帳號:guest(18.221.96.100)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賀米昊
作者(外文):Michal Stach
論文名稱(中文):A Pitch Tunable Wire Grid Polarizer
論文名稱(外文):週期可調線柵偏極片之研究
指導教授(中文):羅丞曜
指導教授(外文):Lo, Cheng-Yao
口試委員(中文):劉振良
陳榮順
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:100035421
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:91
中文關鍵詞:Laser interference lithography (LIL), post-lithography, strain, wire grid polarizer (WGP), extinction ratio (ER), surface crack ratio (cr)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:552
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
A simple and cost-effective post-lithography solution to reduce the critical dimensions of structures on the nanometer scale using an external mechanical force without any modification of the existing exposure system is proposed by this work. This study presents a tunable aluminium (Al) wire grid polarizer (WGP) on polyethylene naphthalate (PEN) substrate fabricated by the laser interference lithography (LIL) built on 325 nm exposure system. The characteristic pitch of WGP achieves a further 18% post-exposure shrinkage which is also reflected on improved TM (transverse magnetic) to TE (transverse electric) ratio by 33% with a defined operation window and specified optimized region of strain. The simulations in this study prove the rise of the extinction ratio with the modulation of the WGP pattern. Physical evidence explains fall of the extinction ratio for mainly the increase of the metal crack volume.
Chapter 1 Background and Motivation 1
1.1 Introduction 1
1.2 Background 2
1.2.1 Dimensional (Critical Dimension – CD) Shrinkage in Nano-Lithography 2
1.2.1.1 Moore's Law 2
1.2.1.2 Conventional Ultra-Violet (UV) Lithography 3
1.2.1.3 Extreme Ultra-Violet Lithography (EUVL) 4
1.2.1.4 Enlarging of Numerical Aperture (NA) – Immersion Lithography 7
1.2.1.5 Low-k1 Lithography 9
1.2.1.6 Photoresist Treatment 10
1.2.1.7 Double Patterning 11
1.3 Strain and Critical Dimension Shrinkage 13
1.3.1 Strain process 13
1.3.2 Poisson's Ratio and its Relation to CD 17
1.4 Polarizers 18
1.4.1 Definition of Polarizer 18
1.4.2 Performance Factors of Polarizers 19
1.4.2.1 Extinction Ratio 19
1.4.2.2 Contrast Ratio 19
1.4.2.3 Transmittance 19
1.4.2.4 Working Region of Polarizers 19
1.5 Wire Grid Polarizer 20
1.5.1. Conical Grating Wire Grid Polarizer 21
1.5.2 Imbedded wire grid polarizer for the visible spectrum 21
1.5.3 Double sided wire grid polarizer 22
1.5.4 Broadband wire grid polarizer for the visible spectrum 22
1.5.5 Corrosion resistant wire-grid polarizer 23
1.6 Fabrication Methods of Wire Grid Polarizers 24
1.6.1 Nanoimprint Lithography 24
1.6.2 Fabrication by Electron Beam (e-beam) Lithography (EBL) 26
1.6.3 Focused Ion Beam Lithography (FIB) 27
1.6.4 Dip-pen Nanolithography (DPN) 29
1.6.5 AFM Nano-scribing (scanning probe techniques) 30
1.6.6 Stencil Lithography (Shadow Mask Lithography) 32
1.6.7 Nanoskiving 34
1.6.8 Interference Lithography (IL) 36
Chapter 2 Simulation and Design 41
2.1 Structure Overview and Simulation 41
2.1.1 Structural Overview 41
2.1.2 Simulation of the WGP's Critical Dimensions 42
2.1.2.1 Influence of Pitch to the Optical Performance of the WGP 42
2.1.2.2 Influence of Thickness 43
2.1.2.3 Influence of the Duty Cycle 45
2.2 Selecting the Best Design of WGP 46
2.2.1 Grating to Substrate Interface 46
2.2.1.1 Adhesion of the Metal to Substrate 46
2.2.1.2 Design with consideration of material Poisson's ratios 48
Chapter 3 Fabrication Process of WGP 50
3.1 Material Selection 50
3.1.1 Substrate 51
3.1.2 Material Selection of the Metal Grating for WGP 57
3.2 Pre-fabrication steps 60
3.3 Enabling the Tunability of the WGP 61
3.4 FDTD Simulation of Strained WGP 65
3.4.1 Surface crack ratio 66
3.4.2 Strained WGP Simulation 69
3.5 Equipment for Measurements and Process 71
Chapter 4 Results and Discussion 74
4.1 SEM, AFM Results and the Extinction Ratio Measurements 74
4.2 Surface Crack Ratio and Crack Formation 81
4.2.1 Surface Crack Ratio 81
4.2.2 Study of Adhesion and Delaminations 84
Chapter 5 Discussion 86
5.1 Conclusion 86
5.2 Future Work 87
References 88
[1] B. Paivanranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, "Sub-10 nm patterning using EUV interference lithography," Nanotechnology, vol. 22, p. 375302, Sep 16 2011.
[2] B. J. Lin, "Immersion lithography and its impact on semiconductor manufacturing," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 3, pp. 377-395, 2004.
[3] D. H. Hwang and W.-H. Cheng, "Patterning strategy for low-K1 lithography," pp. 9-18, 2004.
[4] E. Pargon, K. Menguelti, M. Martin, A. Bazin, O. Chaix-Pluchery, C. Sourd, et al., "Mechanisms involved in HBr and Ar cure plasma treatments applied to 193 nm photoresists," Journal of Applied Physics, vol. 105, pp. 094902-11, 05/01/ 2009.
[5] S. Babin, G. Glushenko, T. Weber, T. Kaesebier, E. B. Kley, and A. Szeghalmi, "Application of double patterning technology to fabricate optical elements: Process simulation, fabrication, and measurement," Journal of Vacuum Science & Technology B, vol. 30, May-Jun 2012.
[6] L. Chen et al., "58 nm half-pitch plastic wire-grid polarizer by nanoimprint lithography," 2007, pp. 2654-2657.
[7] R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, ""Dip-Pen" nanolithography," Science, vol. 283, pp. 661-3, Jan 29 1999.
[8] O. Vazquez-Mena, G. Villanueva, V. Savu, K. Sidler, M. A. van den Boogaart, and J. Brugger, "Metallic nanowires by full wafer stencil lithography," Nano Lett, vol. 8, pp. 3675-82, Nov 2008.
[9] Y. J. Chen, J. H. Hsu, and H. N. Lin, "Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process," Nanotechnology, vol. 16, pp. 1112-1115, Aug 2005.
[10] C. Vieu et al., "Electron beam lithography: resolution limits and applications," Applied Surface Science, vol. 164, pp. 111-117, Sep 1 2000.
[11] M. W. Moon et al., "Nanoscale ripples on polymers created by a focused ion beam," Nanotechnology, vol. 20, Mar 18 2009.
[12] Y. H. Wen, Y. Zhang, and Z. Z. Zhu, "Size-dependent effects on equilibrium stress and strain in nickel nanowires," Physical Review B, vol. 76, Sep 2007.
[13] C. J. Yu and H. Q. Jiang, "Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications," Thin Solid Films, vol. 519, pp. 818-822, Nov 1 2010.
[14] N. S. Lu, X. Wang, Z. G. Suo, and J. Vlassak, "Metal films on polymer substrates stretched beyond 50%," Applied Physics Letters, vol. 91, Nov 26 2007.
[15] H. Jin, W. Y. Lu, M. J. Cordill, and K. Schmidegg, "In situ Study of Cracking and Buckling of Chromium Films on PET Substrates," Experimental Mechanics, vol. 51, pp. 219-227, 2011/02/01 2011.
[16] Wu D., Xie H., and Wang Q., "An investigation on the interfacial toughness of the metal thin film/polymer substrate," presented at the ISE-ACEM-SEM-7th ISEM'12, Taipei, 2012.
[17] Y. Ekinci, H. H. Solak, C. David, and H. Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Optics Express, vol. 14, pp. 2323-2334, Mar 20 2006.
[18] S.-W. Ahn et al., "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology, vol. 16, pp. 1874-1877, 2005.
[19] S. H. Kim, J. D. Park, and K. D. Lee, "Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display," Nanotechnology, vol. 17, pp. 4436-4438, Sep 14 2006.
[20] P. F. Moonen, I. Yakimets, and J. Huskens, "Fabrication of Transistors on Flexible Substrates: from Mass-Printing to High-Resolution Alternative Lithography Strategies," Advanced Materials, vol. 24, pp. 5526-5541, Nov 2 2012.
[21] C. Y. Lo, Y. R. Huang, K. S. Liao, S. A. Kuo, and S. P. Wei, "Zero power consumption visual curvature sensor by flexible interferometer," Sensors and Actuators a-Physical, vol. 169, pp. 295-300, Oct 2011.
[22] Y. R. Huang, S. A. Kuo, M. Stach, C. H. Liu, K. H. Liao, and C. Y. Lo, "A High Sensitivity Three-Dimensional-Shape Sensing Patch Prepared by Lithography and Inkjet Printing," Sensors, vol. 12, pp. 4172-4186, Apr 2012.
[23] G. E. Moore, "Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff," Solid-State Circuits Newsletter, IEEE, vol. 11, pp. 33-35, 2006.
[24] L. R. Harriott, "Limits of lithography," Proceedings of the Ieee, vol. 89, pp. 366-374, Mar 2001.
[25] H. J. Levinson, Principles Of Lithography: Society of Photo Optical, 2005.
[26] P. P. Naulleau, C. N. Anderson, J. Chiu, K. Dean, P. Denham, S. George, et al., "Latest results from the SEMATECH Berkeley extreme ultraviolet microfield exposure tool," Journal of Vacuum Science & Technology B, vol. 27, pp. 66-70, Jan-Feb 2009.
[27] P. Naulleau, K. A. Goldberg, J. P. Cain, E. H. Anderson, K. R. Dean, P. Denham, et al., "Extreme ultraviolet lithography capabilities at the advanced light source using a 0.3-NA optic," Quantum Electronics, IEEE Journal of, vol. 42, pp. 44-50, 2006.
[28] D. J. Altknecht, N. Arellano, S. Balakrishnan, L. D. Bozano, J. Cheng, C. E. Larson, et al. (2012). Nanoscale Fabrication, Immersion Lithography. Available: http://researcher.watson.ibm.com/researcher/view_project_subpage.php?id=3607
[29] I. Malik, V. Hazari, K. Monahan, M. Hankinson, M. Adel, M. Liesching, et al., "Immersion Lithography Process and Control Challenges," KLA-Tencor Corporation, 2007.
[30] S. Asaumi and H. Nakane, "Mechanism of Photoresist Resolution Improvement by Preexposure Treatment," Journal of the Electrochemical Society, vol. 137, pp. 2546-2549, Aug 1990.
[31] D. C. Flanders and N. N. Efremow, "Generation of [less-than] 50 nm period gratings using edge defined techniques," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 1, pp. 1105-1108, 10/00/ 1983.
[32] S. Peláez, C. Guerrero, R. Paredes, P. A. Serena, and P. García-Mochales, "Modelling Metallic Nanowires Breakage for Statistical Studies: Ni Case as Example," InTech, 2010.
[33] S. Olliges, P. A. Gruber, S. Orso, V. Auzelyte, Y. Ekinci, H. H. Solak, et al., "In situ observation of cracks in gold nano-interconnects on flexible substrates," Scripta Materialia, vol. 58, pp. 175-178, Feb 2008.
[34] J. L. Taraci, M. J. Hytch, T. Clement, P. Peralta, M. R. McCartney, J. Drucker, et al., "Strain mapping in nanowires," Nanotechnology, vol. 16, pp. 2365-2371, Oct 2005.
[35] J. J. Chen and S. J. Bull, "Approaches to investigate delamination and interfacial toughness in coated systems: an overview," Journal of Physics D-Applied Physics, vol. 44, Jan 26 2011.
[36] Y. Xiang, T. Li, Z. G. Suo, and J. J. Vlassak, "High ductility of a metal film adherent on a polymer substrate," Applied Physics Letters, vol. 87, Oct 17 2005.
[37] G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, "Poisson's ratio and modern materials," Nat Mater, vol. 10, pp. 823-837, 11//print 2011.
[38] W. Köster and H. Franz, "Poisson's ratio for metals and alloys," International Materials Reviews, vol. 6, pp. 1-56, // 1961.
[39] J. G. Webster, The Measurement, Instrumentation, and Sensors: Handbook: Springer-Verlag GmbH, 1999.
[40] Y. Wakabayashi, J. Yamauchi, and H. Nakano, "A TM-Pass/TE-Stop Polarizer Based on a Surface Plasmon Resonance," Advances in OptoElectronics, vol. 2011, 2011.
[41] C. H. Chen, L. Pang, C. H. Tsai, U. Levy, and Y. Fainman, "Compact and integrated TM-pass waveguide polarizer," Optics Express, vol. 13, pp. 5347-5352, Jul 11 2005.
[42] M. Optics. (2012). Linear Polarizer Principles. Available: http://www.meadowlarkoptics.com/polarizer.php
[43] J. J. Wang et al., "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Applied Physics Letters, vol. 89, Oct 2 2006.
[44] A. Mehta, "Introduction to the Electromagnetic Spectrum and Spectroscopy," Analytical Chemistry, Notes, 2011.
[45] J. Feng, Y. Zhao, X.-W. Lin, W. Hu, F. Xu, and Y.-Q. Lu, "A Transflective Nano-Wire Grid Polarizer Based Fiber-Optic Sensor," Sensors, vol. 11, pp. 2488-2495, 2011.
[46] T. Suganuma, "Wire grid polarizer," US7046442, 2006/05/16.
[47] R. T. Perkins, E. W. Gardner, and D. P. Hansen, "Imbedded wire grid polarizer for the visible spectrum," US6288840, 2001/09/11.
[48] B. D. Silverstein, A. F. Kurtz, and X. D. Mi, "Double sided wire grid polarizer," US6844971, 2005/01/18.
[49] R. T. Perkins, D. P. Hansen, E. W. Gardner, J. M. Thorne, and A. A. Robbins, "Broadband wire grid polarizer for the visible spectrum," US6122103, 2000/09/19.
[50] M. Lines and R. T. Perkins, "Corrosion resistant wire-grid polarizer and method of fabrication," US6785050, 2004/08/31.
[51] H. Schift, "Nanoimprint lithography: An old story in modern times? A review," Journal of Vacuum Science & Technology B, vol. 26, pp. 458-480, Mar-Apr 2008.
[52] L. J. Guo, "Nanoimprint Lithography: Methods and Material Requirements," Advanced Materials, vol. 19, pp. 495-513, 2007.
[53] C. Gourgon, C. Perret, and G. Micouin, "Electron beam photoresists for nanoimprint lithography," Microelectronic Engineering, vol. 61-2, pp. 385-392, Jul 2002.
[54] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, et al., "Step and flash imprint lithography: A new approach to high-resolution patterning," Emerging Lithographic Technologies Iii, Pts 1 and 2, vol. 3676, pp. 379-389, 1999.
[55] M. Lipson. (2004). Controlling light with light. Available: http://people.ece.cornell.edu/lipson/nature/fabrication.htm
[56] T. Weber, T. Kasebier, A. Szeghalmi, M. Knez, E. B. Kley, and A. Tunnermann, "Iridium wire grid polarizer fabricated using atomic layer deposition," Nanoscale Research Letters, vol. 6, pp. 1-4, Oct 25 2011.
[57] T. Weber, T. Kasebier, S. Kroker, E. B. Kley, and A. Tunnermann, "High frequency binary amorphous silicon grating working as wire grid polarizer for UV applications," High Contrast Metastructures, vol. 8270, 2012.
[58] T. Weber, H. J. Fuchs, H. Schmidt, E. B. Kley, and A. Tunnermann, "Wire-grid polarizer for the UV spectral region," Advanced Fabrication Technologies for Micro/Nano Optics and Photonics Ii, vol. 7205, 2009.
[59] F. Robin, A. Orzati, E. Moreno, O. J. Homan, and W. Bachtold, "Simulation and evolutionary optimization of electron-beam lithography with genetic and simplex-downhill algorithms," Ieee Transactions on Evolutionary Computation, vol. 7, pp. 69-82, Feb 2003.
[60] D. Lucot, J. Gierak, A. Ouerghi, E. Bourhis, G. Faini, and D. Mailly, "Deposition and FIB direct patterning of nanowires and nanorings into suspended sheets of graphene," Microelectron. Eng., vol. 86, pp. 882-884, 2009.
[61] Y. Zhao, F. Zhou, H. Wu, F. Xu, and Y.-q. Lu, "All-fiber vibration sensor based on nano-wire grid polarizer," Optical Engineering, vol. 51, pp. 050504-1, 2012.
[62] K. Gamo, D. Takehara, Y. Hamamura, M. Tomita, and S. Namba, "Maskless ion beam assisted deposition of W and Ta films," Microelectronic Engineering, vol. 5, pp. 163-170, 12// 1986.
[63] R. Kometani, S. Ishihara, T. Kaito, and S. Matsui, "In-situ observation of the three-dimensional nano-structure growth on focused-lon-beam chemical vapor deposition by scanning electron microscope," Applied Physics Express, vol. 1, May 2008.
[64] R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, ""Dip-Pen" Nanolithography," Science, vol. 283, pp. 661-663, January 29, 1999 1999.
[65] J. R. Felts, S. Somnath, R. H. Ewoldt, and W. P. King, "Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip," Nanotechnology, vol. 23, Jun 1 2012.
[66] X. H. Jiang, G. Y. Wu, J. F. Zhou, S. J. Wang, A. A. Tseng, and Z. L. Du, "Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC)-coated Si probe," Nanoscale Research Letters, vol. 6, Sep 2 2011.
[67] O. Vazquez-Mena, G. Villanueva, V. Savu, K. Sidler, M. A. F. van den Boogaart, and J. Brugger, "Metallic Nanowires by Full Wafer Stencil Lithography," Nano Letters, vol. 8, pp. 3675-3682, Nov 2008.
[68] O. Vazquez-Mena, K. Sidler, V. Savu, P. Chan Woo, L. Guillermo Villanueva, and J. Brugger, "Reliable and Improved Nanoscale Stencil Lithography by Membrane Stabilization, Blurring, and Clogging Corrections," Nanotechnology, IEEE Transactions on, vol. 10, pp. 352-357, 2011.
[69] O. Vazquez-Mena, L. G. Villanueva, V. Savu, K. Sidler, P. Langlet, and J. Brugger, "Analysis of the blurring in stencil lithography," Nanotechnology, vol. 20, Oct 14 2009.
[70] O. Vazquez-Mena, V. Savu, K. Sidler, G. Villanueva, M. A. F. van den Boogaart, and J. Brugger, "Sub-100 nm-scale aluminum nanowires by stencil lithography: Fabrication and characterization," 2008 3rd Ieee International Conference on Nano/Micro Engineered and Molecular Systems, Vols 1-3, pp. 807-811, 2008.
[71] Q. Xu, R. M. Rioux, M. D. Dickey, and G. M. Whitesides, "Nanoskiving: A New Method To Produce Arrays of Nanostructures," Accounts of Chemical Research, vol. 41, pp. 1566-1577, 2008/12/16 2008.
[72] D. J. Lipomi, R. V. Martinez, and G. M. Whitesides, "Use of Thin Sectioning (Nanoskiving) to Fabricate Nanostructures for Electronic and Optical Applications," Angewandte Chemie International Edition, vol. 50, pp. 8566-8583, 2011.
[73] D. J. Lipomi, R. V. Martinez, R. M. Rioux, L. Cademartiri, W. F. Reus, and G. M. Whitesides, "Survey of Materials for Nanoskiving and Influence of the Cutting Process on the Nanostructures Produced," ACS Applied Materials & Interfaces, vol. 2, pp. 2503-2514, 2010/09/22 2010.
[74] J. M. Carter, R. C. Fleming, T. A. Savas, M. E. Walsh, and T. B. O’Reilly, "Interference lithography," MTL Annual Report MIT Press, pp. 186–188, 2003.
[75] T. C. Hennessy. (2011). Lithography principles, processes, and materials. Available: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=367184
[76] S. Kang, Micro / Nano Replication: Processes and Applications: Wiley, 2012.
[77] Agoura Technologies Inc. (2008). Wire Grid Polarizers: a New High Contrast Polarizer Technology for Liquid Crystal Displays. Available: http://www.agouratech.com/TechnologyWP.pdf
[78] M. D. Waller, "A simple method of finding poisson's ratio," Proc. Phys. Soc., vol. 52, p. 710, 1940.
[79] B. Bhushan, P. S. Mokashi, and T. Ma, "A technique to measure Poisson's ratio of ultrathin polymeric films using atomic force microscopy," Review of Scientific Instruments, vol. 74, pp. 1043-1047, 2003.
[80] C. Units. (2013). Physical and chemical properties of Titanium. Available: http://www.convertunits.com/element/Titanium
[81] M. Stach, E. C. Chang, C. Y. Yang, and C. Y. Lo, "Post-lithography pattern modification and its application to a tunable wire grid polarizer," Nanotechnology, vol. 24, p. 115306, Mar 22 2013.
[82] Q. Ye, J. Wang, Z.-C. Deng, W.-Y. Zhou, C.-P. Zhang, and J.-G. Tian, "Measurement of the complex refractive index of tissue-mimicking phantoms and biotissue by extended differential total reflection method," Journal of Biomedical Optics, vol. 16, pp. 097001-097001, 2011.
[83] I. Sokolik, A. Andronova, and T. C. Johnson, "Complex refractive index of atmospheric dust aerosols," Atmospheric Environment. Part A. General Topics, vol. 27, pp. 2495-2502, 11// 1993.
[84] M. F. Al-Kuhaili, A. H. Al-Aswad, S. M. A. Durrani, and I. A. Bakhtiari, "Energy-saving transparent heat mirrors based on tungsten oxide–gold WO3/Au/WO3 multilayer structures," Solar Energy, vol. 86, pp. 3183-3189, 11// 2012.
[85] M.-C. Choi, Y. Kim, and C.-S. Ha, "Polymers for flexible displays: From material selection to device applications," Progress in Polymer Science, vol. 33, pp. 581-630, 6// 2008.
[86] V. Zardetto, T. M. Brown, A. Reale, and A. Di Carlo, "Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties," Journal of Polymer Science Part B: Polymer Physics, vol. 49, pp. 638-648, 2011.
[87] I. Wathuthanthri, W. Mao, and C.-H. Choi, "Two degrees-of-freedom Lloyd's mirror interferometer for superior pattern coverage area," Opt. Lett., vol. 36, pp. 1593-1595, 05/01 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *