帳號:guest(3.145.175.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄧力瑋
作者(外文):Teng, Li-Wei
論文名稱(中文):考量供應鏈之不確定性下永續性產品設計之研究
論文名稱(外文):An Integral Methodology for Sustainable Product and Supply Chain Design Decisions under Uncertainties
指導教授(中文):邱銘傳
指導教授(外文):Chiu, Ming-Chuan
口試委員(中文):朱詣尹
郭財吉
口試委員(外文):Chu, Yee-Yeen
Kuo, Tsai-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:100034606
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:55
中文關鍵詞:永續設計永續性產品設計供應鏈設計模糊集合論供應商篩選
外文關鍵詞:Design for SustainabilitySustainable Product DesignDesign for Supply ChainFuzzy Set TheorySupplier Selection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:235
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
由於產品生命週期的縮短,企業在設計與製造產品時,必須更全面地考量不同的層面,因應自然資源的短缺與越來越嚴格的環保法規等限制下,迫使企業在新產品開發階段必須更加思考如何獲得更高的利潤、滿足顧客的需求與評估產品的生命週期;在過去十年中,許多的研究已將供應鏈的概念和永續性的要素結合並融入產品設計當中;然而,大多數的研究主要著重於確定性方法的探討,但企業在永續性發展的改善上將面臨環境所帶來的不確定性,而目前都還沒有適當的方法進行分析。本研究旨在提出一個整合性的方法,運用模糊集合論來處理供應鏈中所產生的不確定性因素,並且考量產品的拆解性與供應鏈網路中的成本、前置時間與碳排放量;在產品的開發階段,此永續性的觀點不僅僅運用在產品的設計上,同時也考量了整個供應鏈的設計;最後利用一個案例來驗證此方法的優點。
Enterprises have been increasingly forced to consider broader aspects while designing and manufacturing products. The scarcity of natural resources plus sterner environmental regulations have obliged enterprises to develop new products that can satisfy profit, people, and planet during their life cycles. During the last decade, numerous research efforts have incorporated supply chain and sustainability factors into product design. However, most of these studies have generated deterministic based methodologies. Enterprises intending to improve sustainability under uncertainties have been left without an appropriate method of analysis. This study presents a method based on fuzzy set theory intended to tackle uncertainty in the supply chain and to highlights sustainable design concepts involving product disassemblability, supply chain network cost, lead time, and carbon footprints. The sustainability of both the product and the supply chain are considered at the product design stage. A case study demonstrates the advantage of this methodology.
Table of Contents
Abstract 4
Table of Contents 5
List of Figures 6
List of Tables 6
1. Introduction 7
2. Literature review 9
2.1 Coordination between Product and Supply Chain Management 9
2.2 Product Architecture 10
2.3 Closed Loop Supply Chain 11
2.3.1 Green Supply Chain 13
2.3.2 Reverse Logistic 14
2.3.3 Closed Loop Supply Chain 15
2.4 Fuzzy Approach for Addressing the Uncertainties in Supply Chain 17
2.4.1 Fuzzy Set Theory 18
2.4.2 Fuzzy Set 18
2.5 Summary 20
3. Methodology 21
3.1 Generate the design concept 23
3.2 Design for disassembly (DfDA) 23
3.3 Fuzzy method 25
3.3.1 Fuzzy c-means 26
3.3.2 Triangular Fuzzy Numbers (TFNs) 28
3.4 Defuzzification 29
3.5 Mathematical Formulation 30
3.5.1 Notation 30
3.5.2 Objective Function 31
3.5.3 Constraints 33
3.6 AHP and Taguchi loss function 35
3.6.1 Taguchi Loss Function 35
3.6.2 Analytic hierarchy process (AHP) 35
3.6.3 Estimation of loss through Taguchi Loss Function and AHP 36
4. Case study 37
5. Conclusion 48
6. References 50

List of Figures
Figure 2-1 – The relationship of value recovery 13
Figure 2-2 – Traditional supply chain (Beamon, 1999) 14
Figure 3-1 – Research Scope 21
Figure 3-2 – Research Framework 22
Figure 3-3– Product Disassembly Graph 24
Figure 3-4 – Transition Matrix 24
Figure 3-5 – Supply Chain Structure 25
Figure 3-6 – Triangular Fuzzy Numbers 29
Figure 3-7 –Triangular fuzzy numbers (TFNs) 29
Figure 4-1 – Scooter Function Basis Model 37
Figure 4- 2 – Vendors’ location in TW 39
Figure 4-3 – FCM Clustering Results 40
Figure 4-4 – Cost Interval 40
Figure 4-5 – Distributor A in Satisfied Level α = 0.6 (Unit: min) 43
Figure 4-6 – Three indicators (Cost, Time, and Carbon footprint) 44
Figure 4-7 – Design Concept Selection 45
Figure 4-8 – Simapro 7.3 assess the impact at the recycled component 46
Figure 4-9 – PD and Closed Loop SC Decisions 47

List of Tables
Table 4-1 – Eight & Six Modules of a Scooter 38
Table 4-2 – Components of a Scooter 38
Table 4-3 – Estimated Lead Time of Component Suppliers 41
Table 4-4 – Estimated Lead Time of Module Suppliers 41
Table 4-5 – Estimated Lead Time of Focal Company to all distributors 42
Table 4-6 – Characteristic and relative values of each Concept 44
Table 4-7 – Concept characteristic Taguchi loss 45
Table 4-8 – Pairwise comparison matrix of the three indicators 45
[1].Ali M. A., Shil N. C., Zulkar Nine M. S. Q., Khan M. A. K., and Hoque M. H. (2010) “Vendor selection using fuzzy integration”, International Journal of Management Science and Engineering Management, 5(5), 376–382.
[2].Allen D. T., and Fiksel J. (1997) Terminology used in design for the environment, Electronics industry alliance.
[3].Amid A., Ghodsypour S. H., and O’Brien C. (2006) “Fuzzy multi-objective linear model for supplier selection in a supply chain”, International Journal of Production Economics, 104(2), 394–407.
[4].Andreasen M. M. (1992) “Designing on a ‘designer’s workbench’ (DWB),” Proceedings of the 9th WDK Workshop, 1992, Rigi, Switzerland.
[5].Beamon B. M. (1999) “Designing the green supply chain”, Logistics information management, 12(4), 332–342.
[6].Beamon B. M. and Fernandes C. (2004) “Supply chain network configuration for product Recovery”, Production Planning & Control, 15(3), 270–281.
[7].Bezdek, J. C. (1981) Pattern Recognition with Fuzzy Objective Function Algorithm, Plenum Press, 1981, New York.
[8].Bloemhof-Ruwaard J. M., Dekker R., Fleischmann M., Van der Laan E., Van Nunen J.A. E. E., and Van Wassenhove L. N. (1997) “Quantitative Models for Reverse Logistics: A Review”, European Journal of Operational Research, 103(1), 1–17.
[9].Bryant C. R., Stone R. B., McAdams D. A., Kurtoglu T., and Campbell M. I. (2005) “Concept generation from the functional basis of design”, 2005 International Conference on Engineering Design, Melbourne.
[10].Carter C. R. and Ellram L. M. (1998) “Reverse logistics: a review of the literature and framework for future investigation”, Journal of Business Logistics, 19(1), 85–102.
[11].Chen C. L., Yuan T. W., and Lee W. C. (2007) “Multi-criteria fuzzy optimization for locating warehouses and distribution centers in a supply chain network,” Journal of the Chinese Institute of Chemical Engineers, 38(5–6), 393–407.
[12].Chiu M.–C., and Okudan G. (2011) “An integrative methodology for product and supply chain design decisions at the product design stage”, Journal of Mechanical Design, 133(2), 021008–021023.
[13].Chu C. H., Su J. C. P., and Chen Y. T. (2012) “A Concurrent Approach to Reducing Environmental Impact of Product Development at the System Design Stage”, IEEE Transactions on Automation Science and Engineering, 9(3), 482–495.
[14].Crawley E., Weck O. D., Magee C., Moses J., Seering W., Schindall J., Wallace D., and Whitney D. (2004) The influence of architecture in engineering systems.
[15].Dubois D., Prade H. (1987) “The mean value of a fuzzy number”, Fuzzy Sets and Systems, 24(3), 279–300.
[16].Dunn J. (1973) “A fuzzy relative of the Isodata process and its use in detecting compact, well-separated clusters”, Journal of Cybernetics, 3(3), 32–57.
[17].ElMaraghy H. A. and Mahmoudi N. (2009) “Concurrent design of product modules structure and global supply chain configurations”, International Journal of Computer Integrated Manufacturing, 22(6), 483–493.
[18].Fleischmann M., Beullens P. (2009) Bloemhof-ruwaard J. M., and Wassenhove L., “The impact of product recovery on logistics network design”, Production and Operations Management, 10(2), 156–173.
[19].Gamboa F. and Gassiat E. (1994) “The maximum entropy method on the mean Applications to linear programming and super resolution”, Journal of Mathematical Programming, 66(1-3), 103–122.
[20].Gershenson J. K., Prasad G. J., and Zhang Y. (2003) “Product modularity: definitions and benefits”, J. ENG. DESIGN, 14(3), 295–313.
[21].Gershenson J. K., Prasad G. J., and Zhang Y. (2004) “Product modularity: measures and design methods”, J. ENG. DESIGN, 15(1), 33–51.
[22].Guide V. D. R., Jr. and Pentico D. W. (2003) “A hierarchical decision model for remanufacturing and re-use”, International journal of logistics: research and applications, 6(1-2), 29–35.
[23].Jose A. and Tollenaere M. (2005) “Modular and platform methods for product family design: literature analysis”, Journal of Intelligent Manufacturing, 16(3), 371–390.
[24].Karl Ulrich (1995) “The role of product architecture in the manufacturing firm”, Research Policy, 24(3), 419–440.
[25].Kumar M., Vrat P., and Shankar R. (2004) “A fuzzy goal programming approach for vendor selection problem in a supply chain”, Computers and Industrial Engineering, 46(1), 69–85.
[26].Kumar M., Vrat P., and Shankar R. (2006) “A fuzzy programming approach for vendor selection problem in a supply chain”, International Journal of Production Economics, 101(2), 273–285.
[27].Kumar S. and Malegeant P. (2006) “Strategic alliance in a closed-loop supply chain, a case of manufacturer and eco-non-profit organization”, Technovation, 26(10), 1127–1135.
[28].Kumar V., Prakash, Tiwari M. K., and Chan F. T. S. (2006) “Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach”, International Journal of Production Research, 44(11), 2245–2263.
[29].Kuo , T.C. (2010) “The construction of a collaborative design platform to support waste electrical and electronic equipment recycling”, Robotics and Computer Integrated Manufacturing, 26(1), 100–108.
[30].Lambert D. M. and Stock J. R. (1993) Strategic Logistics management, Third edition, McGraw-Hill.
[31].Lambert A. J. D. (2007) “Optimizing disassembly processes subjected to sequence dependent cost”, Computers & Operations Research, 34(2), 536–551.
[32].Listes O. (2007) “A generic stochastic model for supply-and-return network design”, Computers and Operations Research, 34(2), 417–442.
[33].Lu Z., and Bostel N. (2007) “A facility location model for logistics systems including reverse flows: the case of remanufacturing activities”, Computers and Operations Research, 34(2), 299–323.
[34].Mark Maier and Eberhardt Rechtin (2000) The art of systems architecting, second edition, 2000, Boca Raton.
[35].Murphy P. R. and Poist R. F. (2000) “Third-party logistics: some user versus provider perspectives”, Journal of business logistics, 21(1), 121–133.
[36].Nepal B., Monplaisir L., and Famuyuwa O. (2012) “Matching product architecture with supply chain design”, European Journal of Operational Research, 216(2), 312–325.
[37].Nine M. S. Q. Z., Khan M. A. K., Hoque M. H., Ali M. A., Shil N. C., and Sorwar (2009) “Vendor Selection Using Fuzzy C Means Algorithm and Analytic Hierarchy Process”, Proceedings of Fuzzy Systems 2009, 181–184.
[38].Pahl G., Beitz W., Schulz H.-J., and Jarecki U. (2007) Engineering design: a systematic approach, third edition, 2007, London.
[39].Pi Wei-Ning and Low Chinyao (2005) “Supplier evaluation and selection via Taguchi loss functions and an AHP”, The International Journal of Advanced Manufacturing Technology, 27(5-6), 625–630.
[40].Pishvaee M. S., Farahani R. Z., Dullaert W. (2010) “A memetic algorithm for bi-objective integrated forward/reverse logistics network design”, Computers and Operations Research, 37(6), 1100–1112.
[41].Pishvaee M. S., Farahani R. Z., Dullaert W. (2010) “A memetic algorithm for bi-objective integrated forward/reverse logistics network design”, Computers and Operations Research, 37(6), 1100–1112.
[42].Salema M. I. G., Barbosa-Povoa A. P., Novais A. Q. (2007) “An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty”, European Journal of Operational Research, 179(3), 1063–1077.
[43].Stone R. B., Wood K. L., and Crawford R. H. (2000) “A heuristic method for identifying modules for product architectures”, Design Studies, 21(1), 5–31.
[44].Stone R. B., Wood K. L. (2000) “Development of a Functional Basis for Design”, Journal of Mechanical Design, 122(4), 356–370.
[45].Tseng H.-E., Chang T.-S., and Yang Y.-C. (2004) “A connector-based approach to the modular formulation problem for a mechanical product”, International Journal of Advanced Manufacturing Technology, 24(3–4), 161–171.
[46].Ülkü S. and Schmidt G. M. (2011) “Matching Product Architecture and Supply Chain Configuration”, Production and Operations Management, 20(1), 16–31.
[47].Ulrich K. and Tung K. (1991) “Fundamentals of Product Modularity”, 1991 ASME Winter Annual Meeting Conference, 39, 73–80, Atlanta.
[48].Üster H., Easwaran G., Akçali E., and Çetinkaya S. (2007) “Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model”, Naval Research Logistics, 54(8), 890–907.
[49].Van Nunen Jo A. E. E. and Zuidwijk R. A. (2004) “E-Enabled Closed-Loop Supply Chains”, California management review, 46(2).
[50].Wang H. F., Lee J., and Su M. C. (2004) Fuzzy Sets Theories & It’s Applications, First edition, OpenTech Internet Bookstore.
[51].Xu, J., Liu Q., and Wang R. (2008) “A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of Chinese liquor”, Information Sciences, 178(8), 2022–2043.
[52].Yao Jing-Shing and Wu Kweimei (2000) “Ranking fuzzy numbers based on decomposition principle and signed distance”, Fuzzy Sets and Systems, 116(2), 275–288.
[53].Yassine A. A. and Wissmann L.A. (2007) “The implications of product architecture on the firm”, Systems Engineering, 10(2), 118–137.
[54].Zadeh L A. (1965) “Fuzzy sets”, Information and Control, 8(3), 338–353.
[55].Zimmermann H.J. (1978) “Fuzzy programming and linear programming with several objective functions”, Fuzzy Sets and Systems, 1(1), 45–55.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *