帳號:guest(3.137.177.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張文馨
作者(外文):Chang, Wen-Hsin
論文名稱(中文):整合型微流體系統平台於分子診斷技術之應用
論文名稱(外文):Applications of integrated microfluidic systems for molecular diagnosis
指導教授(中文):李國賓
指導教授(外文):Lee, Gwo-Bin
口試委員(中文):李國賓
李炫昇
楊瑞珍
吳旻憲
王玉麟
曾繁根
陳宗嶽
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033803
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:134
中文關鍵詞:微流體恆溫環狀擴增法聚合酶鏈鎖反應奈米金探針水產養殖病原菌蝴蝶蘭關節周邊組織感染微機電系統微型全分析系統
外文關鍵詞:microfluidicsloop-mediated isothermal amplification (LAMP)polymerase chain reaction (PCR)nanogold probeaquaculture pathogensPhalaenopsis orchidperiprosthetic joint infectionMicro-Electro-Mechanical-Systems (MEMS)micro-total-analysis-system (μTAS)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:593
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
隨著社會的進步,個體間的距離越來越近,許多快速傳播的感染病因而出現。這些感染病不僅威脅人類健康甚鉅,亦造成嚴重經濟損失。早期偵測及診斷是遏止傳染疾病擴散的關鍵因素。因此許多研究學者投身於開發既正確又快速的偵測及診斷工具。在所有偵測工具中,分子診斷已被廣泛地應用於感染病偵測因為其具有高靈敏性和專一性。分子偵測可提供正確且靈敏的偵測結果,這些結果可作為處置方法之參考。然而,複雜的程序及操作者所造成的誤差和汙染使得分子診斷尚無法成為一良好的田間試驗或即時醫療工具。
為了解決以上問題,本論文提出四種整合式微流體系統,分別可以直
由魚類,蘭花及人類關節液樣本中對細菌及病毒等病原體以分子診斷的方式進行偵測。這些整合式微流體系統借助生物微機電系統的知識,將數個微流體元件整合至單一生物晶片上而達成晶片實驗室的想法。此外,整合式微流體系統可自動化執行傳統生醫實驗中所有手動步驟,不需操作者介入而省下時間金錢,因此可避免操作者所造成的誤差和汙染。
本論文針對這些整合式微流體系統的效能進行確效,結果顯示其具有高度專一性,且不同系統之靈敏度分別為20條DNA拷貝數(恆溫環狀擴增法及螢光偵測),35皮克質體去氧核糖核酸(恆溫環狀擴增法及濁度偵測),200菌落形成單位(聚合酶鏈鎖反應及螢光偵測)及100個菌落形成單位(奈米金探針偵測)。此外,本研究以具有溫度控制模組,液體傳輸模組及光學偵測模組的整合式控制系統自動化地於短時間內完成包含分離去氧核糖核酸/核糖核酸/細菌,利用聚合酶鏈鎖反應或恆溫環狀擴
增進行核酸增幅,奈米金探針偵測或光學偵測之所有實驗流程。實驗結果顯示這些微型全分析系統可於不遠的將來作為田間試驗或即時醫療之有用工具。
As the society progresses, many rapidly-spread infectious diseases emerge because the distance between individuals is getting closer and closer. Not only do these infectious diseases threaten people health significantly but they also cause huge economic loss. The key factor to cease the spread of infectious diseases is early detection and diagnosis.Researchers have devoted to develop detection and diagnostic tools which are accurate and rapid. Among all detection tools, molecular diagnosis has been extensively employed in infectious disease detection because of its high sensitivity and high
specificity. It may provide accurate and sensitive detection results which could be references for making proper treatment decisions. However, complicated processes,human errors and contamination prevent its potential to be an in-filed or point-of-care
tool.
To overcome the above-mentioned disadvantages, four different integrated microfluidic systems were developed to detect pathogens including bacteria and viruses
from aquaculture, orchids and human joint fluidic sample directly are presented in this dissertation. By means of the knowledge from bio-Micro-Electro-Mechanical-System
(Bio-MEMS), the integrated microfluidic systems integrated several microfluidic components into one single biochip to realize to concept of Lab-on-a-Chip (LOC).Furthermore, the integrated control systems can be used to perform all manual steps in a traditional biomedical experiment automatically with less human intervention to save labor and cost. With Bio-MEMS, human error and contamination can also be reduced. The performances of the integrated microfluidic systems were validated in this dissertation and the results showed that the purposed microfluidic systems were highly specific with sensitivities as low as 20 copies of plasmid deoxyribonucleic acid (DNA) for loop-mediated isothermal amplification (LAMP) with fluorescent detection, 35 pg of plasmid DNA for LAMP with turbidity detection, 200 colony formation units (CFU) for polymerase chain reaction (PCR) with fluorescent detection and 100 CFU for nanogold probe detection, respectively. Moreover, in this study, the whole
experimental procedures including DNA/RNA/bacteria isolation, nucleic acid amplification by PCR or LAMP, nanogold probes detection or optical detection can
be performed on an integrated control system which consisted of a temperature control module, a liquid transportation module and an optical detection module
automatically within a short period of time. Based on the experiment data, these micro-total-analysis-systems (μTAS) are promising tools for in-field diagnosis or
point-of-care in the near future.
Abstract…………………………………………………………………………………I
中文摘要………………………………………………………………………………III
致謝……………………………………………………………………………………V
Table of Contents……………………………………………VI
List of Figures………………………………………………………………………VIII
List of Tables……………………………………………XV
Abbreviation and Nomenclature………………VIII
Chapter 1: Introduction………………………………………1
1.1 Molecular diagnosis………………………………………………………………1
1.1.1 PCR…………………………………………………………………………3
1.1.2 LAMP………………………………………………………………………4
1.2 MEMS-based nucleic acid amplification using microfluidic technologies……4
1.2.1 Performing PCR in microfluidic systems……………………………………..9
1.2.2 Performing LAMP in microfluidic
systems…………………………………10
1.3 Motivation and objectives………………………………………………………13
1.3.1 Rapid purification and detection of pathogens in agricultural species using LAMP on an integrated microfluidic system……………………………… 13
1.3.2 Direct purification and detection of viruses directly from the fresh leaves of Phalaenopsis orchid using an integrated microfluidic system ……...……...13
1.3.3 Rapid isolation and diagnosis of live bacteria from human joint fluids by using an integrated microfluidic system ……………………………………14
1.3.4 An integrated microfluidic system for rapid detection and typing of live bacteria from human joint fluidic samples …………………………………..15
1.4 Scope and structure of the dissertation…………………………………………..15
Chapter 2: Rapid purification and detection of pathogens in agricultural species using LAMP on an integrated microfluidic system ………………………17
2.1 Introduction………………………………………………..……………………17
2.2 Materials and methods………………………………………………………….21
2.2.1 Experimental procedure……………………………………….……………..21
2.2.2 Chip design…………………………………………………………………..23
2.2.3 Fabrication process…………………………………………………………25
2.2.4 Working principle of the pneumatic micro-pump …………………………26
2.2.5 Custom-made control system ………………………………………………27
2.2.6 Primer and nucleotide probe design ………………………………………29
2.2.7 Preparation of nucleotide-probe-conjugated magnetic beads……………….30
2.2.8 Positive control construction………………………………………………30
2.2.9 Preparation of infected fish samples………………………………………30
2.2.10 PCR ………………………………………………………………………31
2.2.11 Electrophoresis…………………………………………………………… 31
2.3 Results and discussion…………………………………………………………31
2.3.1. Performance of the pneumatic micropump…………………………………31
2.3.2. Performance of the custom-made control system…………………………32
2.3.3. Sensitivity…………………………………………………………………34
2.3.4. Detection of pathogen from fish samples…………………………………36
2.4 Summary…………………………………………………………39
Chapter 3: Direct purification and detection of viruses directly from the fresh leaves of a Phalaenopsis orchid using an integrated microfluidic system……………………………………………………………………40
3.1 Introduction…………………………………………… ………………………40
3.2 Materials and methods…………………………………………………………44
3.2.1 Experimental procedure……………………………………………………44
3.2.2 Chip design…………………………………………………………………46
3.2.3 Fabrication process…………………………………………………………49
3.2.4 The microfluidic system……………………………………………………50
3.2.5 Primer and nucleotide probe
design………………………………………51
3.2.6 Preparation of nucleotide-probe-conjugated magnetic beads…………….….52
3.2.7 RNA extraction………………………………………………………………52
3.3 Results and Discussion………………………………………… ………………53
3.3.1 Performance of the integrated microfluidic chip…………………………….53
3.3.2 Performance of the optical detection unit……………………………………54
3.3.3 Optimum hybridization temperature of the magnetic beads coated with virus
specific probes………………………………………………………………55
3.3.4 Sensitivity of the integrated microfluidic system……………………………57
3.3.5 Virus detection using fresh orchid leaves and the integrated microfluidic
system……………………………………………………………………….59
3.4 Summary………………………………………………………63
Chapter 4: Rapid isolation and diagnosis of live bacteria from human joint fluids
by using an integrated microfluidic system……………………………66
4.1 Introduction……………………………………………………………………66
4.2 Materials and methods……………………………………69
4.2.1 Experimental procedure……………………………………………69
4.2.2 Chip design and fabrication………………………………………………….72
4.2.3 Preparation of EMA………………………………………………………77
4.2.4 Preparation of vancomycin-conjugated magnetic beads……………………77
4.2.5 PCR primers and PCR reaction……………………………………………78
4.2.6 Preparation of dead bacteria…………………………………………………78
4.2.7 Positive control construction………………………………………………78
4.2.8 Clinical specimen……………………………………………………………79
4.2.9 Statistical analysis……………………………………………………………79
4.3 Results and discussion………………………………………80
4.3.1 The pumping rate of the transportation units…………………………80
4.3.2 Optimization of EMA pre-treatment of live bacteria diagnostic assay……81
4.3.3 LOD of the proposed system………………………………………………84
4.3.4 Clinical specimen tests……………………85
4.4 Summary………………………………………………………………………87
Chapter 5 An integrated microfluidic system for rapid detection and typing of live bacteria from human joint fluidic samples………………………………89
5.1 Introduction……………………………………………………………………89
5.2 Materials and methods…………………………………………………………92
5.2.1 Experimental procedures……………………………………………………92
5.2.2 Chip design…………………………………………………………………94
5.2.3 Preparation of nanogold-conjugated 16S probes……………………………97
5.2.4 Bacterial genomic DNA extraction…………………………………………98
5.2.5 PCR primers and PCR reaction……………………………………………98
5.3 Results and discussion…………………………………………………………100
5.3.1 Characterization of the integrated microfluidic chip………………………100
5.3.2 Detection of live bacteria using nanogold-conjugated 16S probes……….100
5.3.3 Detection of live bacteria on the proposed integrated microfluidic system..101
5.3.4 Typing of live bacteria using PCR reaction with specific primer sets……104
5.4 Summary………………………………………………………………………107
Chapter 6: Conclusions and future perspectives…………………………………108
References……………………………………………………………………………113
Publication lists………………………………………………………………………130
1. E. R. Andrew and M. J. R. Hoch, S Afr J Sci, Magnetic-Resonance Imaging,1980, 76, 256-258.
2. Pickerin.Rs, R. R. Hattery, G. W. Hartman and K. E. Holley, Radiology,Computed Tomography of Excised Kidney, 1974, 113, 643-647.
3. W. T. Liberson, Am J Psychiat, Electroencephalography, 1965, 121, 636-640.
4. D. Cohen, Science, Magnetoencephalography - Evidence of Magnetic Fields Produced by Alpha-Rhythm Currents, 1968, 161, 784-&.
5. F. J. Conraths and G. Schares, Vet Parasitol, Validation of molecular-diagnostic techniques in the parasitological laboratory, 2006, 136, 91-98.
6. R. Montironi, R. Mazzucchelli and M. Scarpelli, Eur Urol, Molecular techniques and prostate cancer diagnostic, 2003, 44, 390-400.
7. Z. Fejfar, Int J Epidemiol, Surveillance and Monitoring of Cardiovascular-Disease - Assessment of Trends, 1976, 5, 77-81.
8. D. C. Figge, Postgraduate medicine, Screening for Cancer: Technic and Application, 1965, 38, 152-156.
9. W. M. Gooch, J Med Technol, Immunological Diagnosis of Infectious-Disease by Antigen-Detection in Urine, 1985, 2, 762-765.
10. J. Compton, Nature, Nucleic-Acid Sequence-Based Amplification, 1991, 350, 91-92.
11. K. Loens, D. Ursi, M. Ieven, P. van Aarle, P. Sillekens, P. Oudshoorn and H. Goossens, J Clin Microbiol, Detection of Mycoplasma pneumoniae in spiked
114 clinical samples by nucleic acid sequence-based amplification, 2002, 40, 1339-1345.
12. J. B. Mahony, X. Song, S. Chong, M. Faught, T. Salonga and J. Kapala, J Clin Microbiol, Evaluation of the NucliSens basic kit for detection of Chlamydia
trcachomatis and Neisseria gonorrhoeae in genital tract specimens using nucleic acid sequence-based amplification of 16S rRNA, 2001, 39, 1429-1435.
13. L. X. An, W. Tang, T. A. Ranalli, H. J. Kim, J. Wytiaz and H. M. Kong, J Biol Chem, Characterization of a thermostable UvrD helicase and its participation
in helicase-dependent amplification, 2005, 280, 28952-28958.
14. M. Vincent, Y. Xu and H. M. Kong, Embo Rep, Helicase-dependent isothermal DNA amplification, 2004, 5, 795-800.
15. G. T. Walker, M. S. Fraiser, J. L. Schram, M. C. Little, J. G. Nadeau and D. P. Malinowski, Nucleic Acids Res, Strand Displacement Amplification - an
Isothermal, Invitro DNA Amplification Technique, 1992, 20, 1691-1696.
16. G. T. Walker, M. C. Little, J. G. Nadeau and D. D. Shank, P Natl Acad Sci USA, Isothermal Invitro Amplification of DNA by a Restriction Enzyme
DNA-Polymerase System, 1992, 89, 392-396.
17. K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn and H. Erlich, Cold Spring Harb Sym, Specific Enzymatic Amplification of DNA Invitro - the Polymerase
Chain-Reaction, 1986, 51, 263-273.
18. W. Rychlik, W. J. Spencer and R. E. Rhoads, Nucleic Acids Res, Optimization of the Annealing Temperature for DNA Amplification Invitro, 1990, 18,6409-6412.
115
19. D. J. Sharkey, E. R. Scalice, K. G. Christy, S. M. Atwood and J. L. Daiss,Bio-Technol, Antibodies as Thermolabile Switches - High-Temperature
Triggering for the Polymerase Chain-Reaction, 1994, 12, 506-509.
20. A. Chien, D. B. Edgar and J. M. Trela, J Bacteriol, Deoxyribonucleic-Acid Polymerase from Extreme Thermophile Thermus-Aquaticus, 1976, 127,
1550-1557.
21. F. C. Lawyer, S. Stoffel, R. K. Saiki, S. Y. Chang, P. A. Landre, R. D.
Abramson and D. H. Gelfand, PCR methods and applications, High-level
expression, purification, and enzymatic characterization of full-length
Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3'
exonuclease activity, 1993, 2, 275-287.
22. T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N.
Amino and T. Hase, Nucleic Acids Res, Loop-mediated isothermal
amplification of DNA, 2000, 28.
23. N. Tomita, Y. Mori, H. Kanda and T. Notomi, Nat Protoc, Loop-mediated
isothermal amplification (LAMP) of gene sequences and simple visual
detection of products, 2008, 3, 877-882.
24. X. E. Fang, H. Chen, L. J. Xu, X. Y. Jiang, W. J. Wu and J. L. Kong, Lab
Chip, A portable and integrated nucleic acid amplification microfluidic chip
for identifying bacteria, 2012, 12, 1495-1499.
25. C. M. Chang, W. H. Chang, C. H. Wang, J. H. Wang, J. D. Mai and G. B. Lee,
Lab Chip, Nucleic acid amplification using microfluidic systems, 2013, 13,
1225-1242.
26. M. U. Kopp, A. J. de Mello and A. Manz, Science, Chemical amplification:
Continuous-flow PCR on a chip, 1998, 280, 1046-1048.
116
27. A. Manz, D. J. Harrison, E. M. J. Verpoorte, J. C. Fettinger, A. Paulus, H.
Ludi and H. M. Widmer, J Chromatogr, Planar Chips Technology for
Miniaturization and Integration of Separation Techniques into Monitoring
Systems - Capillary Electrophoresis on a Chip, 1992, 593, 253-258.
28. A. J. deMello, Nature, Control and detection of chemical reactions in
microfluidic systems, 2006, 442, 394-402.
29. M. A. Belaud-Rotureau, M. Parrens, P. Dubus, J. C. Garroste, A. de Mascarel
and J. P. Merlio, Modern Pathol, A comparative analysis of FISH, RT-PCR,
PCR, and immunohistochemistry for the diagnosis of mantle cell lymphomas,
2002, 15, 517-525.
30. T. Watkins-Riedel, M. Woegerbauer, D. Hollemann and P. Hufnagl, Diagn
Micr Infec Dis, Rapid diagnosis of enterovirus infections by real-time PCR on
the LightCycler using the TaqMan format, 2002, 42, 99-105.
31. H. Mocharla, R. Mocharla and M. E. Hodes, Gene, Coupled Reverse
Transcription-Polymerase Chain-Reaction (Rt-Pcr) as a Sensitive and Rapid
Method for Isozyme Genotyping, 1990, 93, 271-275.
32. Z. Zhu, G. Jenkins, W. H. Zhang, M. X. Zhang, Z. C. Guan and C. Y. J. Yang,
Anal Bioanal Chem, Single-molecule emulsion PCR in microfluidic droplets,
2012, 403, 2127-2143.
33. Y. H. Chang, G. B. Lee, F. C. Huang, Y. Y. Chen and J. L. Lin, Biomed
Microdevices, Integrated polymerase chain reaction chips utilizing digital
microfluidics, 2006, 8, 215-225.
34. K. Y. Lien, W. C. Lee, H. Y. Lei and G. B. Lee, Biosens Bioelectron,
Integrated reverse transcription polymerase chain reaction systems for virus
detection, 2007, 22, 1739-1748.
117
35. C. H. Tai, J. W. Shin, T. Y. Chang, S. K. Hsiung, C. C. Lin and G. B. Lee,
Microfluid Nanofluid, An integrated microfluidic system capable of sample
pretreatment and hybridization for microarrays, 2011, 10, 999-1009.
36. Y. Hataoka, L. H. Zhang, Y. Mori, N. Tomita, T. Notomi and Y. Baba, Anal
Chem, Analysis of specific gene by integration of isothermal amplification and
electrophoresis on poly(methyl methacrylate) microchips, 2004, 76,
3689-3693.
37. X. E. Fang, H. Chen, S. N. Yu, X. Y. Jiang and J. L. Kong, Anal Chem,
Predicting Viruses Accurately by a Multiplex Microfluidic Loop-Mediated
Isothermal Amplification Chip, 2011, 83, 690-695.
38. X. E. Fang, Y. Y. Liu, J. L. Kong and X. Y. Jiang, Anal Chem, Loop-Mediated
Isothermal Amplification Integrated on Microfluidic Chips for Point-of-Care
Quantitative Detection of Pathogens, 2010, 82, 3002-3006.
39. C. C. Liu, M. G. Mauk and H. H. Bau, Microfluid Nanofluid, A disposable,
integrated loop-mediated isothermal amplification cassette with thermally
actuated valves, 2011, 11, 209-220.
40. C. C. Liu, M. G. Mauk, R. Hart, X. B. Qiu and H. H. Bau, Lab Chip, A
self-heating cartridge for molecular diagnostics, 2011, 11, 2686-2692.
41. F. Ahmad, G. Seyrig, D. M. Tourlousse, R. D. Stedtfeld, J. M. Tiedje and S. A.
Hashsham, Biomed Microdevices, A CCD-based fluorescence imaging system
for real-time loop-mediated isothermal amplification-based rapid and
sensitive detection of waterborne pathogens on microchips, 2011, 13,
929-937.
42. K. W. Hsieh, A. S. Patterson, B. S. Ferguson, K. W. Plaxco and H. T. Soh,
Angew Chem Int Edit, Rapid, Sensitive, and Quantitative Detection of
118
Pathogenic DNA at the Point of Care through Microfluidic Electrochemical
Quantitative Loop-Mediated Isothermal Amplification, 2012, 51, 4896-4900.
43. D. M. Tourlousse, F. Ahmad, R. D. Stedtfeld, G. Seyrig, J. M. Tiedje and S. A.
Hashsham, Biomed Microdevices, A polymer microfluidic chip for quantitative
detection of multiple water- and foodborne pathogens using real-time
fluorogenic loop-mediated isothermal amplification, 2012, 14, 769-778.
44. C. H. Wang, K. Y. Lien, T. Y. Wang, T. Y. Chen and G. B. Lee, Biosens
Bioelectron, An integrated microfluidic
loop-mediated-isothermal-amplification system for rapid sample
pre-treatment and detection of viruses, 2011, 26, 2045-2052.
45. C. H. Wang, K. Y. Lien, J. J. Wu and G. B. Lee, Lab Chip, A magnetic
bead-based assay for the rapid detection of methicillin-resistant
Staphylococcus aureus by using a microfluidic system with integrated
loop-mediated isothermal amplification, 2011, 11, 1521-1531.
46. R. D. Stedtfeld, D. M. Tourlousse, G. Seyrig, T. M. Stedtfeld, M. Kronlein, S.
Price, F. Ahmad, E. Gulari, J. M. Tiedje and S. A. Hashsham, Lab Chip,
Gene-Z: a device for point of care genetic testing using a smartphone, 2012,
12, 1454-1462.
47. S. Y. Lee, J. G. Huang, T. L. Chuang, J. C. Sheu, Y. K. Chuang, M. Holl, D. R.
Meldrum, C. N. Lee and C. W. Lin, Sensor Actuat B-Chem, Compact optical
diagnostic device for isothermal nucleic acids amplification, 2008, 133,
493-501.
48. S. Y. Lee, C. N. Lee, H. Mark, D. R. Meldrum and C. W. Lin, Sensor Actuat
B-Chem, Efficient, specific, compact hepatitis B diagnostic device: Optical
119
detection of the hepatitis B virus by isothermal amplification, 2007, 127,
598-605.
49. C. C. Liu, E. Geva, M. Mauk, X. B. Qiu, W. R. Abrams, D. Malamud, K.
Curtis, S. M. Owen and H. H. Bau, Analyst, An isothermal amplification
reactor with an integrated isolation membrane for point-of-care detection of
infectious diseases, 2011, 136, 2069-2076.
50. M. Safavieh, M. U. Ahmed, M. Tolba and M. Zourob, Biosens Bioelectron,
Microfluidic electrochemical assay for rapid detection and quantification of
Escherichia coli, 2012, 31, 523-528.
51. W. H. Chang, S. Y. Yang, C. H. Wang, M. A. Tsai, P. C. Wang, T. Y. Chen, S.
C. Chen and G. B. Lee, Sensor Actuat B-Chem, Rapid isolation and detection
of aquaculture pathogens in an integrated microfluidic system using
loop-mediated isothermal amplification, 2013, 180, 96-106.
52. E. Hernandez, J. Figueroa and C. Iregui, J Fish Dis, Streptococcosis on a red
tilapia, Oreochromis sp., farm: a case study, 2009, 32, 247-252.
53. L. Dalla Valle, V. Toffolo, M. Lamprecht, C. Maltese, G. Bovo, P. Belvedere
and L. Colombo, Vet Microbiol, Development of a sensitive and quantitative
diagnostic assay for fish nervous necrosis virus based on two-target real-time
PCR, 2005, 110, 167-179.
54. A. K. Dhar, M. M. Roux and K. R. Klimpel, J Virol Methods, Quantitative
assay for measuring the Taura syndrome virus and yellow head virus load in
shrimp by real-time RT-PCR using SYBR Green chemistry, 2002, 104, 69-82.
55. A. Eldar, Y. Bejerano, A. Livoff, A. Horovitcz and H. Bercovier, Vet
Microbiol, Experimental Streptococcal Meningoencephalitis in Cultured Fish,
1995, 43, 33-40.
120
56. J. J. Evans, P. H. Klesius, P. M. Glibert, C. A. Shoemaker, M. A. Al Sarawi, J.
Landsberg, R. Duremdez, A. Al Marzouk and S. Al Zenki, J Fish Dis,
Characterization of beta-haemolytic Group B Streptococcus agalactiae in
cultured seabream, Sparus auratus L., and wild mullet, Liza klunzingeri (Day),
in Kuwait, 2002, 25, 505-513.
57. J. J. Evans, P. H. Klesius, D. J. Pasnik and J. F. Bohnsack, Emerg Infect Dis,
Human Streptococcus agalactiae Isolate in Nile Tilapia (Oreochromis
niloticus), 2009, 15, 774-776.
58. J. J. Evans, D. J. Pasnik and P. H. Klesius, Vet Microbiol, A commercial rapid
optical immunoassay detects Streptococcus agalactiae from aquatic cultures
and clinical specimens, 2010, 144, 422-428.
59. S. L. Abbott, W. K. W. Cheung and J. M. Janda, J Clin Microbiol, The genus
Aeromonas: Biochemical characteristics, atypical reactions, and phenotypic
identification schemes, 2003, 41, 2348-2357.
60. S. L. Angka, T. J. Lam and Y. M. Sin, Aquaculture, Some Virulence
Characteristics of Aeromonas-Hydrophila in Walking Catfish
(Clarias-Gariepinus), 1995, 130, 103-112.
61. M. H. Rahman, S. Suzuki and K. Kawai, J Appl Ichthyol, The effect of
temperature on Aeromonas hydrophila infection in goldfish, Carassius
auratus, 2001, 17, 282-285.
62. S. Longyant, K. Chaiyasittrakul, S. Rukpratanporn, P. Chaivisuthangkura and
P. Sithigorngul, J Fish Dis, Simple and direct detection of Aeromonas
hydrophila infection in the goldfish, Carassius auratus (L.), by dot blotting
using specific monoclonal antibodies, 2010, 33, 973-984.
121
63. O. Lazcka, F. J. Del Campo and F. X. Munoz, Biosens Bioelectron, Pathogen
detection: A perspective of traditional methods and biosensors, 2007, 22,
1205-1217.
64. H. Soliman and M. El-Matbouli, J Virol Methods, Immunocapture and direct
binding loop mediated isothermal amplification simplify molecular diagnosis
of Cyprinid herpesvirus-3, 2009, 162, 91-95.
65. Z. X. Liu, H. Liu, X. Y. Xie, J. Q. He, T. R. Luo and Y. Teng, J Virol Methods,
Evaluation of a loop-mediated isothermal amplification assay for rapid
diagnosis of soft-shelled turtle iridovirus, 2011, 173, 328-333.
66. Y. Q. Wang, Z. H. Kang, Y. L. Gao, L. T. Qin, L. Chen, Q. Wang, J. K. Li, H.
L. Gao, X. L. Qi, H. Lin and X. M. Wang, J Virol Methods, Development of
loop-mediated isothermal amplification for rapid detection of avian leukosis
virus subgroup A, 2011, 173, 31-36.
67. Z. Y. Chen, Y. X. Liao, X. M. Ke, J. Zhou, Y. X. Chen, L. L. Gao, Q. Chen
and S. Y. Yu, Mol Biol Rep, Comparison of reverse transcription
loop-mediated isothermal amplification, conventional PCR and real-time PCR
assays for Japanese encephalitis virus, 2011, 38, 4063-4070.
68. A. K. Reddy, P. K. Balne, R. K. Reddy, A. Mathai and I. Kaur, J Clin
Microbiol, Development and Evaluation of Loop-Mediated Isothermal
Amplification Assay for Rapid and Inexpensive Detection of Cytomegalovirus
DNA in Vitreous Specimens from Suspected Cases of Viral Retinitis, 2010, 48,
2050-2052.
69. I. Gunimaladevi, T. Kono, M. N. Venugopal and M. Sakai, J Fish Dis,
Detection of koi herpesvirus in common carp, Cyprinus carpio L., by
loop-mediated isothermal amplification, 2004, 27, 583-589.
122
70. H. Soliman and M. El-Matbouli, Virol J, An inexpensive and rapid diagnostic
method of Koi Herpesvirus (KHV) infection by loop-mediated isothermal
amplification, 2005, 2, 83.
71. L. Cheng, C. Y. Chen, M. A. Tsai, P. C. Wang, J. P. Hsu, R. S. Chern and S. C.
Chen, J Fish Dis, Koi herpesvirus epizootic in cultured carp and koi, Cyprinus
carpio L., in Taiwan, 2011, 34, 547-554.
72. M. U. Ahmed, M. Saito, M. M. Hossain, S. R. Rao, S. Furui, A. Hino, Y.
Takamura, M. Takagi and E. Tamiya, Analyst, Electrochemical genosensor for
the rapid detection of GMO using loop-mediated isothermal amplification,
2009, 134, 966-972.
73. C. H. Weng, K. Y. Lien, S. Y. Yang and G. B. Lee, Microfluid Nanofluid, A
suction-type, pneumatic microfluidic device for liquid transport and mixing,
2011, 10, 301-310.
74. S. Y. Yang, F. Y. Cheng, C. S. Yeh and G. B. Lee, Microfluid Nanofluid,
Size-controlled synthesis of gold nanoparticles using a micro-mixing system,
2010, 8, 303-311.
75. S. Rozen and H. J. Skaletsky, in Bioinformatics methods and protocols:
methods in molecular biology, eds. S. Krawetz and S. Misener, Humana Press,
Totowa, NJ, 2000, pp. 365-386.
76. T. L. Hawkins, T. Oconnormorin, A. Roy and C. Santillan, Nucleic Acids Res,
DNA Purification and Isolation Using a Solid-Phase, 1994, 22, 4543-4544.
77. J. J. Evans, P. H. Klesius and C. A. Shoemaker, Vaccine, Efficacy of
Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus)
by intraperitoneal and bath immersion administration, 2004, 22, 3769-3773.
123
78. K. Das Mahapatra, B. Gjerde, P. K. Sahoo, J. N. Saha, A. Barat, M. Sahoo, B.
R. Mohanty, J. Odegard, M. Rye and R. Salte, Aquaculture, Genetic variations
in survival of rohu carp (Labeo rohita, Hamilton) after Aeromonas hydrophila
infection in challenge tests, 2008, 279, 29-34.
79. M. El-Matbouli and H. Soliman, Res Vet Sci, Transmission of Cyprinid
herpesvirus-3 (CyHV-3) from goldfish to naive common carp by cohabitation,
2011, 90, 536-539.
80. L. Acerete, E. Espinosa, A. Josa and L. Tort, Aquaculture, Physiological
response of hybrid striped bass subjected to Photobacterium damselae subsp
piscicida, 2009, 298, 16-23.
81. A. J. C. Eun and S. M. Wong, Phytopathology, Detection of Cymbidium
mosaic potexvirus and odontoglossum ringspot tobamovirus using
immuno-capillary zone electrophoresis, 1999, 89, 522-528.
82. M. L. Seoh, S. M. Wong and L. Zhang, J Virol Methods, Simultaneous
TD/RT-PCR detection of cymbidium mosaic potexvirus and odontoglossum
ringspot tobamovirus with a single pair of primers, 1998, 72, 197-204.
83. K. Y. Lien and G. B. Lee, Analyst, Miniaturization of molecular biological
techniques for gene assay, 2010, 135, 1499-1518.
84. K. Y. Lien, S. H. Lee, T. J. Tsai, T. Y. Chen and G. B. Lee, Microfluid
Nanofluid, A microfluidic-based system using reverse transcription
polymerase chain reactions for rapid detection of aquaculture diseases, 2009,
7, 795-806.
85. F. W. Zettler, N. J. Ko, G. C. Wisler, M. S. Elliott and S. M. Wong, Plant Dis,
Viruses of Orchids and Their Control, 1990, 74, 621-626.
124
86. M. S. Lee, M. J. Yang, Y. C. Hseu, G. H. Lai, W. T. Chang, Y. H. Hsu and M.
K. Lin, J Virol Methods, One-step reverse transcription loop-mediated
isothermal amplification assay for rapid detection of Cymbidium mosaic virus,
2011, 173, 43-48.
87. C. H. Huang, G. H. Lai, M. S. Lee, W. H. Lin, Y. Y. Lien, S. C. Hsueh, J. Y.
Kao, W. T. Chang, T. C. Lu, W. N. Lin, H. J. Chen and M. S. Lee, J Appl
Microbiol, Development and evaluation of a loop-mediated isothermal
amplification assay for rapid detection of chicken anaemia virus, 2010, 108,
917-924.
88. L. Lam, S. Sakakihara, K. Ishizuka, S. Takeuchi, H. F. Arata, H. Fujita and H.
Noji, Biomed Microdevices, Loop-mediated isothermal amplification of a
single DNA molecule in polyacrylamide gel-based microchamber, 2008, 10,
539-546.
89. D. Thomson and R. G. Dietzgen, J Virol Methods, Detection of DNA and Rna
Plant-Viruses by Pcr and Rt-Pcr Using a Rapid Virus Release Protocol
without Tissue Homogenization, 1995, 54, 85-95.
90. W. H. Chang, S. Y. Yang, C. L. Lin, C. H. Wang, P. C. Li, T. Y. Chen, F. J.
Jan and G. B. Lee, Nanomed-Nanotechnol, Detection of viruses directly from
the fresh leaves of a Phalaenopsis orchid using a microfluidic system, 2013, 9,
1274-1282.
91. C. Napoli and C. J. Lemieux, R., The Plant Cell, lntroduction of a chimeric
chalcone synthase gene into petunia results in reversible co-suppression of
homologous genes Ín trans., 1990, 2, 279-289.
125
92. W. Y. Matar, S. M. Jafari, C. Restrepo, M. Austin, J. J. Purtill and J. Parvizi, J
Bone Joint Surg Am, Preventing Infection in Total Joint Arthroplasty, 2010,
92A, 36-46.
93. M. Schafroth, W. Zimmerli, M. Brunazzi and P. E. Ochsner, in Total hip
replacement, ed. P. E. Ochsner, Springer Verlag, Berlin, 2003, ch. 5, pp.
65-90.
94. T. W. Bauer, J. Parvizi, N. Kobayashi and V. Krebs, J Bone Joint Surg Am,
Diagnosis of periprosthetic infection, 2006, 88A, 869-882.
95. R. L. Barrack, J Arthroplasty, Rush pin technique for temporary
antibiotic-impregnated cement prosthesis for infected total hip arthroplasty,
2002, 17, 600-603.
96. A. Trampuz, J. M. Steckelberg, D. R. Osmon, F. R. Cockerill, A. D. Hanssen
and R. Patel, Rev Med Microbiol, Advances in the laboratory diagnosis of
prosthetic joint infection, 2003, 14, 1-14.
97. E. F. Berbari, C. Marculescu, I. Sia, B. D. Lahr, A. D. Hanssen, J. M.
Steckelberg, R. Gullerud and D. R. Osmon, Clin Infect Dis, Culture-negative
prosthetic joint infection, 2007, 45, 1113-1119.
98. B. D. Mariani and R. S. Tuan, Mol Med Today, Advances in the diagnosis of
infection in prosthetic joint implants, 1998, 4, 207-213.
99. W. Zimmerli, A. Trampuz and P. E. Ochsner, New Engl J Med, Current
concepts: Prosthetic-joint infections, 2004, 351, 1645-1654.
100. Y. Achermann, M. Vogt, M. Leunig, J. Wust and A. Trampuz, J Clin
Microbiol, Improved Diagnosis of Periprosthetic Joint Infection by Multiplex
PCR of Sonication Fluid from Removed Implants, 2010, 48, 1208-1214.
126
101. K. E. Dempsey, M. P. Riggio, A. Lennon, V. E. Hannah, G. Ramage, D. Allan
and J. Bagg, Arthritis Res Ther, Identification of bacteria on the surface of
clinically infected and non-infected prosthetic hip joints removed during
revision arthroplasties by 16S rRNA gene sequencing and by microbiological
culture, 2007, 9, R46.
102. C. Dora, M. Altwegg, C. Gerber, E. C. Bottger and R. Zbinden, J Clin
Microbiol, Evaluation of conventional microbiological procedures and
molecular genetic techniques for diagnosis of infections in patients with
implanted orthopedic devices, 2008, 46, 824-825.
103. M. J. Levine, B. A. Mariani, R. S. Tuan and R. E. Booth, Jr., J Arthroplasty,
Molecular genetic diagnosis of infected total joint arthroplasty, 1995, 10,
93-94.
104. K. Panousis, P. Grigoris, I. Butcher, B. Rana, J. H. Reillyl and D. L. Hamblen,
Acta Orthop, Poor predictive value of broad-range PCR for the detection of
arthroplasty infection in 92 cases, 2005, 76, 341-346.
105. K. E. Piper, M. J. Jacobson, R. H. Cofield, J. W. Sperling, J. Sanchez-Sotelo,
D. R. Osmon, A. McDowell, S. Patrick, J. M. Steckelberg, J. N. Mandrekar, M.
F. Sampedro and R. Patel, J Clin Microbiol, Microbiologic Diagnosis of
Prosthetic Shoulder Infection by Use of Implant Sonication, 2009, 47,
1878-1884.
106. P. F. Bergin, J. D. Doppelt, W. G. Hamilton, G. E. Mirick, A. E. Jones, S.
Sritulanondha, J. M. Helm and R. S. Tuan, J Bone Joint Surg Am, Detection of
Periprosthetic Infections With Use of Ribosomal RNA-Based Polymerase
Chain Reaction, 2010, 92A, 654-663.
127
107. Y. H. Liu, C. H. Wang, J. J. Wu and G. B. Lee, Biomicrofluidics, Rapid
detection of live methicillin-resistant Staphylococcus aureus by using an
integrated microfluidic system capable of ethidium monoazide pre-treatment
and molecular diagnosis, 2012, 6, 034119-034111.
108. D. H. Williams and B. Bardsley, Angew Chem Int Edit, The vancomycin group
of antibiotics and the fight against resistant bacteria, 1999, 38, 1173-1193.
109. A. J. Kell, G. Stewart, S. Ryan, R. Peytavi, M. Boissinot, A. Huletsky, M. G.
Bergeron and B. Simard, Acs Nano, Vancomycin-modified nanoparticles for
efficient targeting and preconcentration of Gram-positive and Gram-negative
bacteria, 2008, 2, 1777-1788.
110. C. H. Wang, C. J. Chang, J. J. Wu and G. B. Lee, Nanomed-Nanotechnol, An
integrated microfluidic device utilizing vancomycin conjugated magnetic
beads and nanogold-labeled specific nucleotide probes for rapid pathogen
diagnosis, 2014, 10, 809-818.
111. J. Pootoolal, J. Neu and G. D. Wright, Annual review of pharmacology and
toxicology, Glycopeptide antibiotic resistance, 2002, 42, 381-408.
112. W. H. Chang, C. H. Wang, S. Y. Yang, Y. C. Lin, J. J. Wu, M. S. Lee and G.
B. Lee, Lab Chip, Rapid isolation and diagnosis of live bacteria from human
joint fluids by using an integrated microfluidic system, 2014, DOI:
10.1039/C4LC00471J.
113. R. Y. Huang, M. Fang, Y. S. Luo, H. C. Liu, Q. R. Lu and G. Q. Wang,
Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical
science edition, [EMA-pCR detection of enterohemorrhagic Eschrichia coli
O157:H7], 2014, 45, 152-155.
128
114. K. Rudi, B. Moen, S. M. Dromtorp and A. L. Holck, Applied and
environmental microbiology, Use of ethidium monoazide and PCR in
combination for quantification of viable and dead cells in complex samples,
2005, 71, 1018-1024.
115. A. Nocker, C. Y. Cheung and A. K. Camper, Journal of microbiological
methods, Comparison of propidium monoazide with ethidium monoazide for
differentiation of live vs. dead bacteria by selective removal of DNA from dead
cells, 2006, 67, 310-320.
116. M. Fernandez-Sampedro, M. F. Fernandez, R. G. Renedo, C. Salas-Venero, C.
Fariñas-Alvarez, J. Figols, J. Gomez, L. Martinez-Martinez and M. C.
Fariñas, Clin Microbiol Infect, List #123, 2012, 18, 729.
117. M. S. Lee, W. H. Chang, S. C. Chen, P. H. Hsieh, H. N. Shih, S. N. Ueng and
G. B. Lee, Sci World J, Molecular Diagnosis of Periprosthetic Joint Infection
by Quantitative RT-PCR of Bacterial 16S Ribosomal RNA, 2013, DOI: Artn
950548
Doi 10.1155/2013/950548, 950548.
118. X. H. Qu, Z. J. Zhai, H. W. Li, H. W. Li, X. Q. Liu, Z. N. Zhu, Y. Wang, G.
W. Liu and K. R. Dai, J Clin Microbiol, PCR-Based Diagnosis of Prosthetic
Joint Infection, 2013, 51, 2742-2746.
119. C. Cazanave, K. E. Greenwood-Quaintance, A. D. Hanssen, M. J. Karau, S. M.
Schmidt, E. O. G. Urena, J. N. Mandrekar, D. R. Osmon, L. E. Lough, B. S.
Pritt, J. M. Steckelberg and R. Patel, J Clin Microbiol, Rapid Molecular
Microbiologic Diagnosis of Prosthetic Joint Infection, 2013, 51, 2280-2287.
120. R. Suebsing, P. Prombun, J. Srisala and W. Kiatpathomchai, J Appl Microbiol,
Loop-mediated isothermal amplification combined with colorimetric nanogold
129
for detection of the microsporidian Enterocytozoon hepatopenaei in penaeid
shrimp, 2013, 114, 1254-1263.
121. P. Bakthavathsalam, V. K. Rajendran and J. A. B. Mohammed, J
Nanobiotechnol, A direct detection of Escherichia coli genomic DNA using
gold nanoprobes, 2012, 10.
122. K. Aslan, J. R. Lakowicz and C. D. Geddes, Analytical biochemistry,
Nanogold-plasmon-resonance-based glucose sensing, 2004, 330, 145-155.
123. M. Ploschner, T. Cizmar, M. Mazilu, A. Di Falco and K. Dholakia, Nano Lett,
Bidirectional Optical Sorting of Gold Nanoparticles, 2012, 12, 1923-1927.
124. H. D. Hill and C. A. Mirkin, Nat Protoc, The bio-barcode assay for the
detection of protein and nucleic acid targets using DTT-induced ligand
exchange, 2006, 1, 324-336.
125. L. R. Volpatti and A. K. Yetisen, Trends Biotechnol, Commercialization of
microfluidic devices, 2014, 32, 347-350.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *