|
[1] B. Paivanranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, "Sub-10 nm patterning using EUV interference lithography," Nanotechnology, vol. 22, p. 375302, Sep 16 2011. [2] B. J. Lin, "Immersion lithography and its impact on semiconductor manufacturing," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 3, pp. 377-395, 2004. [3] D. H. Hwang and W.-H. Cheng, "Patterning strategy for low-K1 lithography," pp. 9-18, 2004. [4] E. Pargon, K. Menguelti, M. Martin, A. Bazin, O. Chaix-Pluchery, C. Sourd, et al., "Mechanisms involved in HBr and Ar cure plasma treatments applied to 193 nm photoresists," Journal of Applied Physics, vol. 105, pp. 094902-11, 05/01/ 2009. [5] S. Babin, G. Glushenko, T. Weber, T. Kaesebier, E. B. Kley, and A. Szeghalmi, "Application of double patterning technology to fabricate optical elements: Process simulation, fabrication, and measurement," Journal of Vacuum Science & Technology B, vol. 30, May-Jun 2012. [6] L. Chen et al., "58 nm half-pitch plastic wire-grid polarizer by nanoimprint lithography," 2007, pp. 2654-2657. [7] R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, ""Dip-Pen" nanolithography," Science, vol. 283, pp. 661-3, Jan 29 1999. [8] O. Vazquez-Mena, G. Villanueva, V. Savu, K. Sidler, M. A. van den Boogaart, and J. Brugger, "Metallic nanowires by full wafer stencil lithography," Nano Lett, vol. 8, pp. 3675-82, Nov 2008. [9] Y. J. Chen, J. H. Hsu, and H. N. Lin, "Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process," Nanotechnology, vol. 16, pp. 1112-1115, Aug 2005. [10] C. Vieu et al., "Electron beam lithography: resolution limits and applications," Applied Surface Science, vol. 164, pp. 111-117, Sep 1 2000. [11] M. W. Moon et al., "Nanoscale ripples on polymers created by a focused ion beam," Nanotechnology, vol. 20, Mar 18 2009. [12] Y. H. Wen, Y. Zhang, and Z. Z. Zhu, "Size-dependent effects on equilibrium stress and strain in nickel nanowires," Physical Review B, vol. 76, Sep 2007. [13] C. J. Yu and H. Q. Jiang, "Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications," Thin Solid Films, vol. 519, pp. 818-822, Nov 1 2010. [14] N. S. Lu, X. Wang, Z. G. Suo, and J. Vlassak, "Metal films on polymer substrates stretched beyond 50%," Applied Physics Letters, vol. 91, Nov 26 2007. [15] H. Jin, W. Y. Lu, M. J. Cordill, and K. Schmidegg, "In situ Study of Cracking and Buckling of Chromium Films on PET Substrates," Experimental Mechanics, vol. 51, pp. 219-227, 2011/02/01 2011. [16] Wu D., Xie H., and Wang Q., "An investigation on the interfacial toughness of the metal thin film/polymer substrate," presented at the ISE-ACEM-SEM-7th ISEM'12, Taipei, 2012. [17] Y. Ekinci, H. H. Solak, C. David, and H. Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Optics Express, vol. 14, pp. 2323-2334, Mar 20 2006. [18] S.-W. Ahn et al., "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology, vol. 16, pp. 1874-1877, 2005. [19] S. H. Kim, J. D. Park, and K. D. Lee, "Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display," Nanotechnology, vol. 17, pp. 4436-4438, Sep 14 2006. [20] P. F. Moonen, I. Yakimets, and J. Huskens, "Fabrication of Transistors on Flexible Substrates: from Mass-Printing to High-Resolution Alternative Lithography Strategies," Advanced Materials, vol. 24, pp. 5526-5541, Nov 2 2012. [21] C. Y. Lo, Y. R. Huang, K. S. Liao, S. A. Kuo, and S. P. Wei, "Zero power consumption visual curvature sensor by flexible interferometer," Sensors and Actuators a-Physical, vol. 169, pp. 295-300, Oct 2011. [22] Y. R. Huang, S. A. Kuo, M. Stach, C. H. Liu, K. H. Liao, and C. Y. Lo, "A High Sensitivity Three-Dimensional-Shape Sensing Patch Prepared by Lithography and Inkjet Printing," Sensors, vol. 12, pp. 4172-4186, Apr 2012. [23] G. E. Moore, "Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff," Solid-State Circuits Newsletter, IEEE, vol. 11, pp. 33-35, 2006. [24] L. R. Harriott, "Limits of lithography," Proceedings of the Ieee, vol. 89, pp. 366-374, Mar 2001. [25] H. J. Levinson, Principles Of Lithography: Society of Photo Optical, 2005. [26] P. P. Naulleau, C. N. Anderson, J. Chiu, K. Dean, P. Denham, S. George, et al., "Latest results from the SEMATECH Berkeley extreme ultraviolet microfield exposure tool," Journal of Vacuum Science & Technology B, vol. 27, pp. 66-70, Jan-Feb 2009. [27] P. Naulleau, K. A. Goldberg, J. P. Cain, E. H. Anderson, K. R. Dean, P. Denham, et al., "Extreme ultraviolet lithography capabilities at the advanced light source using a 0.3-NA optic," Quantum Electronics, IEEE Journal of, vol. 42, pp. 44-50, 2006. [28] D. J. Altknecht, N. Arellano, S. Balakrishnan, L. D. Bozano, J. Cheng, C. E. Larson, et al. (2012). Nanoscale Fabrication, Immersion Lithography. Available: http://researcher.watson.ibm.com/researcher/view_project_subpage.php?id=3607 [29] I. Malik, V. Hazari, K. Monahan, M. Hankinson, M. Adel, M. Liesching, et al., "Immersion Lithography Process and Control Challenges," KLA-Tencor Corporation, 2007. [30] S. Asaumi and H. Nakane, "Mechanism of Photoresist Resolution Improvement by Preexposure Treatment," Journal of the Electrochemical Society, vol. 137, pp. 2546-2549, Aug 1990. [31] D. C. Flanders and N. N. Efremow, "Generation of [less-than] 50 nm period gratings using edge defined techniques," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 1, pp. 1105-1108, 10/00/ 1983. [32] S. Peláez, C. Guerrero, R. Paredes, P. A. Serena, and P. García-Mochales, "Modelling Metallic Nanowires Breakage for Statistical Studies: Ni Case as Example," InTech, 2010. [33] S. Olliges, P. A. Gruber, S. Orso, V. Auzelyte, Y. Ekinci, H. H. Solak, et al., "In situ observation of cracks in gold nano-interconnects on flexible substrates," Scripta Materialia, vol. 58, pp. 175-178, Feb 2008. [34] J. L. Taraci, M. J. Hytch, T. Clement, P. Peralta, M. R. McCartney, J. Drucker, et al., "Strain mapping in nanowires," Nanotechnology, vol. 16, pp. 2365-2371, Oct 2005. [35] J. J. Chen and S. J. Bull, "Approaches to investigate delamination and interfacial toughness in coated systems: an overview," Journal of Physics D-Applied Physics, vol. 44, Jan 26 2011. [36] Y. Xiang, T. Li, Z. G. Suo, and J. J. Vlassak, "High ductility of a metal film adherent on a polymer substrate," Applied Physics Letters, vol. 87, Oct 17 2005. [37] G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, "Poisson's ratio and modern materials," Nat Mater, vol. 10, pp. 823-837, 11//print 2011. [38] W. Köster and H. Franz, "Poisson's ratio for metals and alloys," International Materials Reviews, vol. 6, pp. 1-56, // 1961. [39] J. G. Webster, The Measurement, Instrumentation, and Sensors: Handbook: Springer-Verlag GmbH, 1999. [40] Y. Wakabayashi, J. Yamauchi, and H. Nakano, "A TM-Pass/TE-Stop Polarizer Based on a Surface Plasmon Resonance," Advances in OptoElectronics, vol. 2011, 2011. [41] C. H. Chen, L. Pang, C. H. Tsai, U. Levy, and Y. Fainman, "Compact and integrated TM-pass waveguide polarizer," Optics Express, vol. 13, pp. 5347-5352, Jul 11 2005. [42] M. Optics. (2012). Linear Polarizer Principles. Available: http://www.meadowlarkoptics.com/polarizer.php [43] J. J. Wang et al., "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Applied Physics Letters, vol. 89, Oct 2 2006. [44] A. Mehta, "Introduction to the Electromagnetic Spectrum and Spectroscopy," Analytical Chemistry, Notes, 2011. [45] J. Feng, Y. Zhao, X.-W. Lin, W. Hu, F. Xu, and Y.-Q. Lu, "A Transflective Nano-Wire Grid Polarizer Based Fiber-Optic Sensor," Sensors, vol. 11, pp. 2488-2495, 2011. [46] T. Suganuma, "Wire grid polarizer," US7046442, 2006/05/16. [47] R. T. Perkins, E. W. Gardner, and D. P. Hansen, "Imbedded wire grid polarizer for the visible spectrum," US6288840, 2001/09/11. [48] B. D. Silverstein, A. F. Kurtz, and X. D. Mi, "Double sided wire grid polarizer," US6844971, 2005/01/18. [49] R. T. Perkins, D. P. Hansen, E. W. Gardner, J. M. Thorne, and A. A. Robbins, "Broadband wire grid polarizer for the visible spectrum," US6122103, 2000/09/19. [50] M. Lines and R. T. Perkins, "Corrosion resistant wire-grid polarizer and method of fabrication," US6785050, 2004/08/31. [51] H. Schift, "Nanoimprint lithography: An old story in modern times? A review," Journal of Vacuum Science & Technology B, vol. 26, pp. 458-480, Mar-Apr 2008. [52] L. J. Guo, "Nanoimprint Lithography: Methods and Material Requirements," Advanced Materials, vol. 19, pp. 495-513, 2007. [53] C. Gourgon, C. Perret, and G. Micouin, "Electron beam photoresists for nanoimprint lithography," Microelectronic Engineering, vol. 61-2, pp. 385-392, Jul 2002. [54] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, et al., "Step and flash imprint lithography: A new approach to high-resolution patterning," Emerging Lithographic Technologies Iii, Pts 1 and 2, vol. 3676, pp. 379-389, 1999. [55] M. Lipson. (2004). Controlling light with light. Available: http://people.ece.cornell.edu/lipson/nature/fabrication.htm [56] T. Weber, T. Kasebier, A. Szeghalmi, M. Knez, E. B. Kley, and A. Tunnermann, "Iridium wire grid polarizer fabricated using atomic layer deposition," Nanoscale Research Letters, vol. 6, pp. 1-4, Oct 25 2011. [57] T. Weber, T. Kasebier, S. Kroker, E. B. Kley, and A. Tunnermann, "High frequency binary amorphous silicon grating working as wire grid polarizer for UV applications," High Contrast Metastructures, vol. 8270, 2012. [58] T. Weber, H. J. Fuchs, H. Schmidt, E. B. Kley, and A. Tunnermann, "Wire-grid polarizer for the UV spectral region," Advanced Fabrication Technologies for Micro/Nano Optics and Photonics Ii, vol. 7205, 2009. [59] F. Robin, A. Orzati, E. Moreno, O. J. Homan, and W. Bachtold, "Simulation and evolutionary optimization of electron-beam lithography with genetic and simplex-downhill algorithms," Ieee Transactions on Evolutionary Computation, vol. 7, pp. 69-82, Feb 2003. [60] D. Lucot, J. Gierak, A. Ouerghi, E. Bourhis, G. Faini, and D. Mailly, "Deposition and FIB direct patterning of nanowires and nanorings into suspended sheets of graphene," Microelectron. Eng., vol. 86, pp. 882-884, 2009. [61] Y. Zhao, F. Zhou, H. Wu, F. Xu, and Y.-q. Lu, "All-fiber vibration sensor based on nano-wire grid polarizer," Optical Engineering, vol. 51, pp. 050504-1, 2012. [62] K. Gamo, D. Takehara, Y. Hamamura, M. Tomita, and S. Namba, "Maskless ion beam assisted deposition of W and Ta films," Microelectronic Engineering, vol. 5, pp. 163-170, 12// 1986. [63] R. Kometani, S. Ishihara, T. Kaito, and S. Matsui, "In-situ observation of the three-dimensional nano-structure growth on focused-lon-beam chemical vapor deposition by scanning electron microscope," Applied Physics Express, vol. 1, May 2008. [64] R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, ""Dip-Pen" Nanolithography," Science, vol. 283, pp. 661-663, January 29, 1999 1999. [65] J. R. Felts, S. Somnath, R. H. Ewoldt, and W. P. King, "Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip," Nanotechnology, vol. 23, Jun 1 2012. [66] X. H. Jiang, G. Y. Wu, J. F. Zhou, S. J. Wang, A. A. Tseng, and Z. L. Du, "Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC)-coated Si probe," Nanoscale Research Letters, vol. 6, Sep 2 2011. [67] O. Vazquez-Mena, G. Villanueva, V. Savu, K. Sidler, M. A. F. van den Boogaart, and J. Brugger, "Metallic Nanowires by Full Wafer Stencil Lithography," Nano Letters, vol. 8, pp. 3675-3682, Nov 2008. [68] O. Vazquez-Mena, K. Sidler, V. Savu, P. Chan Woo, L. Guillermo Villanueva, and J. Brugger, "Reliable and Improved Nanoscale Stencil Lithography by Membrane Stabilization, Blurring, and Clogging Corrections," Nanotechnology, IEEE Transactions on, vol. 10, pp. 352-357, 2011. [69] O. Vazquez-Mena, L. G. Villanueva, V. Savu, K. Sidler, P. Langlet, and J. Brugger, "Analysis of the blurring in stencil lithography," Nanotechnology, vol. 20, Oct 14 2009. [70] O. Vazquez-Mena, V. Savu, K. Sidler, G. Villanueva, M. A. F. van den Boogaart, and J. Brugger, "Sub-100 nm-scale aluminum nanowires by stencil lithography: Fabrication and characterization," 2008 3rd Ieee International Conference on Nano/Micro Engineered and Molecular Systems, Vols 1-3, pp. 807-811, 2008. [71] Q. Xu, R. M. Rioux, M. D. Dickey, and G. M. Whitesides, "Nanoskiving: A New Method To Produce Arrays of Nanostructures," Accounts of Chemical Research, vol. 41, pp. 1566-1577, 2008/12/16 2008. [72] D. J. Lipomi, R. V. Martinez, and G. M. Whitesides, "Use of Thin Sectioning (Nanoskiving) to Fabricate Nanostructures for Electronic and Optical Applications," Angewandte Chemie International Edition, vol. 50, pp. 8566-8583, 2011. [73] D. J. Lipomi, R. V. Martinez, R. M. Rioux, L. Cademartiri, W. F. Reus, and G. M. Whitesides, "Survey of Materials for Nanoskiving and Influence of the Cutting Process on the Nanostructures Produced," ACS Applied Materials & Interfaces, vol. 2, pp. 2503-2514, 2010/09/22 2010. [74] J. M. Carter, R. C. Fleming, T. A. Savas, M. E. Walsh, and T. B. O’Reilly, "Interference lithography," MTL Annual Report MIT Press, pp. 186–188, 2003. [75] T. C. Hennessy. (2011). Lithography principles, processes, and materials. Available: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=367184 [76] S. Kang, Micro / Nano Replication: Processes and Applications: Wiley, 2012. [77] Agoura Technologies Inc. (2008). Wire Grid Polarizers: a New High Contrast Polarizer Technology for Liquid Crystal Displays. Available: http://www.agouratech.com/TechnologyWP.pdf [78] M. D. Waller, "A simple method of finding poisson's ratio," Proc. Phys. Soc., vol. 52, p. 710, 1940. [79] B. Bhushan, P. S. Mokashi, and T. Ma, "A technique to measure Poisson's ratio of ultrathin polymeric films using atomic force microscopy," Review of Scientific Instruments, vol. 74, pp. 1043-1047, 2003. [80] C. Units. (2013). Physical and chemical properties of Titanium. Available: http://www.convertunits.com/element/Titanium [81] M. Stach, E. C. Chang, C. Y. Yang, and C. Y. Lo, "Post-lithography pattern modification and its application to a tunable wire grid polarizer," Nanotechnology, vol. 24, p. 115306, Mar 22 2013. [82] Q. Ye, J. Wang, Z.-C. Deng, W.-Y. Zhou, C.-P. Zhang, and J.-G. Tian, "Measurement of the complex refractive index of tissue-mimicking phantoms and biotissue by extended differential total reflection method," Journal of Biomedical Optics, vol. 16, pp. 097001-097001, 2011. [83] I. Sokolik, A. Andronova, and T. C. Johnson, "Complex refractive index of atmospheric dust aerosols," Atmospheric Environment. Part A. General Topics, vol. 27, pp. 2495-2502, 11// 1993. [84] M. F. Al-Kuhaili, A. H. Al-Aswad, S. M. A. Durrani, and I. A. Bakhtiari, "Energy-saving transparent heat mirrors based on tungsten oxide–gold WO3/Au/WO3 multilayer structures," Solar Energy, vol. 86, pp. 3183-3189, 11// 2012. [85] M.-C. Choi, Y. Kim, and C.-S. Ha, "Polymers for flexible displays: From material selection to device applications," Progress in Polymer Science, vol. 33, pp. 581-630, 6// 2008. [86] V. Zardetto, T. M. Brown, A. Reale, and A. Di Carlo, "Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties," Journal of Polymer Science Part B: Polymer Physics, vol. 49, pp. 638-648, 2011. [87] I. Wathuthanthri, W. Mao, and C.-H. Choi, "Two degrees-of-freedom Lloyd's mirror interferometer for superior pattern coverage area," Opt. Lett., vol. 36, pp. 1593-1595, 05/01 2011.
|