
[Ibergay 2011] C. Ibergay, P. Malfreyt and D. J. Tildesley, “Interaction between two polyelectrolyte brushes: A mesoscale modelling of the compression”, Soft Matter 7, 4900 (2011)
[Jianzhong Wu 2008] Jianzhong Wu and Tao Jiang, “Ionic Effects in Collapse of Polyelectrolyte Brushes”, J. Phys. Chem. 112, 7713–7720 (2008)
[Jiang 2008] T. Jiang and J.Z. Wu, “Self-organization of multivalent counterions in polyelectrolyte brushes”, J. Chem. Phys. 129, 084903 (2008)
[LAMMPS] http://lammps.sandia.gov/
[Minko 2006] S. Minko, “Responsive Polymer Brushes”, J. Macromol. Sci. Part C 46, 397 (2006)
[Netz 2003] R. R. Netz and D. Andelman, “Neutral and charged polymers at interfaces”, Physics Reports 380, 1-95 (2003)
[Pincus 1991] P. Pincus, “Colloid stabilization with grafted polyelectrolytes”, Macromolecules 24, 2912 (1991)
[Plimpton 1995] S. J. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics”, J Comp Phys, 117, 1-19 (1995).
[Paul S. Crozier 2003] Paul S. Crozier and Mark J. Stevens, “Simulations of single grafted polyelectrolyte chains: ssDNA and dsDNA”, J. Chem. Phys. 118, 3855 (2003)
[Rühe 2004] J. Rühe, M. Ballauff, M. Biesalski, P. Dziezok, F. Gröhn, D. Jo-hannsmann, N. Houbenov, N. Hugenberg, R. Konradi, S. Minko, M. Motornov, R. R. Netz, M. Schmidt, C. Seidel, M. Stamm, T. Stephan, D. Usov, and H. Zhang, “Polyelectrolyte Brushes”, Adv. Polym. Sci. 165, 189 (2004)
[Tran 1999] Y. Tran, P. Auroy, and L-T. Lee, “Determination of the Structure of Polyelectrolyte Brushes”, Macromolecules, 32, 8952-8964 (1999)
[Seidel 2003] C. Seidel, “Strongly stretched polyelectrolyte brushes”, Macromolecules 36, 2536 (2003)
[Seidel C 2005] Seidel C and N. Arun Kumar, “Polyelectrolyte Brushes with Added Salt”, Macromolecules 38, 9341-9350 (2005)
[R. J. Sadus 1999] Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation, ISBN-10: 0444823050
[Verlet 1967] L. Verlet, “Computer "experiments" on classical fluids. I. thermo dynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98 (1967)
[Weeks 1971] J. D. Weeks, D. Chandler, and H. C. Andersen, “Role of repulsive forces in determining the equilibrium structure of simple liquids, J.Chem. Phys. 54, 5237 (1971)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *