帳號:guest(3.145.65.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉惟華
論文名稱(中文):考量模組化設計之永續性產品開發決策
論文名稱(外文):Decision Making for Sustainable Product Development Considering Modularized Design
指導教授(中文):瞿志行
口試委員(中文):郭財吉
蘇哲平
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:100034531
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:82
中文關鍵詞:模組化設計永續產品生命週期評估
相關次數:
  • 推薦推薦:0
  • 點閱點閱:379
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
模組化設計是被廣泛使用的產品設計策略,將零件組合為在功能或研發上方便獨立行使的模塊造就其容易大量客製化、維修更換零件等優勢。在全球暖化日益嚴重的情況之下,減少產品開發碳足跡的議題與產品生命週期評估的工程技術受到重視。本文利用拆卸次序矩陣技術為基礎,發展一自動化可行模組產生之性統性方法,利用產品功能分解圖以及可信的生命週期資料庫,以客觀量化方式,在功能獨立性以及產品生命週期評估兩層面共同評估模組化設計。在考量模組整備再利用階段的封閉迴圈供應鏈架構下,以基因演算法配合動態規劃法,進行各可行模組化設計在材質選擇、組裝結構順序以及供應商選擇上的最佳化。最後以一真實案例呈現本系統的運作過程,並歸納一些模組化設計個案的結果,進行產品設計意涵上的探討。
摘要……………………………………………………………………1
致謝詞…………………………………………………………………2
第一章 緒論 …………………………………………………………6
1.1 研究背景與動機…………………………………………….6
1.2 研究目的…………………………………………………….7
第二章 文獻探討……………………………………………………..8
第三章 模組化設計的產生與評估………………………………….10
3.1模組化設計………………………………………………….10
3.2 產品功能關係與模組化設計評估…………………………10
3.2.1產品功能關係………………..………………………11
3.2.2模組化設計評估…………………………….……….11
3.3分群組合與模組組裝架構可行性評估…………………….13
3.3.1分群組合之可行性判斷…………….……………….14
3.3.2模組組裝架構與順序可行性判斷…….…………….16
3.3.3 案例示範…………………………………………….18
第四章 供應鏈與生命週期評估…………………………………….24
4.1 生命週期之環境衝擊評估…………………………………24
4.1.1原物料開採…………………………………………..25
4.1.2零件製造…………………………………………….25
4.1.3運輸………………………………………………….26
4.1.4模組整備…………………………………………….26
4.2 模組化產品供應鏈架構…………………………………...27
第五章 決策最佳化演算法…………………………………………29
5.1決策最佳化演算法之架構…………………………………29
5.2基因演算法…………………………………………………29
5.2.1組裝架構與零件材質決策編碼…………………….29
5.2.2適應度函數………………………………………….31
5.2.3交配與突變………………………………………….31
5.3動態規劃演算法…………………………………………....32
5.3.1演算法說明………………………………………….32
5.3.2數值案例…………………………………………….38
第六章 案例實作及討論……………………………………………46
6.1 除濕機案例模組化再設計實作…………………………...53
6.2 結果與討論……………………………………………….. 53
第七章 結論與未來研究方向……………………………………....62
7.1 結論………………………………………………………...62
7.2 未來研究方向……………………………………………...62
附錄一、實作案例零件資料………………………………………….64
附錄二、實作案例功能關係圖……………………………………….68
附錄三、實作案例模組化設計功能關係…………………………….69
附錄四、案例零件拆卸次序矩陣…………………………………….75
參考文獻……………………………………………………………….79
[1] Hendrickson C.T., Matthews H.S., Weber C.L., “The Importance of Carbon
Footprint Estimation Boundaries,” Environmental Science and Technology , Volume 42, Issue 16, pages 5839-5842, 2008.
[2] Desmira N., Fujimoto H., Narita H., “Environmental Burden Analysis for
Machining Operation Using LCA Method,” Proc. of the 41st CIRP Conference
on Manufacturing Systems, Tokyo, Japan, May 26–28, 2008.
[3] Regli W.C., Cicirello V.A., “Managing Digital Libraries for Computer-aided Design”, Computer-Aided Design, Volume 32, Issue 2, Pages 119-132, 2000.
[4] Yu S., Yang Q. , Tao J., Tian X., Yin F., “Product Modular Design Incorporating Life Cycle Issues - Group Genetic Algorithm (GGA) Based Method,” Journal of Cleaner Production, Volume 19, Issues 9–10, Pages 1016–1032, 2011.
[5] Gershenson J.K., Prasad G.J., Zhang Y., “Product Modularity: Definitions and Benefits,” Journal of Engineering Design, Volume 14, No.3, Pages 295–313, 2003.
[6] Lai X., Gershenson J.K., “Representation of Similarity and Dependency for Assembly Modularity,” International Journal of Advanced Manufacturing Technology, Volume 37, Pages 803–827, 2008.
[7] Chu C.H., Su J.C.P., Chen Y.T., “An Integrated Approach to Sustainable Product
Development at the System Design Stage,” Proc. of CIRP Design Conference, Pages 1-8, 2011.
[8] 行政院環境保護署,台灣產品碳足跡資訊網,http://cfp.epa.gov.tw/carbon/defaultPage.aspx


[9] Adler, D.P., Ludewig, P.A., Kumar V., Sutherland J.W., “Comparing Energy and Other Measures of Environmental Performance in The Original Manufacturing and Remanufacturing of Engine Components,” Proceedings of the 2007 International Manufacturing Science And Engineering Conference, Pages 851-860, 2007.
[10] Biswas W.K., Duong V., Frey P., Islam M.N., “A Comparison of Repaired, Remanufactured and New Compressors Used in Western Australian Small- And Medium-Sized Enterprises in Terms of Global Warming,” Journal of Remanufacturing, Volume 3, Issue 1, 2013.
[11] 鄭克誠,「考量產品組合與零件分群之永續產品開發」,國立清華大學碩士論文,2012。
[12] Su J.C.P., Chu C.H., Wang Y.T., “A Decision Support System to Estimate the Carbon Emission and Cost of Product Designs,” International Journal of Precision Engineering and Manufacturing, Volume 13, Pages 1037-1045,2012.
[13] Gershenson J.K., Prasad G.J. , Allamneni S., “Modular Product Design : A Life-Cycle View,” Journal of Integrated Design and Process Science, Volume 3, No.4, Pages 13-26, 1999.
[14] van Beek T.J. , Erden M.S., Tomiyama T., “Modular Design of Mechatronic Systems with Function Modeling,” Mechatronics, Volume 20, No.8, Pages 850-863, 2010.
[15] Ethiraj S.K., Levinthal D., “Modularity and Innovation in Complex
Systems,” Management Science, Volume 50, No.2, Pages 159-173, 2004.
[16] Worren N., Moore K., Cardona Pablo., “Modularity, Strategic Flexibility, and Firm Performance: A Study of The Home Appliance Industry,” Strategic Management Journal, Volume 23, No.12, Pages 1123-1140, 2002.

[17] Stone R.B., Wood K.L. , Crawford R.H. , “A Heuristic Method to Identify Modules from A Functional Description of A Product,” Design Studies, Volume 21, No.1, Pages 5–31, 2000.
[18] Otto K., Wood K., Product Design Techniques in Reverse Engineering and New Product Development, Prentice Hall, 2001.
[19] Holtzer M. , Kargulewicz I. , Olendrzynski K., “Estimation of The Co2 Process Emission in Poland Generated by Castings Production from Ferrous Alloys,” Archives of Metallurgy and Materials, Volume 54, No.2, Pages 421-426, 2009.
[20] Srinivas M., Patnaik L. M., “Adaptive Probabilities of Crossover and Mu tation in Genetic Algorithms,” IEEE Transactions on Systems Man and Cybernetics, Volume 24, No.4, Pages 656-667, 1994.
[21] 陳淵琮,「基於產品結構變異降低產品開發之環境衝擊」,國立清華大學碩士論文,2011。
[22] Joshi D. and Ravi B., “Quantifying the Shape Complexity of Cast Parts,” Computer-Aided Design and Applications, Volume 5, pp.685-700. 2010.
[23] Ljungberg L.Y., “Materials Selection and Design for Development of Sustainable Product,” Materials and Design, Volume 28, No. 2, pages 466-479, 2007.
[24] Giudice F., La Rosa G., Risitano A., “Materials Selection in The Life-Cycle
Design Process: A Method to Integrate Mechanical and Environmental
Performances in Optimal Choice,” Materials and Design, Volume 26, Issue 1, pages 9-20, 2005.
[25] Tseng H.E., Chang C.C., Li J.D., “Modular Design to Support Green Life-cycle
Engineering,” Expert Systems with Applications, Volume 34, Issue 4, pages 2524-2537, 2008.
[26] Bonanni L., Hockenberry M., Zwarg D., Csikszentmihalyi C., Ishii H., “Small
Business Applications of Sourcemap: A Web Tool for Sustainable Design and
Supply Chain Transparency,” Proc. of the 28th Int. Conf. on Human Factors in
Computing Systems, 2010.
[27] Leibrecht S., “Fundamental Principles for CAD-based Ecological Assessments,”
International Journal of Life Cycle Assessment, Volume 10, Issue 6,pages 436-444, 2005.
[28] Vinodh S., “Sustainable Design of Sprocket using CAD and Design Optimization,” Environment Development and Sustainability, Volume 13, No 5,
pages 4057-4072, 2007.
[29] Gu P., Sosale S., “Product Modularization for Life Cycle Engineering,” Robotics and Computer-Integrated Manufacturing, Volume 15, No 5, Pages 387-401, 1999.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *