|
參考文獻
[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000. [2] P.C. Mahalanobis, “On the generalised distance in statistics”, Proceedings of the National Institute of Science of India, 1936 12, pp. 49–55. [3] E. Krusinska and J. Liebhart, “Objective Evaluation of Degree of Illness with the Weighted Mahalanobis Distance. A Study for Patients Suffering from Chronic Obturative Lung Disease”, Computer in biology and medicine, Vol. 17, Issue 5, 1987, pp. 321-329. [4] E. Krusinska, “A Valuation of State of Object Based on Weighted Mahalanobis Distance”, Pattern Recognition, Vol. 20, No. 4, 1987, pp 413-418. [5] T. Marasovic and V. Papic, “Feature Weighted Nearest Neighbour Classification for Accelerometer-Based Gesture Recognition”, 20th International Conference on Software, Telcommunications and Computer Network (SoftCOM), 2012, pp. 1-5. [6] F. Gu, D. Liu and X. Wang, “Semi-supervised weighted distance metric learning for kNN classification”, International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE), Vol. 6, 2010, pp. 406-409. [7] M. Wolfel and H. K. Ekenel, “Feature Weighted Mahalanobis Distance: Improved Robustness for Gaussian Classifiers”, In Proc. of 13th European Signal Processing Conference (EUSIPCO), 2005. [8] K.Younis, M. Karim, R. Hardie, J. Loomis, S. Rogers and M. Desimio, “Cluster merging based on weighted mahalanobis distance with application in digital mammograph”, Proceedings of the IEEE National Aerospace and Electronics Conference, NAECON, 1998, pp. 525-530 [9] A. C. Sobieranski, D. D. Abdala, E. Comunello and A. V. Wangenheim, “Learning a color distance metric for region-based image segmentation ”, Pattern Recognition Letters, Vol. 30, No. 6, 2009, pp. 1496-1506. [10] S. Xiang, F. Nie and C. Zhang, “Learning a Mahalanobis distance metric for data clustering and classification”, Pattern Recognition, Vol. 41, No. 12, 2008, pp. 3600-3612. [11] Taguchi and Jugulum, 2002 G. Taguchi, R. Jugulum, The Mahalanobis–Taguchi strategy, John Wiley & Sons, New York (2002) [12] S. A. Velastin and C. Xu, “Line and Circle Finding by The Weighted Mahalanobis Distance Transform and Extended Kalman Filtering”, IEEE International Symosium on Industrial Electronics, 1994, pp. 258-263. [13] K. Gopal and T. R. Ioerger, “Distance Metric Learning through Optimization of Ranking”, Seventh IEEE International Conference on Data Mining Workshops (ICDM), 2007, pp. 201-206. [14] D. Said, L. Stirling, P. Federolf and K. Barker, “Data preprocessing for Distance-based Unsupervised Intrusion Detection”, 9th Annual International Conference on Privacy, Security and Trust (PST), 2011, pp. 181-188. [15] S. Kawai, T. Furukane, K. Shibata and Y. Horita, “Automatic Distinction of Road Surface Condition in Road Images at Night-time using PCA and Mahalanobis Weighting”, IEEE International Conference on Consumer Electronics (ICCE), 2012, pp. 231-232. [16] M. Asasda, “Wafer yield prediction by the Mahalanobis-Taguchi system”, IEEE International Workshop on Statistical Methodology, 2001, pp. 25-28.. [17] J. Shi and L. Cheng, “Financial Crisis Dynamic Prediction Based on Sliding Window Technology and Mahalanobis-Taguchi system”, International Conference on Information Technology , Computer Engineering and Management Science (ICM), Vol. 4, 2011, pp. 65-68. [18] H. Rabal, N. Cap, C. Criado and N. Alamo, “Holodiagrams using Mahalanobis distance”, Optik – International Journal for light Electron Optics, Vol. 123, No. 19, 2012, pp. 1725-1731. [19] R. Das, “A comparison of multiple classification methods for diagnosis of Parkinson disease”, Expert Systems with Application, Vol. 37, No. 2, 2010, pp. 1568-1572. [20] K. Rajeswari, V. Vaithiyanathan and T. R. Neelakantan, “Feature Selection in Ischemic Heart Disease Identification using Feed Forward Neural Network”, Pcocedia Engineering, Vol. 41, 2012, pp. 1818-1823. [21] S. M. Jadhav, S. L. Nalbalwar and A. A. Ghatol, “Artificial Neural Network Based Cardiac Arrhythmia Disease Diagnosis”, International Conference on Process Automation, Control and Computing (PACC), 2011, pp. 1-6. [22] N. G. B. Amma, “Cardiovascular disease prediction system using genetic algorithm and neural netwok”, International Conference on Computing, Communication and Application (ICCCA), 2012, pp. 1-5. [23] G. Zhang, M. Y. Hu, B. E. Patuwo and D. C. Indro, “Artificial neural network in bankruptcy prdiction:General framework and cross-validation analysis”, European Journal of Operational Research, Vol. 116, No. 1, 1999, pp. 16-32. [24] S. Lee and W. S. Choi, “A multi-industry bankruptcy prediction model using back- propagation neural network and multivariate discriminant analysis”, Expert Systems with Applications, Vol. 40, 2013, pp. 2941-2946. [25] S. Domingues, P. Campoy and R. Aracil, “A neural network based quality control system for steel strip manufacturing ”, Annual Review in Automatic Programming, Vol. 19, 1994, pp. 185-190. [26] G. Sciuto, B. Bonaccorso, A. Cancelliere and G. Rossi , “Quality control of daily rainfall data with neural networks”, Journal of Hydrology, Vol. 364, No, 1-2, 2009, pp. 13-22. [27] O. Martin, M. Lopez and F. Martin, “Artificial neural networks for quality control by ultrasonic testing in resistance spot welding”, Journal of Materials Processing Technology, Vol. 183, No. 2-3, 2007, pp. 226-233. [28] C.L. Wu, K.W. Chau and C. Fan, “Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques”, Journal of Hydrology, Vol. 389, No. 1-2, 2010, pp. 146-167. [29] B. Cannas, A. Fanni, L. See and G. Sias, “Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning”, Physics and Chemistry of the Earth, Volume 31, No. 18, 2006 ,pp. 1164-1171. [30] A. J. T. Ballesteros, C. H. Martinez, J. C. Riquelme and R. Ruiz, “Feature selection to enhance a two-stage evolutionary algorithm in product unit neural networks for complex classification problems”, Neurocomputing, Vol. 114, 2013, pp. 107-117. [31] H. Yoon, C. S. Park, J. S. Kim and J. G. Baek, “Algorithm learning based neural network integrating feature selection and classification”, Expert Systems with Applcations, Vol. 40, No. 1, 2013, pp. 231-241. [32] F. F. Navarrro, C. H. Martinez, J. C. Riquelme and R. Ruiz, “Evolutionary Generalized Radial Basis Function neural networks for improving prediction accuracy in gene classification using feature selection”, Applied Soft Computing, Vol. 12, No. 6, 2012, pp. 1787-1800. [33] K. Rajeswari, V. Vaithiyanathan and T. R. Neelakantan, “Feature Selection in Ischemic Heart Disease Identification using Feed Forward Neural Networks”, Procedia Engineering, No. 41, 2012, pp. 1818-1823. [34] I. C. Jou, S. S. You and L. W. Chang, “Analysis of hidden nodes for multi-layer perceptron neural networks”, Pattern Recognition, Vol. 27, Issue 6, 1994, pp. 859-864. [35] M. Arai, “Bounds on the number of hidden units in binary-valued three-layer neural networks”, Neural Networks, Vol. 6, Issue 6, 1993, pp. 855-860. [36] M. F. Moller, “A scaled conjugate gradient algorithm for fast supervised learning”, Neural Networks, Vol. 6, No. 4, 1993, pp. 525-533. [37] 葉怡成,類神經網路模式應用與實作,儒林圖書有限公司,民國82年。 [38] 蔡依玲,「台灣股票市場報酬率之研究」,國立成功大學統計研究所碩士論文,民國90年。
|