帳號:guest(18.223.172.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李豐宇
作者(外文):Lee,Feng-Yu
論文名稱(中文):利用全解耦合音叉式結構設計實現具有低正交誤差及低加速度靈敏度的微機電振動式陀螺儀
論文名稱(外文):Development of A Low Quadrature Error, Acceleration-Insensitive MEMS Vibratory Gyroscope using The Fully-Decoupled Tuning Fork (FDTF) Structural Design
指導教授(中文):方維倫
指導教授(外文):Fang,Weileun
口試委員(中文):鄭裕庭
李昇憲
陳宗麟
羅炯成
朱懷遠
劉育嘉
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033819
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:198
中文關鍵詞:微機電振動式陀螺儀全解耦合音叉式正交誤差加速度靈敏度
外文關鍵詞:MEMS (MicroElectroMechanical System)Coriolis vibrtory gyroscope (CVG)Fully-decoupledTuning forkQuadrature errorAceeleration sensitivity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:529
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
本論文針對微機電振動式陀螺儀的結構設計,提出結合全解耦合式機構搭配雙質量塊(音叉式)的架構,以試圖提升陀螺儀的效能。所謂的全解耦合式機構為透過單自由度的彈簧以及特殊的耦合機構設計,將陀螺儀的驅動系統與感測系統的運動彼此獨立,進而降低陀螺儀的耦合誤差,除此之外,本文在結構設計上也導入了耦合(科氏力)的質量塊,其除了能有效傳遞科氏力之外,透過對幾何形狀的設計以及空間的合理分配,整體元件的尺寸也能進一步縮小。另一方面,一般商用的陀螺儀都會使用雙質量塊的架構以降低外界擾動(加速度)對陀螺儀輸出訊號的影響,然而大部分的陀螺儀的機構設計皆使用單純的線性彈簧,其仍必須仰賴後端的差分電路來消除大量的線性運動訊號,並且也可能會受到運動非線性的影響,因此本文提出新型的T型槓桿耦合機構,其對於線性運動具有相當優異的抑制能力,並透過全差分式電極的擺放,此機構設計不需要後端的差分電路即可達到相當優異(低)的加速度靈敏度。
本論文對於微機電振動式陀螺儀的操作原理、誤差來源與結構設計考量皆有完整的說明,並在量測與系統架設方面也有詳細的討論與比較。量測結果指出,本文所提出的陀螺儀的確具有較低的耦合誤差(正交誤差=100 deg/s)以及對加速度不靈敏(<0.5 deg/s/g)的特性,證明本文的設計概念正確且具有成效;另外,本論文的陀螺儀在操作穩定性方面的表現也相當優異,量測結果指出其操作非線性度<0.6 %(wihtin 300 deg/s)以及溫度靈敏度<0.3 %/K,最後在雜訊表現方面,本文的陀螺儀可達到ARW=3 deg/hr/sqrt(Hz)以及Bias instability=0.8 deg/hr,可滿足Tactical-grade的應用需求。
This thesis presents the structural design of a single-axis MEMS vibratory gyroscope, which combines the fully-decoupled mechanism with the tuning fork architecture (a FDTF gyro), to enhance the gyroscope performances. The fully-decoupled mechanism is realized by introducing the Coriolis-mass between the drive system and the sense system, and utilizing the orthogonally arranged 1-DOF (degree of freedom) springs as the interconnections. Therefore, the motions of the operating modes of the FDTF gyro are independent, resulting in a low coupling (quadrature) error. Moreover, the FDTF gyro consists of two fully-decoupled systems, which are connected to each other through the specific coupler designs to form the tuning fork architecture. As the result, the FDTF gyro enables the anti-phase drive and sense operations, and enhances the vibration resistance utilizing the T-shaped lever coupler design and the differential sensing scheme.
This thesis introduces the operating principles and error sources of the MEMS CVGs, and the detailed measurement setup and results are also be given and discussed. Experimental results show the fabricated FDTF gyro has a small quadrature error of 100 deg/s, and the acceleration sensitivity is below 0.5 deg/s/g, showing the feasibility of the proposed structural design. Moreover, the stability and long-tern operation characterizations are also examined. The non-linearity is 0.6 % (within 300 deg/s) and the scale factor variation w.r.t. temperature is 0.3 %/K. The bias instability of the FDTF gyro is 0.8 deg/hr and the ARW is 3 deg/hr/sqrt(Hz), satisfying the Tactical-grade requirements.
致謝 II
摘要 IV
Abstract V
目錄 VI
圖目錄 IX
表目錄 XIV
第1章 序論 15
1-1 陀螺儀發展簡介及其應用 15
1-2 陀螺儀重點規格與規範 18
1-3 陀螺儀基本操作原理 21
1-4 微機電技術發展簡介 23
1-5 全文架構 24
第2章 微機電振動式陀螺儀 33
2-1 發展簡介 33
2-2 機械系統特性分析 34
2-2.1 線性運動方程式 34
2-2.2 機械共振現象 35
2-2.3 科氏力響應 37
2-2.4 模態匹配操作 39
2-3 誤差來源分析 41
2-3.1 耦合誤差 41
2-3.2 加速度靈敏度與雙質量塊系統 44
第3章 文獻回顧與研究動機 53
3-1 解耦合結構設計 53
3-2 振動式陀螺儀文獻回顧 55
3-2.1 角度陀螺儀 55
3-2.2 角速度陀螺儀 56
3-2.3 單質量塊系統 57
3-2.4 雙質量塊系統 59
3-2.5 多質量塊系統 62
3-3 研究動機 63
第4章 結構設計考量 79
4-1 雙質量塊系統 79
4-1.1 誤差分析 79
4-1.2 耦合機構介紹 81
4-2 機械彈簧設計 83
4-2.1 彈簧剛性 83
4-2.2 正交誤差與剛性耦合係數 85
4-2.3 彈簧受應力影響與其線性運動範圍 86
4-3 電極設計 87
4-3.1 靜電式驅動與誤差分析 87
4-3.2 電容式感測與非線性 89
4-3.3 靜電彈簧相關應用 91
4-4 頻率縮放效應 93
4-5 空氣阻尼 95
第5章 元件設計 104
5-1 結構設計概念 105
5-2 結構特性探討 106
5-3 T型槓桿耦合機構 108
5-4 結構特性模擬與討論 109
5-5 量測電路 112
5-5.1 感測解析度與訊雜比 112
5-5.2 轉阻放大器之設計 114
5-5.3 電路規劃與模擬 116
5-6 元件製程 117
第6章 製程與量測結果 133
6-1 陀螺儀製程結果 133
6-2 陀螺儀結構與電路之基本特性 134
6-3 角速度量測 135
6-3.1 量測架設 135
6-3.2 角速度靈敏度與各軸互感 136
6-4 耦合(正交)誤差 137
6-5 加速度靈敏度 139
6-5.1 加速度產生之誤差評估 139
6-5.2 量測架設與結果討論 140
6-6 雜訊(Bias stability)分析 141
6-6.1 艾倫方差(Allan variance) 141
6-6.2 陀螺儀雜訊分佈 143
6-6.3 量測結果與討論 144
6-7 溫度對元件性能之影響 145
第7章 結論與未來工作 164
7-1 研究貢獻 164
7-2 未來工作 165
參考文獻 172
附錄A 188
附錄B 191
附錄C 195
附錄D 196
[1] http://solarsystem.nasa.gov, Brief History of Gyroscopes
[2] Johann G. F. Bohnenberger, "Beschreibung einer Maschine zur Erläuterung der Gesetze der Umdrehung der Erde um ihre Axe, und der Veränderung der Lage der letzteren," Tübinger Blätter für Naturwissenschaften und Arzneikunde, Vol. 3, pp. 72–83, 1817.
[3] Walter R. Johnson, "Description of an apparatus called the rotascope for exhibiting several phenomena and illustrating certain laws of rotary motion," The American Journal of Science and Art, Vol. 21, pp. 265–280, 1832.
[4] L. Foucault, "Sur les phénomènes d’orientation des corps tournants entraînés par un axe fixe à la surface de la terre — Nouveaux signes sensibles du mouvement diurne," Comptes rendus hebdomadaires des séances de l’Académie des Sciences (Paris), Vol. 35, pp. 424–427, 1852.
[5] http://www.sperrymarine.com/
[6] C. Acar and A. M. Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness. 1st Ed., New York, NY. Springer, 2008.
[7] http://en.wikipedia.org , Inertial Navigation System
[8] A. Lawrence, Modern Inertial Technology: Navigation, Guidance, and Control. 1st Ed., New York, NY. Springer-Verlag, 1993.
[9] http://techamor.com/content/global-positioning-system
[10] http://arch.ced.berkeley.edu/
[11] http://www.ctimes.com.tw/
[12] http://www.vwvortex.com/
[13] http://aurosoftindia.blogspot.tw/2012/03/iphone-4-gyroscope.html
[14] N. Yazdi, F. Ayazi, and K. Najafi, "Micromachined inertial sensors," Proceedings of the IEEE, Vol.8, pp.1640-1659, 1998.
[15] http://en.wikipedia.org/wiki/Gyroscope
[16] http://www.gohanmi.com/ecp_systems%20catalog/model750.html
[17] http://en.wikipedia.org/wiki/Sagnac_effect
[18] http://www.hydro-international.com/ How Does Inertial Navigation Work?
[19] http://www.lexpublib.org/page/what-is-a-foucault-pendulum
[20] http://www.nec-tokin.com/english/product/piezodevice2/ceramicgyro.html
[21] http://itersnews.com/?p=62779
[22] W. Arden, M. Brilloue¨t, P. Cogez, M. Graef, B. Huizing, and R. Mahnkopf, “More-than-Moore White Paper,” International Technical Roadmap for Semiconductors(ITRS), 2010.
[23] http://www.i-micronews.com/interviews/Ink-Jet-Technology-past-present-future,58.html
[24] http://matthieu.lagouge.free.fr/mems/hist_app.html (Source: Texas Instruments)
[25] http://www.semi.org
[26] S. Nakamura, ”MEMS inertial sensor toward higher accuracy & multi-axis sensing,” IEEE Sensors Conf., Irvine, CA, October, 2005, pp. 939–42.
[27] B. D. Bedford, L. H. B. Peer, and L. Tonks, “The electromagnetic levitator,” General Electric Review, Vol. 42, pp. 246-247, 1939.
[28] C. Shearwood, C. B. Williams, P. H. Mellor, R. B. Yates, M. R. J. Gibbs, and A. D. Mattingley, “Levitation of a micromachined rotor for application in a rotating gyroscope,” Electronics Letters, Vol. 31, pp. 1845-1846, 1995.
[29] C. B. Williams, C. Shearwood, P. H. Mellor, and R. B. Yates, “Modelling and testing of a frictionless levitated micromotor,” Sensors and Actuators A, Vol. 61, pp. 469-473, 1997.
[30] W. Zhang, W. Chen, X. Zhao, X. Wu, W. Liu, X. Huang, and S. Shao, ”The study of an electromagnetic levitating micromotor for application in a rotating gyroscope,” Sensors and Actuators A, Vol. 132, pp. 651-657, 2006.
[31] C. Shearwood, K. Y. Ho, C. B. Williams, and H. Gong, “Development of a levitated micromotor for application as a gyroscope,” Sensors and Actuators A, Vol. 83, pp. 85-92, 2000.
[32] R. P. Torti, V. Gondhalekar, H. Tran, B. Selfors, S. Bart, and B. Maxwell, ”Electrostatically suspended and sensed micromechanical rate gyroscope,” SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing, Orlando, FL, April, 1994, pp. 27-38.
[33] K. Fukatsu, M. Takao, and M. Esashi, "Electrostatically levitated micro motor for inertia measurement system," Transducers, Vol. 99, pp. 1558-1561, 1999.
[34] T. Murakoshi, Y. Endo, K. Fukatsu, S. Nakamura, and M. Esashi, “Electrostatically Levitated Ring-Shaped Rotational Gyro/Accelerometer,” Japanese Journal of Applied Physics, Vol. 42, pp. 2468, 2003.
[35] M. Kraft and Alan Evans, "System level simulation of an electrostatically levitated disk." 3rd Conf. on Modeling and Simulation of Microsystems, San Diego, CA, March, 2000, pp. 130-133.
[36] M. Kraft, M. M. Farooqui, and A. G. Evans, "Modelling and design of an electrostatically levitated disc for inertial sensing applications," J. Micromechanics and Microengineering, Vol. 11, pp. 423-427, 2001.
[37] C. Ford, R. Ramberg, K. Johnson, W. Berglund, B. Ellerbusch, R. Schermer, and A. Gopinath, “Cavity element for resonant micro optical gyroscope,” Position Location and Navigation Symposium, San Diego, CA, March, 2000, pp. 285-290.
[38] J. T. A. Carriere, J. A. Frantz, S. Honkanen, R. K. Kostuk, B. R. Youmans, and E. A. J. Vikjaer, “An integrated optic gyroscope using ion-exchanged waveguides,” Lasers and Electro-Optics Society (LEOS), October, 2003, pp. 99-100.
[39] E. L. Goldner and D. E. Auerbach, "Integrated optic gyroscope and method of fabrication," U.S. Patent, No. 6,587,205, 1, July, 2003.
[40] J. Stringer, ”The Air Force Institute of Technology (AFIT) micro-electro-mechanical systems (MEMS) interferometric gyroscope (MIG),” Master’s Thesis, Air force institute of technology, 2000.
[41] S. Cole, R. L. Fork, D. Lamb, and P. Reardon, “Multi-turn all-reflective optical gyroscope,” Optics Express, Vol. 7, pp. 285-291, 2000.
[42] V. K. Varadan, W. D. Suh, P. B. Xavier, K. A. Jose, and V. V. Varadan, ” Design and development of a MEMS-IDT gyroscope,” Smart Materials and Structures, Vol. 8, pp. 898-905, 2000.
[43] R. C. Woods, H. Kalami, and B. Johnson, "Evaluation of a novel surface acoustic wave gyroscope," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 49, pp. 136-141, 2002.
[44] K. A. Jose, W. D. Suh, P. B. Xavier, V. K. Varadan, and V. V. Varadan, ” Surface acoustic wave MEMS gyroscope,” Wave Motion, Vol. 36, pp. 367-381, 2002.
[45] D. V. Dao, V. T. Dau, T. Shiozawa, H. Kumagai, and S. Sugiyama, “Development of micro motion sensors based on piezoresistive and thermo-resistive effects in silicon,” Device and Process Technologies for Microelectronics, MEMS, and Photonics IV, Brisbane, Australia, December, 2005, pp. 60370K.
[46] V. T. Dau, D. V. Dao, T. Shiozawa, H. Kumagai, and S. Sugiyama, “Development of a dual-axis thermal convective gas gyroscope,” J. Micromechanics and Microengineering, Vol. 16, pp. 1301-1306, 2006.
[47] D. V. Dao, V. T. Dau, T. Shiozawa, and S. Sugiyama, “Development of a Dual-Axis Convective Gyroscope With Low Thermal-Induced Stress Sensing Element,” J. Microelectromechanical Systems, Vol. 16, pp. 950-958, 2007.
[48] S. M. Spearing, “Materials issues in microelectromechanical systems (MEMS),” Acta Materialia, Vol. 48, pp. 179-196, 2000.
[49] http://www.modalshop.com/calibration.asp?ID=200
[50] http://en.wikipedia.org/wiki/Damping
[51] D. Keymeulen, W. Fink, M. I. Ferguson, C. Peay, B. Oks, R. Terrile, and K. Yee, “Tuning of MEMS devices using evolutionary computation and openloop frequency response,” IEEE Aerospace Conference, Big Sky, MT, March, 2005, pp. 1–8.
[52] D. J. Kim and R. T. M’Closkey, “A systematic method for tuning the dynamics of electrostatically actuated vibratory gyros,” IEEE Transactions on Control Systems Technology, Vol. 14, pp. 69-81, 2006.
[53] W. T. Sung, J. Y. Lee, J. G. Lee, and T. Kang, “Design and fabrication of anautomatic mode controlled vibratory gyroscope,” Proc. MEMS’06 Conf., Istanbul, Turkey, January, 2006, pp. 674–677.
[54] A. Thomae, J. Artzner, R. Neul, G. Bischopink, K. Funk, and M. Lutz, “Method and device of tuning a second oscillator with the first oscillator and rotation rate sensor,” U.S. Patent, No. 6 654 424, November, 2003.
[55] T. K. Tang, R. C. Gutierrez, C. B. Stell, V. Vorperian, G. A. Arakaki, J. T. Rice, W. J. Li, I. Chakraborty, K. Shcheglov, J. Z. Wilcox, and W. J. Kaiser, “A packaged silicon MEMS vibratory gyroscope for microspacecraft,” Proc. MEMS Conf., Nagoya, Japan, January, 1997, pp. 500–505.
[56] S. Sonmezoglu, S. E. Alper, and T. Akin, “An automatically mode-matched MEMS gyroscope with 50 Hz bandwidth,” Proc. MEMS’12 Conf., Paris, France, January, 2012, pp. 523-526.
[57] S. Niu and S. Gao, “Analysis of nonlinearities in force-to-voltage conversion in vibratory microgyroscope,” Proc. ICMTMA’10 Conf., Changsha, China, March, 2010, pp. 551–554.
[58] E. Tatar, S. E. Alper, and T. Akin, “Quadrature-error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes,” J. Microelectromechanical Systems, Vol. 21, pp. 656-667, 2012.
[59] C. Wang, M.-H. Tsai, C.-M. Sun, and W. Fang, “A novel CMOS out-of-plane accelerometer with fully-differential gap-closing capacitance sensing electrodes,” J. Micromechanics and Microengineering, Vol. 17, pp. 1275-1280, 2007.
[60] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and W. Fang, “Design and fabrication of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” J. Micromechanics and Microengineering, Vol. 19, 105017, 2009.
[61] C.-M. Sun, M.-H. Tsai, Y.-C. Liu, and W. Fang, “Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique,” IEEE Transactions on Electron Devices, Vol. 57, pp. 1670-1679, 2010.
[62] M.-H. Tsai, Y.-C. Liu, C.-M. Sun, C. Wang, C.-W. Cheng, and W. Fang, “A 400×400m2 3-axis CMOS-MEMS accelerometer with vertically integrated fully-differential sensing electrodes,” Proc. Transducers’11 Conf., Beijing, China, June, 2011, pp. 811-814.
[63] A. R. Schofield, A. A. Trusov, and A. M. Shkel, “Multi-Degree of Freedom Tuning Fork Gyroscope Demonstrating Shock Rejection,” IEEE Sensors Conf., Atlanta, GA, 2007, pp. 120-123.
[64] S. Iyer, Y. Zhou, and T. Mukherjee, ”Analytical modeling of cross-axis coupling in micromechanical springs,” Modeling and Simulation of Microsystems, pp. 632-635, 1999.
[65] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, "Comb-drive actuators for large displacements," J. Micromechanics and microengineering, Vol. 6, pp. 320-329, 1996.
[66] M. Palaniapan, “Integrated Surface Micromachined Frame Microgyroscopes,” Ph.D. Thesis, Engineering-Electrical Engineering and Computer Sciences, University of California, Berkerley, 2002.
[67] S. W. Yoon, S. Lee, and K. Najafi, “Vibration-induced errors in MEMS tuning fork gyroscopes,” Sensors and Actuators A, Vol. 180, pp. 32-44, 2012.
[68] A. M. Shkel, “Type I and type II micromachined vibratory gyroscopes,” IEEE/ION Position Location and Navigation Symposium (PLANS), San Diego, CA, USA, 2006, pp. 586–593.
[69] J. Y. Cho, “High-performance micromachined vibratory rate- and rate-integrating gyroscopes,” Ph.D. Thesis, Electrical Engineering, University of Michigan, 2012.
[70] C. Painter and A. Shkel, “Experimental evaluation of a control system for an absoluteangle measuring micromachined gyroscope,” IEEE Sensors Conf., Irvine, CA, USA, 2005, pp. 1084–1087.
[71] D. Piyabongkarn, R. Rajamani, and M. Greminger, “The development of a MEMS gyroscope for absolute angle measurement,” IEEE Transactions on Control Systems Technology, Vol. 13, pp. 185–195, 2005.
[72] M. Putty and K. Najafi, “A micromachined vibrating ring gyroscope,” Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, USA, June, 1994, pp. 213-220.
[73] F. Ayazi and K. Najafi, “Design and fabrication of a high-performance polysilicon vibrating ring gyroscope,” IEEE Micro Electro Mechanical Systems (MEMS) Workshop, Heidelberg, Germany, Feb. 1998, pp. 621–626.
[74] F. Ayazi, H. H. Chen, F. Kocer, G. He, and K. Najafi, “A high aspect-ratio polysilicon vibrating ring gyroscope,” Solid-State Sensor and Actuator Workshop, Hilton Head, SC, June, 2000, pp. 289–292.
[75] F. Ayazi and K. Najafi, “High aspect-ratio combined poly and silicon crystal silicon (HARPSS) MEMS technology,” J. Microelectromechanical System, Vol. 9, pp. 288–294, 2000.
[76] M. F. Zaman, A. Sharma, B.V. Amini, and F. Ayazi, “The resonating star gyroscope,” Proc. MEMS’05 Conf., Miami, FL, USA, January, 2005, pp. 355–358.
[77] H. Johari and F. Ayazi, “High-frequency capacitive disk gyroscopes in (1 0 0) and (1 1 1) silicon,” Proc. MEMS’07 Conf., Kobe, Japan, January, 2007, pp. 47–50.
[78] P. Greiff, B. Boxenhom, T. King, and L. Niles, “Silicon monolithic micromechanical gyroscope,” Proc. Transducers Conf., San Francisco, CA, USA, June, 1991, pp. 966-968.
[79] W. Geiger, B. Folkmer, J. Merz, H. Sandmaier, and W. Lang, “A new silicon rate gyroscope,” Sensors and Actuators A, Vol. 73, pp. 45-51, 1999.
[80] W. Geiger, J. Merz, T. Fischer, B. Folkmer, H. Sandmaier, and W. Lang, “The silicon angular rate sensor system DAVED®,” Sensors and Actuators A, Vol. 84, pp. 280-284, 2000.
[81] W. Geiger, W. U. Butta, A. Gaißer, J. Frech, M. Braxmaier, T. Link, A. Kohne, P. Nommensen, H. Sandmaier, W. Lang, and H. Sandmaier, ” Decoupled microgyros and the design principle DAVED,” Sensors and Actuators A, Vol. 95, pp. 239-249, 2002.
[82] M. Illing, Micromachining Foundry Designrules, Version 1.0, Bosch Mikroelektronik.
[83] Y. Mochida, M. Tamura, and K. Ohwada, “A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes,” Sensors and Actuators A, Vol. 80, pp. 170-178, 2000.
[84] S. A. Bhave, J. I. Seeger, X. Jiang, B. E. Boser, R. T. Howe, and J. Yasaitis, “An integrated, vertical-drive, in-plane-sense microgyroscope,” Proc. Transducers’03 Conf., Boston, MA, USA, June, 2003, pp. 171-174.
[85] M. Palaniapan, R. T. Howe, and J. Yasaitis, “Performance comparison of integrated z-axis frame microgyroscopes,” Proc. MEMS’03 Conf., Kyoto, Japan, January, 2003, pp. 482-485.
[86] S. E. Alper and T. Akin, "A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate," Journal of Microelectromechanical Systems, Vol. 4, pp. 707-717, 2005.
[87] S. E. Alper, K. Azgin, and T. Akin, "High-performance SOI-MEMS gyroscope with decoupled oscillation modes," Proc. MEMS’06 Conf., Istanbul, Turkey, January, 2006.
[88] S. E. Alper, Yuksel Temiz, and T. Akin, "A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope," J. Microelectromechanical Systems, Vol. 17, pp. 1418-1429, 2008.
[89] M. S. Kranz and G. K. Fedder, “Micromechanical vibratory rate gyroscopes fabricated in conventional CMOS,” Symposium Gyro Technology, 1997, pp. 3-3
[90] Huikai Xie and Gary K. Fedder, "A CMOS-MEMS lateral-axis gyroscope," Proc. MEMS’01 Conf., Interlaken, Switzerland, January, 2001, pp. 162-165.
[91] H. Luo, X. Zhu, H. Lakdawala, L. R. Carley, and G. K. Fedder,” A copper CMOS-MEMS z-axis gyroscope,” Proc. MEMS’02 Conf., NV, USA , January, 2002, pp. 631-634.
[92] H. Xie and G. K. Fedder, "A drie cmos-mems gyroscope," IEEE Sensors Journal, Vol. 2, pp. 1413-1418, 2002.
[93] H. Xie and G. K. Fedder, "Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope," IEEE Sensors Journal, Vol. 3, pp. 622-631, 2003.
[94] H. Sun, K. Jia, X. Liu, G. Yan, Y.-W. Hsu, R. M. Fox, and H. Xie,” Low-power CMOS wireless MEMS motion sensor for physiological activity monitoring,” Circuits and Systems I: Regular Papers, Vol. 52, pp. 2539-2551, 2005.
[95] H. Sun, K. Jia, Y. Ding, Z. Guo, X. Liu, G. Yan, and H. Xie, “A monolithic inertial measurement unit fabricated with improved DRIE post-CMOS process,” IEEE Sensors Conf., Kona, HI, November, 2010, pp. 1198-1202.
[96] H. Xie, H. Sun, K. Jia, D. Fang, and H. Qu, “Multi-axis integrated CMOS-MEMS inertial sensors,” IEEE Solid-State and Integrated Circuit Technology, Shanghai, China, November, 2010, pp. 1394-1395.
[97] N. Taniguchi, K. Okada, Y. Watanabe, T. Mitsui, T. Mineta, and S. Kobayashi, “Micromachined 5-axis motion sensor with electrostatic drive and capacitive detection,” TECHNICAL DIGEST OF THE SENSOR SYMPOSIUM, Vol. 18, pp. 377-380, 2001.
[98] Y. Watanabe, T. Mitsui, T. Mineta, Y. Matsu, and K. Okada, ”SOI micromachined 5-axis motion sensor using resonant electrostatic drive and non-resonant capacitive detection mode,” Sensors and Actuators A, Seoul, Korea, June, 2005, pp. 116-123.
[99] C. Acar and A. M. Shkel, “Structurally decoupled micromachined gyroscopes with post-release capacitance enhancement,” J. Micromechanics and Microengineering, Vol. 15, pp. 1092-1101, 2005.
[100] J. Bernstein, S. Cho, A. T. King, A. Kourepenis, P. Maciel, and M. Weinberg, ” A Micromachined Comb-Drive Tuning Fork Rate Gyroscope,” Proc. MEMS Conf., Fort Lauderdale, FL, Februry, 1993, pp. 143-148.
[101] M. S. Weinberg and A. Kourepenis, “Error Sources in In-Plane Silicon Tuning-Fork MEMS Gyroscopes,” J. Microelectromechanical Systems, Vol. 15, pp. 479-491, 2006.
[102] A. Sharma, M. F. Zaman, B. V. Amini, and F. Ayazi, “A high-Q in-plane SOI tuning folk gyroscope,” IEEE Sensors Journal, Vol. 1, pp. 467-470, 2004.
[103] M.F. Zaman, A. Sharma, and F. Ayazi, “High Performance Matched-Mode Tuning Fork Gyroscope,”Proc. MEMS’06 Conf., Istanbul, Turkey, January, 2006, pp. 66-69.
[104] A. Sharma, M. F. Zaman, M. Zucher, and F. Ayazi, “A 0.1° HR bias drift electronically matched tuning fork microgyroscope,” Proc. MEMS’08 Conf., Tucson, AZ, January, 2008, pp. 6-9.
[105] A. Sharma, M. F. Zaman, and F. Ayazi, “A sub-0.2/hr bias drift micromechanical silicon gyroscope with automatic CMOS mode-matching,” Journal of Solid-State Circuits, Vol. 44, pp. 1593-1608, 2009.
[106] M.Lutz, W. Golderer, J. Gerstenmeier, J. Marek, B. Maihofer, S. Mahler, H. Munzel, and U. Bischof, “A Precision Yaw Rate Sensor in Silicon Micromachining,” SAE Technical Paper, 1998.
[107] W. Geiger, J. Bartholomeyczik, U. Breng, W. Gutmann, M. Hafen, E. Handrich, M. Huber, A. Jackle, U. Kempfer, H. Kopmann, J. Kunz, P. Leinfelder, R. Ohmberger, U. Probst, M. Ruf, G. Spahlinger, A. Rasch, J. Straub-Kalthoff, M. Stroda, K. Stumpf, C. Weber, M. Zimmermann, and S. Zimmermann, ”MEMS IMU for AHRS Applications,” IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, May, 2008, pp. 225-231.
[108] J. A. Geen, “A path to low cost gyroscopy,” Solid-State Sensor and Actuator Workshop, June, 1998, pp. 51–54.
[109] J. A. Geen, S. J. Sherman, J. F. Chang, and S. R. Lewis, ”Single-chip surface-micromachined integrated gyroscope with 50/spl deg//hour root Allan variance,” Solid-State Circuits Conference, San Francisco, CA, USA, Februry, 2002, pp. 426-427.
[110] J. Seeger, M. Lim, and S. Nasiri. "Development of high-performance, high-volume consumer MEMS gyroscopes." Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, Transducer Research Foundation, California, USA, 2010.
[111] R. Neul, U. Gomez, K. Kehr, W. Bauer, J. Classen, C. Doring, E. Esch, S. Gotz, J. Hauer, B. Kuhlmann, C. Lang, M. Veith, and R. Willig, “Micromachined gyros for automotive applications,” IEEE Sensors Conf., Irvine, CA, 2005, pp. 527–530.
[112] R. Neul, U. Gomez, K. Kehr, W. Bauer, J. Classen, C. Doring, E. Esch, S. Gotz, J. Hauer, B. Kuhlmann, C. Lang, M. Veith, and R. Willig, “Micromachined Angular Rate Sensors for Automotive Applications,” IEEE Sensors Journal, Vol. 7, pp. 302-309, 2007.
[113] https://www.youtube.com/watch?v=XsjvaYAFN1M
[114] A. A. Trusov, A. R. Schofield, and A. M. Shkel, ” Gyroscope architecture with structurally forced anti-phase drive-mode and linearly coupled anti-phase sense-mode,” Proc. Transducers’09 Conf., Denver, CO, June, 2009, pp. 660-663.
[115] A. A. Trusov, I. P. Prikhodko, S. A. Zotov, A. R. Schofield, and A. M. Shkel, “Ultra-high Q silicon gyroscopes with interchangeable rate and whole angle modes of operation,” IEEE Sensors Conf., Kona, HI, November, 2010, pp. 864-867.
[116] A. A. Trusov, I. P. Prikhodko, S. A. Zotov, and A. M. Shkel, “Low-Dissipation Silicon Tuning Fork Gyroscopes for Rate and Whole Angle Measurements,” IEEE Sensors Journal, Vol. 11, pp. 2763-2770, 2011.
[117] I. P. Prikhodko, S. A. Zotov, A. A. Trusov, and A. M. Shkel, “Sub-degree-per-hour silicon MEMS rate sensor with 1 million Q-factor,” Proc. Transducers’11 Conf., Beijing, China, June, 2011, pp. 2809-2812.
[118] K. Azgin, Y. Temiz, and T. Akin, “An SOI-MEMS tuning fork gyroscope with linearly coupled drive mechanism,” Proc. MEMS’07 Conf., Kobe, Japan, January, 2007, pp. 607-610.
[119] A. Scheurle, T. Fuchs, K. Kehr, C. Leinenbach, S. Kronmuller, A. Arias, J. Ceballos, M. A. Lagos, J. M. Mora, J. M. Munoz, A. Ragel, J. Ramos, S. V. Aerde, J. Spengler, A. Mehta, A. Verbist, B. Du Bois, and A. Witvrouw, “A 10 μm thick poly-SiGe gyroscope processed above 0.35 μm CMOS,” Proc. MEMS’07 Conf., Kobe, Japan, January, 2007, pp. 39-42.
[120] C. Acar, S. Eler, and A. M. Shkel, “Concept, implementation, and control of wide bandwidth MEMS gyroscopes,” American Control Conference, Arlington, VA, June, 2001, pp. 1229-1234.
[121] C. Acar, S. Eler, and A. M. Shkel, “Nonresonant micromachined gyroscopes with structural mode-decoupling,” IEEE Sensors Journal, Vol. 3, pp. 497-506, 2003.
[122] C. Acar, S. Eler, and A. M. Shkel, “An approach for increasing drive-mode bandwidth of MEMS vibratory gyroscopes,” J. Microelectromechanical Systems, Vol. 14, pp. 520-528, 2005.
[123] A. R. Schofield, A. A. Trusov, and A. M. Shkel, “Multi-Degree of Freedom Tuning Fork Gyroscope Demonstrating Shock Rejection,” IEEE Sensors Conf., Atlanta, GA, Octorber, 2007, pp. 120-123.
[124] C. Acar, A. R. Schofield, A. A. Trusov, L. E. Costlow, and A. M. Shkel, “Environmentally Robust MEMS Vibratory Gyroscopes for Automotive Applications,” IEEE Sensors Journal, Vol. 9, pp. 1895-1906, 2009.
[125] C. Acar and A. M. Shkel, ”Distributed-mass micromachined gyroscopes for enhanced mode-decoupling,” IEEE Sensors Conf., October, 2003, pp. 445-450.
[126] C. Acar and A. M. Shkel, “Distributed-mass micromachined gyroscopes - demonstration of drive-mode bandwidth enhancement,” Electronic Components and Technology Conference, June, 2004, pp. 874-882.
[127] B. R. Simon, A. A. Trusov, and A. M. Shkel, “Anti-phase mode isolation in tuning-fork MEMS using a lever coupling design,” IEEE Sensors Conf., Taipei, Taiwan, October, 2012, pp. 1-4.
[128] A. Walther, C. Le Blanc, N. Delorme, Y. Deimerly, R. Anciant, J. Willemin, “Bias contributions in a MEMS tuning fork gyroscope,” Journal of Microelectromechanical Systems, Vol. 22, pp. 303-308, 2013.
[129] V. Kempe, Inertial MEMS- Principles and Practice, 1st Ed., NY, USA, Cambridge University Press, 2011.
[130] M. S. Weinberg, K. Kumar, and A. T. King, “Dynamically balanced micromechanical devices,” U.S. Patent, 6 571 630 B1, June 3, 2003.
[131] S. V. Iyer, “Modeling and Simulation of Non-idealities in a Z-axis CMOS-MEMS Gyroscope,” Ph.D Thesis, Carnegie Mellon University, 2003.
[132] E. S. Hung and S. D. Senturia, “Extending the travel range of analog-tuned electrostatic actuators,” Journal of Microelectromechanical Systems, Vol. 8, pp. 497-505, 1999.
[133] P. M. Osterberg, “Electrostatically actuated microelectromechanical test structures for material property measurement,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, 1995.
[134] https://www.comsol.com/blogs/what-is-geometric-nonlinearity/
[135] W. A. Clark, “Micromachined vibratory rate gyroscope,” Ph.D Thesis, University of California, Berkeley, 1997.
[136] L. Aaltonen and K. A. I. Halonen, “An analog drive loop for a capacitive MEMS gyroscope,” Analog Integrated Circuits and Signal Processing, Vol. 63, pp. 465-476, 2010.
[137] D. Liu, N. N. Lu, J. Cui, L. T. Lin, H. T. Ding, Z. C. Yang, Y. L. Hao, and G. Yan, “Digital closed-loop control based on adaptive filter for drive mode of a MEMS gyroscope,” IEEE Sensors Conf., Kona, HI, November, 2010, pp. 1722-1726.
[138] B. Eminoglu, S. E. Alper, and T. Akin, “Novel, simple, and Q-independent self oscillation loop designed for vibratory MEMS gyroscopes,” Proc. Transducers’11 Conf., Beijing, China, June, 2011, pp. 1440-1443.
[139] 劉育嘉, “低熱變形與低雜訊之多通道電容感測界面CMOS-MEMS加速度感測器的設計與實現,” 博士論文, 清華大學, 2012.
[140] B. S. Park, K.-J. Han, S.-W. Lee, and M.-J. Yu, “Analysis of compensation for a g-sensitivity scale-factor error for a MEMS vibratory gyroscope,” J. Micromechanics and Microengineering, Vol. 25, pp. 115006, 2015.
[141] M. Bao and H. Yang, “Squeeze film air damping in MEMS,” Sensors and Actuators A : Physical, Vol. 136, pp. 3-27, 2007.
[142] http://www.design.caltech.edu/Research/MEMS/siliconprop.html
[143] P. Greiff, “Low thermal strain flexure support for a micromechanical device,” US Patent, US6230567 B1, 2001.
[144] J. W. Reeds, Y.-W. Hsu, and P.-C. Dao, “MEMS sensor with single central anchor and motion-limiting connection geometry,” US Patent, US6513380 B2, 2003.
[145] A. C. McNeil, Gary Li, and D. N. Koury, “Single proof mass, 3 axis MEMS transducer,” US Patent, US6845670 B1, 2005.
[146] H. R. Samuels, D. C. Hollocher, M. Judy, and T. Juneau, “Reducing offset in accelerometers,” US Patent, US6892576 B2, 2005.
[147] S. S. Nasiri, J. Seeger, and G. Yaralioglu, “Vertically integrated 3-axis MEMS accelerometer with electronics,” US Patent, US8047075 B2, 2011.
[148] A.C. McNeil, A. A. Geisberger, D. N. Koury, and G. G. Li, “Semiconductor device with reduced sensitivity to package stress,” US Patent, US8056415 B2, 2011.
[149] http://www.ic72.com/pdf_file/m/145347.pdf
[150] V. Annovazzi and S. Merlo, “Mechanical–thermal noise in micromachined gyros,” Microelectronics Journal, Vol. 30, pp. 1227-1230, 1999.
[151] R. P. Leland, “Mechanical-Thermal Noise in MEMS Gyroscopes,” IEEE Sensors Journal, Vol. 5, pp. 493-500, 2005.
[152] C. T. C. Nguyen and R. T. Howe, “An integrated CMOS micromechanical resonator high-Q oscillator,” Journal of Solid-State Circuits, Vol. 34, pp. 440-455, 1999.
[153] H. Sun, D. Fang, K. Jia, F. Maarouf, H. Qu, and H. Xie, “A low-power low-noise dual-chopper amplifier for capacitive CMOS-MEMS accelerometers,” IEEE sensors J., vol. 14, pp. 925-973, 2011.
[154] S.-S. Tan, C.-Y. Liu, Y.-H. Chiu, and Klaus Y.-J. Hsu, “A new process for CMOS MEMS capacitive sensors with high sensitivity and their stability,” J. Micromech. Microeng., vol. 21, 035005, 2011.
[155] R. R. Harrison, and C. Charles, “A low-power low noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, pp. 958-965, 2003.
[156] http://www.ti.com.cn/cn/lit/an/sboa122/sboa122.pdf
[157] http://www.allaboutcircuits.com/technical-articles
[158] https://www.maximintegrated.com/en/app-notes/index.mvp/id/5129
[159] www.ti.com/cn/lit/gpn/opa656
[160] C.-W. Cheng, K.-C. Liang, C.-H. Chu, D. A. Horsley, and W. Fang, “Single chip process for sensors implementation, integration, and condition monitoring,” Proc. Transducers’13 Conf., Barcelona, June, 2013, pp. 1075-1078.
[161] https://www.invensense.com/products/1-axis/ (ISZ-2510)
[162] R. Antonello, R. Oboe, L. Prandi, C. Caminada , and F. Biganzoli ,“Open loop compensation of the quadrature error in MEMS vibrating gyroscopes,” IECON’09, November, 2009, pp. 4034-4039.
[163] N. M. Barbour, “Inertial navigation sensors,” CHARLES STARK DRAPER LAB INC CAMBRIDGE MA, 2010.
[164] M. Perlmutter and L. Robin, “High-performance, low cost inertial MEMS: A market in motion!,” Position Location and Navigation Symposium (PLANS), Myrtle Beach, SC, April, 2012, pp. 225-229.
[165] I. P. Prikhodko, S. A. Zotov, A. A. Trusov, and A. M. Shkel, “What is MEMS Gyrocompassing? Comparative Analysis of Maytagging and Carouseling,” J. Microelectromechanical Systems, Vol. 22, pp. 1257-1266, 2013.
[166] D. W. Allan, “The statistics of atomic frequency standards,” Proc. IEEE, Vol. 54, pp. 221-230, 1996.
[167] D.W. Allan, “Allan variance,” http://www.allanstime.com [2008].
[168] J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, Jr., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas., Vol. 20, pp. 105-120, 1971.
[169] J. A. Barnes, “Variances based on data with dead time between the measurements,” Natl. Inst. Stand. Technol. Technical Note 1318, 1990.
[170] C. A. Greenhall, “Spectral ambiguity of Allan variance,” IEEE Trans. Instrum. Meas., Vol. 47, pp. 623-627, 1998.
[171] IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros, 1998.
[172] W. J. Riley, "Handbook of Frequency Stability Analysis, Natl." Inst. Stand. Technol. Spec. Publ 1065, 2008.
[173] “Allan Variance: Noise Analysis for Gyroscopes,” Freescale Semiconductor Application Note, 2015. [online available]
[174] https://en.wikipedia.org/wiki/Allan_variance
[175] H. Kim, J.-G. Lee, and C.-G. Park, “Performance Improvement of GPS/INS Integrated System Using Allan Variance Analysis,” The 2004 International Symposium on GPS/GNSS, Sydney, Australia, December, 2004.
[176] N. El-Sheimy, H. Hou, and X. Niu, “Analysis and Modeling of Inertial Sensors Using Allan Variance,” IEEE Transactions on Instrumentation and Measurement, Vol. 57, pp. 140-149, 2008.
[177] S. Jain, S. Nandy, G. Chakraborty, C. S. Kumar, R. Ray, and S. N. Shome, “Error modeling of various sensors for robotics application using Allan Variance technique,” Signal Processing, Communications and Computing (ICSPCC), Xi'an, September, 2011, pp. 1-4.
[178] R. J. Vaccaro and A. S. Zaki, “Statistical modeling of rate gyros and accelerometers,” Position Location and Navigation Symposium (PLANS), Myrtle Beach, SC, April, 2012, pp. 824-830.
[179] http://www.heatact.com.tw/tw/products/?method=pagedetail&aid=105
[180] http://www.si-ware.com/
[181] A. Sharma, “CMOS system and circuits for sub-degree per hour MEMS gyroscopes,” Ph.D Thesis, Georgia Institute of Technology, 2007.
[182] L. Aaltonen and K. A. I. Halonen, “An analog drive loop for a capacitive MEMS gyroscope,” Analog Integrated Circuits and Signal Processing, Vol. 63, pp. 465-476, 2010.
[183] B. Eminoglu, S. E. Alper, and T. Akin, “Novel, simple, and Q-independent self oscillation loop designed for vibratory MEMS gyroscopes,” Proc. Transducers’11 Conf., Beijing, China, June, 2011, pp. 1440-1443.
[184] K. Shcheglov, C. Evans, R. Gutierrez, and T. K. Tang, “Temperature dependent characteristics of the JPL silicon MEMS gyroscope,” IEEE Aerospace Conference Proceedings, Big Sky, MT, March, 2000, pp. 403-411.
[185] J. Fang and J. Li, “Integrated Model and Compensation of Thermal Errors of Silicon Microelectromechanical Gyroscope,” IEEE Transactions on Instrumentation and Measurement, Vol. 58, pp. 2923-2930, 2009.
[186] I. P. Prikhodko, A. A. Trusov, and A. M. Shkel, “Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing,” Sensors and Actuators A: Physical, Vol. 201, pp. 517-524, 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *