帳號:guest(3.137.215.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王健鴻
作者(外文):Wang, Jian-Hung
論文名稱(中文):結合田口方法、類神經網路、期望函數與啟發式演算法於錫膏印刷製程參數設計之最佳化
論文名稱(外文):Combining Taguchi Methods, Neural Networks Desirability Function and Meta-Heuristic Algorithm for Optimizing the Parameter Design of Solder Paste Printing Process
指導教授(中文):蘇朝墩
指導教授(外文):Su, Chao-Ton
口試委員(中文):蘇朝墩
許俊欽
姜台林
口試委員(外文):Su, Chao-Ton
Hsu, Chun-Chin
Chiang, Tai-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:100034544
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:97
中文關鍵詞:表面黏著技術錫膏印刷製程田口方法作業窗倒傳遞類神經網路期望函數基因演算法粒子群演算法模擬退火法
外文關鍵詞:Surface Mount TechnologySolder Paste PrintingTaguchi MethodsOperating WindowBack-Propagation Neural NetworkDesirability FunctionGenetic AlgorithmParticle Swarm OptimizationSimulate Anneal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1331
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著各類型電子產品的需求趨向於輕、薄、短、小,印刷電路板上零組件的精密度與零組件間的密度將有所增加。為了有效的控制生產成本、提升生產品質與效率,業者必須尋求更先進之生產技術來改善表面黏著技術(Surface Mount Technology, SMT)的品質。大部分的表面黏著技術問題與錫膏印刷製程有關(Pan et al. 1999 , Huang 2010, Tsai 2008),而錫膏體積量為衡量錫膏印刷製程品質的重要指標,因此錫膏體積量的控制能力為獲得高良率和生產效益的關鍵生產技術之一。

錫膏體積量的控制屬於「作業窗」問題,且影響其產出的參數眾多,如果僅依據工程師經驗來判斷其設定值,可能導致製程不穩定而造成不良率提高。本研究針對錫膏印刷製程參數最佳化問題提出一系統性的求解程序,首先透過歷史資料與工程知識篩選出重要參數;接著使用田口方法推斷理想刮刀壓力與最佳參數水準組合。此外,本研究也提出透過倒傳遞類神經網路(Back-Propagation Neural Network)建立回應值之SN比與控制因子間的關係模式,以期望函數(Desirability Function)合併輸出值作為適應函數,再利用基因演算法(Genetic Algorithm)、粒子群演算法(Particle Swarm Optimization)、模擬退火法(Simulate Anneal),分別求解最佳製程參數組合。本研究以一實際個案研究來說明所提出方法的有效性,透過個案研究發現本研究提出之方法可減少錫膏體積量的浪費和大幅的增加作業窗寬度以提高產品的品質。


With the demand for various types of electronic products tend to be light, thin, short and small. The precision of parts and the density between the parts of the printed circuit board will increase. In order to control product cost effectively and enhance production quality and efficiency, the manufacturers must find the advanced manufacturing technology to improve surface mount technology. Most surface mount technology problems are correlated to solder paste printing (Pan et al. 1999 , Huang 2010, Tsai 2008), and solder paste volume is an important quality measure of solder paste printing process. Therefore, controlling the solder paste volume is a key production technologies to obtain high–yield rate and maintain production effectiveness.

Controlling the solder paste volume is an operating window problem, plenty of parameters will affect the output; if we only rely on engineer’s experiences to determine the values, the defect rate may increase owing to the unstable manufacturing process. This study proposes a systematic procedure for parameter optimization of the solder paste printing process. First, historical data and engineering knowledge are used to determine the significant factors. Second, the ideal squeegee pressure and optimal parameter settings are determined by using Taguchi methods. Also, we propose utilizing back-propagation neural network and desirability function and integrating genetic algorithm, particle swarm optimization, and simulate anneal to obtain the optimal parameter combination. A real case was implemented and analyzed to demonstrate the proposed approach’s effectiveness. The results show that our proposed method can reduce the waste of solder paste volume and substantially increase the operation window width in order to improve product quality.


圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究流程 3
1.4 論文結構 4
第二章 錫膏印刷的製程與原理介紹 5
2.1 表面黏著技術的演進 5
2.2 錫膏印刷製程簡介 6
2.3 錫膏簡介 7
2.4 錫膏製程的品質衡量與影響因子 9
第三章 相關研究 11
3.1 田口方法 11
3.1.1 基本原理 11
3.1.2 直交表的應用與選擇 13
3.1.3 信號雜音比 15
3.1.4 作業窗 17
3.1.5 確認實驗 19
3.1.6 田口參數設計之步驟 19
3.2 類神經網路 20
3.2.1 類神經網路之基本架構 20
3.2.2 類神經網路的類型 23
3.2.3 倒傳遞類神經網路 24
3.3 期望函數 27
3.4 基因演算法 29
3.4.1 基因演算法之基本原理 29
3.4.2基因演算法步驟 30
3.5 模擬退火法 35
3.5.1 模擬退火法的基本原理 35
3.5.2 模擬退火法的步驟 36
3.6 粒子群演算法 41
3.6.1 粒子群演算法的基本原理 41
3.6.2 粒子群演算法步驟 42
第四章 研究方法 49
第五章 個案研究 53
5.1 個案簡介 53
5.2 尋找回應值與關鍵製程參數 53
5.3 應用田口方法求取最佳參數水準組合 56
5.4 應用類神經網路、期望函數與啟發式演算法求取最佳參數水準組合 66
5.4.1 建構類神經網路模型 66
5.4.2 結合類神經網路與基因演算法求取最佳參數水準組合 70
5.4.3 結合類神經網路與粒子群演算法求取最佳參數水準組合 73
5.4.4 結合類神經網路與模擬退火法求取最佳參數水準組合 76
參考文獻 85
附錄A 6組類神經網路模型進行交叉驗證 91
附錄B 類神經網路對錫膏印刷製程之各參數的轉換尺度化公式 95
附錄C 錫膏體積量的平均數差異性檢定 96
1. Al-Refaie, A., 2009, “Optimizing SMT performance using comparisons of efficiency between different systems technique in DEA,” IEEM Transaction on Knowledge and Data Engineering, Vol. 32, No.4.
2. Chen, H.-C., Lin, J.-C., Yang, Y.-K., Tsai, C.-H., 2010, “Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach, ” Expert Systems with Applications, Vol. 37, Issue 10, pp. 7147–7153.
3. Chou, C.-J., Yu, F.-J., Su, C.-T., 2008, “Combining neural networks and genetic algorithms for optimizing the parameter design of inter-metal dielectric layer, ”Management Track within WiCOM: Engineering, Services and Knowledge Management, Dalian, China, pp.1-4.
4. Chang, H.-H., Yen, J.-Y., Lin, T.-C.,2011, “Parameter design for operating window problems: an example of paper feeder design, ” Advances in Computer Science and Education Applications, Vol. 202, pp. 74-80.
5. Derringer, G. C. and Suich, R., 1980, “Simultaneous optimization of several response variables, ” Journal of Quality Technology, Vol. 12, pp.214-219.
6. Dougherty, D. E., Marryott, R. A., 1991, “Optimal groundwater management: 1. Simulated annealing, ” Water Resources Research, Vol. 27, No. 10, pp. 2493-2508
7. DisplaySearch, 2011, Global tablet PC market research, http://www.prweb.com/releases/DisplaySearch/iOS/prweb8901473.htm. Retrieved 23 January 2013.
8. Eberhart, R. C. and Shi, Y., 1998, Comparison between genetic algorithms and particle swarm optimization, ” Lecture Notes in Computer Science, Vol. 1447, pp.611-616.
9. El-Mounayri, H., Kishawy, H., Briceno, J., 2005, “Optimization of CNC ball end milling: a neural network-based model, ” Journal of Materials Processing Technology, Vol. 166, Issue 1, pp. 50-62.
10. Eshelman, L. J., Caruanu, R.A. and Schaffer. J.D., 1989, “Biases in crossover
landscape. ”In Proc. 3rd International Conference Genetic Algorithms, pp.10-19.
11. Fowlkes, W. Y. and Creveling, C. M. ,1995, Engineering methods for robust product design, Addison-Wesley Publishing Company.
12. Goldberg, D. E., 1989, Genetic algorithm in search, optimization and machine Learning, Addison -Wesley, New York.
13. Hollomon, J. K., 1989, Surface-mount technology for PC board design, Howard W. Sams & Company, Indianapolis.
14. Huang,C.-C.,Tang,T.-T.,2006, “Parameter optimization in melt spinning by neural networks and genetic algorithms, ” The International Journal of Advanced Manufacturing Technology, Vol. 27, Issue 11-12, pp. 1113-1118.
15. Huang, J. C. Y.,2010, “Reducing solder paste inspection in surface-mount assembly through Mahalanobis–Taguchi analysis,” IEEE Transaction on Electrpnics Packing Manufacturing, Vol.33, Issue 4, pp.265-274.
16. Holland, J., 1975, Adaptation in natural and artificial system. University of Michigan Press, Ann Arbor.
17. Hasan, K., Babur, O. and Tuncay, E.,2005, “Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm, ”Journal of Materials Processing Tech, Vol.169, Issue. 2, pp.314-319
18. Ho, S. L., Tang, L. C., Xu, L., and Goh, T. N., 2001, “Neural network modeling with confidence bounds: a case study on the solder paste deposition process, ” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 24, Issue 4, pp. 323-332.
19. Joseph, V. R. and Wu, C.F. J., 2002, “Operation window experiments: a novel approach to quality improvement,” Journal of Quality Technology, Vol.34, No. 4, pp.345-354.
20. Kennedy, J., Eberhart, R. C., 1995, “Particle swarm optimization,” IEEE International Conference on Neural Networks, vol.4, pp. 9142-1948.
21. Kennedy, J., Eberhart, R. C. and Shi, Y. , 2001, Swarm Intelligence, San Francisco: Morgan Kaufmann.
22. Kurtaran, H., Ozcelik, B., Erzurumlu, T., 2005, “Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm,” Journal of Materials Processing Technology, Vol. 169, Issue2, pp.314-319.
23. Kirkpatrick, S., 1984, “Optimization by simulated annealing: quantitative studies, ” Journal of Statistical Physics, Vol. 34, Issue 5-6 , pp. 975-986.
24. Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P.,1983, Optimization by simulated annealing, Science, Vol. 220, No. 4598., pp. 671-680.
25. Li, M.-H. C., Al-Refaie A., Yang, C.-Y., 2008, “DMAIC approach to improve the capability of SMT solder printing process, ” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 31, Issue 2 , pp. 126-133.
26. Lotfi, A., Howarth, M., Thomas, P. D., 1997, “Orthogonal fuzzy model of the solder paste printing stage of surface mount technology,” Proceedings of the Sixth IEEE International Conference on Fuzzy System, Vol.3, pp.1433-1437.
27. IDC,2013, Worldwide smartphone shipments from 2010 to 2016 (in million units). http://www.statista.com/statistics/12865/forecast-for-sales-of-smartphones-worldwide. Retrieved 23 January 2013
28. Montgomery, D.C., Kests, J.B., Perry, L.A., Thompson, J.R., and Messina, W.S., 2000, “Using statistically designed experiments for process development and improvement: an application in electronics manufacturing,” Robotics and Computer-Integrated Manufacturing, Vol.16, Issue1, pp.55-56
29. Phadke, M.S., 1989, Quality engineering using robust design, Prentice-Hall.
30. Pan, J.-B., Tonkay, G. L., Storer, R. H., Sallade, R. M., and Leandri, D. J.,1999, “Critical variable of solder paste stencil printing for Micro-BGA and fine pitch QFP, ”IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, pp.94-101.
31. Pan, J., Tonkay, G. L., Storer, R. H., Sallade, R. M., Leandri, D. J., 2004, “Critical variables of solder paste stencil printing for micro-BGA and fine-pitch QFP. ”IEEE Transactions on Electronics Packaging Manufacturing, Vol.27, Issue 2, pp.125–132.
32. Plumb, A. P., Rowe, R. C., York, P., Doherty, C.,2003, “Effect of varying optimization parameters on optimization by guided evolutionary simulated annealing (GESA) using a tablet film coat as an example formulation,” European Journal of Pharmaceutical Sciences,18, 259-266.
33. Ross, P. J.,1996, Taguchi techniques for quality engineering, McGraw-Hill Book Company.
34. Robinson, J. and Rahmat-Samii, Y , 2004, “Particle swarm optimization in electromagnetic,” IEEE Transactions on Antennas and Propagation, vol. 52, Issue. 2, pp.397–407
35. Su, C.-T., 2013, Quality engineering: off-line methods and applications, CRC Press/Taylor & Francis Group
36. Su, C.-T., Chiang, T.-L., 2002, “Optimal design for a ball grid array wire bonding process using a neuro-genetic approach, ” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25 , Issue.1 , pp.13 – 18.
37. Shi, F., Lou, Z.-L., Lu, J.-G. and Zhang, Y.-Q., 2003, “Optimization of plastic injection molding process with soft computing, ”International Journal Advanced Manufacturing Technology, Vol. 21, pp.656-661.
38. Shi, Y., Eberhart, R. C.,1999,“Empirical study of particle swarm optimization, ” Proceedings of the 1999 Congress on Evolutionary Computation, pp. 1945-1950
39. Shi, Y., Eberhart, R. C.,1998, “Parameter selection in particle swarm optimization, ” Lecture Notes in Computer Science , Vol. 1447, pp. 591-600.
40. Srinivas, M., Patnaik, L. M.,1994, ”Genetic algorithms: a survey,” Computer, Vol. 27 , Issue.6 , pp.17 – 26.
41. Salzberg, S. L.,1997, “On comparing classifiers: pitfalls to avoid and a recommended approach,” Data Mining and Knowledge Discovery, Vol.1, Issue3, pp.317–327.
42. Syswerda, G., 1989, “Uniform crossover in genetic algorithm,” In Proceedings of the Third International Conference on Genetic Algorithms .pp. 2-9.
43. Tsai, T.-N., 2008, “Modeling and optimization of stencil printing operations: a comparison study,” Computers & Industrial Engineering, Vol.54, Issue3, pp.374-389.
44. Widrow, B., Winter, R. G. and Baxter, R. A., 1987, “Learning phenomena in layered neural networks,” Proceedings of the IEEE First Annual International Conference on Neural Networks, pp. 411-429.
45. Wu, A., 2001, Robust design using taguchi methods, Workshop Manual, American Supplier Institute(ASI), Version 3.0.
46. Zeng, Y., Ma, L., Zang, L., Qian, J., 2003, “Empirical study of particle swarm optimizer with an increasing inertia weight,” Evolutionary Computation,Vol. 1, pp. 221-226.
47. 田口玄一,1996,田口式品質工程,中華民國品質管制學會
48. 蘇朝墩,品質工程(第七版),中華民國品質學會,2010年。
49. 蘇朝墩,2010,類神經網路及其應用,上課教材
50. 蔡聰男,2003,自適應式表面黏著製程品質預測控制系統之發展,成功大學製造工程研究所博士論文。
51. 陳夢倫,2003,積層陶瓷電容印刷製程機器參數最佳化之研究,成功大學製造工程研究所碩士論文。
52. 工業技術研究院,產業經濟與趨勢研究中心,工業材料雜誌309期http://www.materialsnet.com.tw/DocView.aspx?id=10579,2013年1月23日檢索。
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *