|
[1].Ali M. A., Shil N. C., Zulkar Nine M. S. Q., Khan M. A. K., and Hoque M. H. (2010) “Vendor selection using fuzzy integration”, International Journal of Management Science and Engineering Management, 5(5), 376–382. [2].Allen D. T., and Fiksel J. (1997) Terminology used in design for the environment, Electronics industry alliance. [3].Amid A., Ghodsypour S. H., and O’Brien C. (2006) “Fuzzy multi-objective linear model for supplier selection in a supply chain”, International Journal of Production Economics, 104(2), 394–407. [4].Andreasen M. M. (1992) “Designing on a ‘designer’s workbench’ (DWB),” Proceedings of the 9th WDK Workshop, 1992, Rigi, Switzerland. [5].Beamon B. M. (1999) “Designing the green supply chain”, Logistics information management, 12(4), 332–342. [6].Beamon B. M. and Fernandes C. (2004) “Supply chain network configuration for product Recovery”, Production Planning & Control, 15(3), 270–281. [7].Bezdek, J. C. (1981) Pattern Recognition with Fuzzy Objective Function Algorithm, Plenum Press, 1981, New York. [8].Bloemhof-Ruwaard J. M., Dekker R., Fleischmann M., Van der Laan E., Van Nunen J.A. E. E., and Van Wassenhove L. N. (1997) “Quantitative Models for Reverse Logistics: A Review”, European Journal of Operational Research, 103(1), 1–17. [9].Bryant C. R., Stone R. B., McAdams D. A., Kurtoglu T., and Campbell M. I. (2005) “Concept generation from the functional basis of design”, 2005 International Conference on Engineering Design, Melbourne. [10].Carter C. R. and Ellram L. M. (1998) “Reverse logistics: a review of the literature and framework for future investigation”, Journal of Business Logistics, 19(1), 85–102. [11].Chen C. L., Yuan T. W., and Lee W. C. (2007) “Multi-criteria fuzzy optimization for locating warehouses and distribution centers in a supply chain network,” Journal of the Chinese Institute of Chemical Engineers, 38(5–6), 393–407. [12].Chiu M.–C., and Okudan G. (2011) “An integrative methodology for product and supply chain design decisions at the product design stage”, Journal of Mechanical Design, 133(2), 021008–021023. [13].Chu C. H., Su J. C. P., and Chen Y. T. (2012) “A Concurrent Approach to Reducing Environmental Impact of Product Development at the System Design Stage”, IEEE Transactions on Automation Science and Engineering, 9(3), 482–495. [14].Crawley E., Weck O. D., Magee C., Moses J., Seering W., Schindall J., Wallace D., and Whitney D. (2004) The influence of architecture in engineering systems. [15].Dubois D., Prade H. (1987) “The mean value of a fuzzy number”, Fuzzy Sets and Systems, 24(3), 279–300. [16].Dunn J. (1973) “A fuzzy relative of the Isodata process and its use in detecting compact, well-separated clusters”, Journal of Cybernetics, 3(3), 32–57. [17].ElMaraghy H. A. and Mahmoudi N. (2009) “Concurrent design of product modules structure and global supply chain configurations”, International Journal of Computer Integrated Manufacturing, 22(6), 483–493. [18].Fleischmann M., Beullens P. (2009) Bloemhof-ruwaard J. M., and Wassenhove L., “The impact of product recovery on logistics network design”, Production and Operations Management, 10(2), 156–173. [19].Gamboa F. and Gassiat E. (1994) “The maximum entropy method on the mean Applications to linear programming and super resolution”, Journal of Mathematical Programming, 66(1-3), 103–122. [20].Gershenson J. K., Prasad G. J., and Zhang Y. (2003) “Product modularity: definitions and benefits”, J. ENG. DESIGN, 14(3), 295–313. [21].Gershenson J. K., Prasad G. J., and Zhang Y. (2004) “Product modularity: measures and design methods”, J. ENG. DESIGN, 15(1), 33–51. [22].Guide V. D. R., Jr. and Pentico D. W. (2003) “A hierarchical decision model for remanufacturing and re-use”, International journal of logistics: research and applications, 6(1-2), 29–35. [23].Jose A. and Tollenaere M. (2005) “Modular and platform methods for product family design: literature analysis”, Journal of Intelligent Manufacturing, 16(3), 371–390. [24].Karl Ulrich (1995) “The role of product architecture in the manufacturing firm”, Research Policy, 24(3), 419–440. [25].Kumar M., Vrat P., and Shankar R. (2004) “A fuzzy goal programming approach for vendor selection problem in a supply chain”, Computers and Industrial Engineering, 46(1), 69–85. [26].Kumar M., Vrat P., and Shankar R. (2006) “A fuzzy programming approach for vendor selection problem in a supply chain”, International Journal of Production Economics, 101(2), 273–285. [27].Kumar S. and Malegeant P. (2006) “Strategic alliance in a closed-loop supply chain, a case of manufacturer and eco-non-profit organization”, Technovation, 26(10), 1127–1135. [28].Kumar V., Prakash, Tiwari M. K., and Chan F. T. S. (2006) “Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach”, International Journal of Production Research, 44(11), 2245–2263. [29].Kuo , T.C. (2010) “The construction of a collaborative design platform to support waste electrical and electronic equipment recycling”, Robotics and Computer Integrated Manufacturing, 26(1), 100–108. [30].Lambert D. M. and Stock J. R. (1993) Strategic Logistics management, Third edition, McGraw-Hill. [31].Lambert A. J. D. (2007) “Optimizing disassembly processes subjected to sequence dependent cost”, Computers & Operations Research, 34(2), 536–551. [32].Listes O. (2007) “A generic stochastic model for supply-and-return network design”, Computers and Operations Research, 34(2), 417–442. [33].Lu Z., and Bostel N. (2007) “A facility location model for logistics systems including reverse flows: the case of remanufacturing activities”, Computers and Operations Research, 34(2), 299–323. [34].Mark Maier and Eberhardt Rechtin (2000) The art of systems architecting, second edition, 2000, Boca Raton. [35].Murphy P. R. and Poist R. F. (2000) “Third-party logistics: some user versus provider perspectives”, Journal of business logistics, 21(1), 121–133. [36].Nepal B., Monplaisir L., and Famuyuwa O. (2012) “Matching product architecture with supply chain design”, European Journal of Operational Research, 216(2), 312–325. [37].Nine M. S. Q. Z., Khan M. A. K., Hoque M. H., Ali M. A., Shil N. C., and Sorwar (2009) “Vendor Selection Using Fuzzy C Means Algorithm and Analytic Hierarchy Process”, Proceedings of Fuzzy Systems 2009, 181–184. [38].Pahl G., Beitz W., Schulz H.-J., and Jarecki U. (2007) Engineering design: a systematic approach, third edition, 2007, London. [39].Pi Wei-Ning and Low Chinyao (2005) “Supplier evaluation and selection via Taguchi loss functions and an AHP”, The International Journal of Advanced Manufacturing Technology, 27(5-6), 625–630. [40].Pishvaee M. S., Farahani R. Z., Dullaert W. (2010) “A memetic algorithm for bi-objective integrated forward/reverse logistics network design”, Computers and Operations Research, 37(6), 1100–1112. [41].Pishvaee M. S., Farahani R. Z., Dullaert W. (2010) “A memetic algorithm for bi-objective integrated forward/reverse logistics network design”, Computers and Operations Research, 37(6), 1100–1112. [42].Salema M. I. G., Barbosa-Povoa A. P., Novais A. Q. (2007) “An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty”, European Journal of Operational Research, 179(3), 1063–1077. [43].Stone R. B., Wood K. L., and Crawford R. H. (2000) “A heuristic method for identifying modules for product architectures”, Design Studies, 21(1), 5–31. [44].Stone R. B., Wood K. L. (2000) “Development of a Functional Basis for Design”, Journal of Mechanical Design, 122(4), 356–370. [45].Tseng H.-E., Chang T.-S., and Yang Y.-C. (2004) “A connector-based approach to the modular formulation problem for a mechanical product”, International Journal of Advanced Manufacturing Technology, 24(3–4), 161–171. [46].Ülkü S. and Schmidt G. M. (2011) “Matching Product Architecture and Supply Chain Configuration”, Production and Operations Management, 20(1), 16–31. [47].Ulrich K. and Tung K. (1991) “Fundamentals of Product Modularity”, 1991 ASME Winter Annual Meeting Conference, 39, 73–80, Atlanta. [48].Üster H., Easwaran G., Akçali E., and Çetinkaya S. (2007) “Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model”, Naval Research Logistics, 54(8), 890–907. [49].Van Nunen Jo A. E. E. and Zuidwijk R. A. (2004) “E-Enabled Closed-Loop Supply Chains”, California management review, 46(2). [50].Wang H. F., Lee J., and Su M. C. (2004) Fuzzy Sets Theories & It’s Applications, First edition, OpenTech Internet Bookstore. [51].Xu, J., Liu Q., and Wang R. (2008) “A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of Chinese liquor”, Information Sciences, 178(8), 2022–2043. [52].Yao Jing-Shing and Wu Kweimei (2000) “Ranking fuzzy numbers based on decomposition principle and signed distance”, Fuzzy Sets and Systems, 116(2), 275–288. [53].Yassine A. A. and Wissmann L.A. (2007) “The implications of product architecture on the firm”, Systems Engineering, 10(2), 118–137. [54].Zadeh L A. (1965) “Fuzzy sets”, Information and Control, 8(3), 338–353. [55].Zimmermann H.J. (1978) “Fuzzy programming and linear programming with several objective functions”, Fuzzy Sets and Systems, 1(1), 45–55.
|