帳號:guest(3.145.85.60)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江佾澈
作者(外文):Chiang, Yi-Che
論文名稱(中文):使用全域-局部有限單元法於電力模組功率循環測試之熱傳分析與可靠度評估
論文名稱(外文):Thermal Analysis and Reliability Assessment of Power Module under Power Cycling Test Using Global- Local Finite Element Method
指導教授(中文):江國寧
指導教授(外文):Chiang, Kuo-Ning
口試委員(中文):鄭仙志
蔡明義
口試委員(外文):Xian-Zhi Zheng
Ming-Yi Tsai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033704
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:79
中文關鍵詞:功率模組功率循環試驗多點約束有限單元法熱-結構直接耦合分析鋁導線可靠度
外文關鍵詞:power modulepower cycling testmulti-point constraints methoddirect-field coupling thermal-structural analysisthe reliability of bonding wire
相關次數:
  • 推薦推薦:0
  • 點閱點閱:127
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
絕緣雙柵極電晶體(Insulated Gate Bipolar Transistor, IGBT)功率模組因高切換速度與低導通損失等特性,目前已廣泛應用於電力模組上。而IGBT功率模組於實際操作下將承受往復之電流負載,如此會造成晶片的接面溫度大幅地變化,加上材料間熱膨脹係數(Coefficient of Thermal Expansion, CTE)的不匹配,導致功率模組有熱應力產生,此熱應力乃為焊錫接點(Solder Joint)及鋁導線(Wire Bonding)與晶片之接合面發生損壞的主要因素,並影響其長時間運作下的可靠度。
本研究依據實際樣本建立三維有限單元模型,為了減少計算時間且提升研究效率,使用多點約束(Multi-Point Constraints, MPC)有限單元法進行暫態熱-結構直接耦合模擬分析,藉由模擬方法得到功率模組於功率試驗中之溫度分佈,以及循環之溫度變化下所產生的應力與應變分佈情形。由模擬結果發現,在電流負載為40安培下,晶片最大接面溫度發生於晶片中心處,其值約為112.5 ˚C。本熱傳模擬結果與實際功率循環試驗所量測之溫度分佈符合,說明本研究之多點約束暫態熱-結構直接耦合分析模型具一定之可行性。對於功率模組進行力學行為分析,發現IGBT功率模組在承受往復之溫度變化時,因材料間熱膨脹係數不匹配,導致鋁導線與晶片界面呈現熱應力集中現象,因此導線在晶片界面的結構強度相對較弱。根據文獻所提之壽命預估模型,進行鋁導線之可靠度評估,探討功率循環試驗中熱應力與熱應變對於功率模組可靠度之影響。
An insulated gate bipolar transistor (IGBT) power module has acquired fast switching and low conduction loss characteristics. Because of its electrical characteristic, the IGBT has been widely applied in power supplies, e.g. hybrid electric vehicle, wind power generation, etc. However, the IGBT during rapid transient operation under high power can cause the IGBT chip to lead high junction temperature and high temperature gradients. Furthermore, because of the coefficient of thermal expansion (CTE) mismatch between the various material layers, the bonding wire and the solder are subjected to thermo-mechanical stress which cause solder fatigue and bonding wire failure, and affect the reliability of IGBT under actual operation conditions.
A 3-D finite element (FE) model was established base on real test samples. In order to reduce calculation time and increase the research efficiency, multi-point constraints (MPC) method were used to simulate and direct-field coupling thermal-structural FE analysis were conducted to analyze the temperature distribution of IGBT and the mechanical behavior of bonding wire under cyclic power cycling test. The simulation results found that the maximum junction temperature 112.5 ˚C was observed at the middle of IGBT chip under the load current of 40 A. The predicted temperature history and experiment results under the cyclic current load were identical, which indicates the reliability of direct-field coupling thermal-structural FE analysis. Then analyze the mechanical behavior of IGBT, the structural simulation results showed that under a cyclic power environment, the stress concentration within the wire, caused by the CTE mismatch between the wire and the IGBT chip. Therefore, the bonding interface between the bonding wire and chip are the weaker portion of the power module. Finally, according to the life prediction models of literatures, this paper assessed the reliability of bonding wire in order to investigate the effects of thermal stress and strain on reliability during power cycling test.
目錄
摘要
ABSTRACT
致謝
目錄
圖目錄
表目錄
第一章 緒論
1.1 研究動機
1.2 文獻回顧
1.2.1 封裝體熱傳分析研究
1.2.2 功率模組損壞研究
1.2.3 全域-局部有限單元法
1.3 研究目標
第二章 基礎理論
2.1 熱傳遞分析基礎理論
2.1.1 熱傳遞行為
2.1.2 功率模組的熱傳遞分析
2.2 有限單元法
2.2.1 穩態熱分析基礎理論
2.3 多點約束方程
2.3.1 連接不同類型單元
2.3.2 連接不同疏密網格
2.3.3 建立剛性區域
2.4 耦合場分析
2.4.1 順序耦合法
2.4.2 直接耦合法
2.5 破壞準則
2.5.1 最大主應力破壞準則
2.6 封裝結構之疲勞壽命預測
2.6.1 Coffin-Manson應變法
2.6.2 金屬疲勞
第三章 IGBT模組功率循環測試之熱傳結果
3.1 功率循環測試規範
3.2 IGBT功率模組表面溫度量測
3.2.1 功率循環測試之實驗流程
3.2.2 溫度量測實驗結果
第四章 IGBT功率模組熱-結構耦合之有限單元分析
4.1 結構尺寸與材料參數
4.1.1 功率模組之結構尺寸
4.1.2 暫態熱-結構直接耦合分析之材料參數
4.2 暫態熱-結構直接耦合分析之有限單元模型
4.2.1 多點約束法有限單元模型
4.3 熱-結構直接耦合分析之邊界條件與負載設定
4.3.1 熱負載條件
4.4 暫態熱-結構直接耦合分析之熱傳模擬結果
4.4.1 熱傳分析之模擬結果
4.4.2 熱傳分析模擬結果驗證
4.5 暫態熱-結構直接耦合分析之結構模擬結果
4.6 鋁導線之可靠度預估
第五章 結論與未來展望
參考文獻
參考文獻
[1] B. Cohen, A., Kraus, A. D., Davidson, and S. F., “Thermal Frontiers in the Design and Packaging of Microelectronic Equipment,” Mechanical Engineering, vol. 105, pp. 53-59, 1983.
[2] JEDEC Standard EIA/JESD51-1, “Integrated Circuits Thermal Measurement Method-Electrical Test Method (Single Semiconductor Device),” 1995.
[3] B. S. Lall, B. M. Guenin, and R. j. Molner, “Methodology for Thermal Evaluation of Multichip Modules,” Proceedings of the 11th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 758-764, San Jose, CA, USA, Feb. 1995.
[4] A. Ammous, B. Allard, and H. Morel, “Transient Temperature Measurements and Modeling of IGBT’s Under Short Circuit,” IEEE Transactions on Power Electronics, vol. 13, pp. 12-25, 1998.
[5] A. Ammous, F. Sellami, K. Ammous, H. Morel, B. Allard, and J. Chante, “Developing an Equivalent Thermal Model for Discrete Semiconductor Packages,” International Journal of Thermal Sciences, vol. 42, Issue 5, pp. 533-539, 2003.
[6] R., Patrick J., Computational Fluid Dynamics, Hermosa Publishers, Inc., 1972.
[7] R. A. M. L., Van Galen, “Numerical and Physical Simulation Hand in Hand to Determine The Thermal Conductivity of PCB,” 9th International Flotherm User Conference, pp. 24-29, Orlando Florida USA, Oct. 16-19, 2000.
[8] Y. Kumano, T. Ogura, and T. Yamada, “High-Accuracy Thermal Analysis Methodology for Semiconductor Junction Temperatures by Considering Line Patterns of Three-Dimensional Modules,” Journal of Electronic Packaging, vol. 131, Issue 2, No. 021007, 2009.
[9] R. Hocine, S. H. Pulko, A. Boudghene Stambouli, and A. Sadane, “TLM Method for Thermal Investigation of IGBT Modules in PWM Mode,” Microelectronic Engineering, vol. 86, Issue 10, pp. 2053-2062, 2009.
[10] M. Ciappa, “Selected Failure Mechanisms of Modern Power Modules,” Microelectronics Reliability, vol. 42, Issue 4-5, pp. 653-667, 2002.
[11] Y. Hua, L. Minghui, and C. Basaran, “Failure Modes and FEM Analysis of Power Electronic Packaging,” Finite Elements in Analysis and Design, vol. 38, Issue 7, pp. 601-612, 2002.
[12] A. Morozumi, K. Yamada, T. Miyasaka, S. Sumi, and Y. Seki, “Reliability of Power Cycling for IGBT Power Semiconductor Modules,” IEEE Transactions on Industry Applications, vol. 39, Issue 3, pp. 665-671, 2003.
[13] H. C. Huang, “Reliability Assessment of The Temperature Profiles Effect on The Power Module,” National Tsing Hua University Master Thesis, 2013.
[14] T. Y. Hung, S. Y. Chiang, C. J. Huang, C. C. Lee, and K. N. Chiang, “Thermal-Mechanical Behavior of The Bonding Wire for A Power Module Subjected to The Power Cycling Test,” Microelectronics Reliability, vol. 51, Issues 9-11, pp. 1819-1823, 2011.
[15] T. Y. Hung, “Analysis and Assessment of the Reliability Life of Power Module Structure under Power Cycling Test,” National Tsing Hua University Ph.D Dissertation, 2013.
[16] E. Madenci, and I. Guven, The Finite Element Method and Applications in Engineering Using ANSYS®, New York , Springer, 2006.
[17] F. X. Che, H. L. J. Pang, W. H. Zhu, Wei Sun, Anthony Y. S. Sun, C. K. Wang, and H. B. Tan, “Development and Assessment of Global-Local Modeling Technique Used in Advanced Microelectronic Packaging,” International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems.Proceedings of EuroSimE 2007, pp. 1-7, London, UK, Apr. 16-18, 2007.
[18] B. Zhou, and Q. Baojun, “Effect of Voids on The Thermal Fatigue Reliability of PBGA Solder Joints through Submodel Technology,” 10th Electronics Packaging Technology Conference, pp. 704-708, Singapore, Dec. 9-12, 2008.
[19] A. Syed, “Updated Life Prediction Models for Solder Joints with Removal of Modeling Assumptions and Effect of Constitutive Equations,” International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems.Proceedings of EuroSimE 2006, pp. 1-9, Como, Italy, Apr. 24-26, 2006.
[20] M. C. Yew, M. Tsai, D. C. Hu, W. K. Yang, and K. N. Chiang, “Reliability Analysis of A Novel Fan-Out Type WLP,” Soldering & Surface Mount Technology, vol. 21, Issues 3, pp.30-38, 2009.
[21] M. C. Yew, M. Tsai, D. C. Hu, W. K. Yang, and K. N. Chiang, “Trace Line Failure Analysis and Characterization of The Panel Base Package (PBP™) Technology with Fan-Out Capability,” Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System. Proceedings of ITHERM 2008, pp. 862-869, Orlando, USA, May 28-31, 2008.
[22] W. H. Mcdams, Heat Transmission, 3rd , McGraw Hill, Inc., 1954.
[23] G. N. Ellison, Thermal Computations for Electronic Equipment, Van Nostrand Reinhole Company, New York, 1989.
[24] W. H. Chen, H. C. Chen, H. A. Shen, “An Effective Methodology for Thermal Characterization of Electronic Packaging,” IEEE Transactions On Components And Packaging Technologies, vol. 26, No.1, pp. 222-232, 2003.
[25] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th , JohnWiley and Sons, New York, 2004.
[26] S. Timoshenko, Strengh of Materials, D. Van Nostrand Company, New Jersey, 1956.
[27] J. A. Collins, Failure of Materials in Mechanical Design, John Wiley and Sons, New York, 1993.
[28] G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, New York, 1979.
[29] Y. T. Lin, C. T. Peng, and K. N. Chiang, “Parametric Design and Reliability Analysis of WIT Wafer Level Packaging,” ASME Transaction, Journal of Electronic Packaging,vol.124, No.3, pp. 234-239, 2002.
[30] K. C. Chang, and K. N. Chiang, “Solder Joint Reliability Analysis of a Wafer-Level CSP Assembly with Cu Studs Formed on Solder Pads,” Journal of the Chinese Institute of Engineers, vol. 26, No.4, pp. 467-479, 2003.
[31] C. C. Lee, C. C. Lee, H. T. Ku, S. M. Chang, and K. N. Chiang, “Solder Joints Layout Design and Reliability Enhancements of Wafer Level Packaging Using Response Surface Methodology,” Microelectronics Reliability, vol. 47, pp. 196-204, 2007.
[32] 江國寧,微電子系統封裝基礎理論與應用技術,滄海書局,2006.
[33] S. S. Manson, and M. H. Hirschberg, Fatigue: An Inter-Disciplinary Approach, Syracuse University Press, Syracuse, New York, 1964.
[34] W. Engelmaier, “A New Ductility and Flexural Fatigue Test Method for Copper Foil and Flexible Printed Wiring,” Proceeding of the 21st Annual Meeting, IPC-TP-204, Evanstorn, IL, USA, 1978.
[35] IEC International Standard, IEC 60747-34, Semiconductor Devices–Mechanical and Climatic Test Methods–Power Cycling, 2005.
[36] Infineon,”IGBT-modules FP35R12KT4,” 2007.
[37] J. Onuki, M. Koizumi, and M. Suwa, “Reliability of thick Al wire bonds in IGBT modules for traction motor drives,” IEEE Transactions on Advanced Packaging, vol. 23, issue 1, pp. 108–112, 2000.
[38] I. Paul, B. Majeed, K. M. Razeeb, and J. Barton, “Statistical Fracture Modelling of Silicon with Varying Thickness,” Acta Materialia, vol. 54, pp. 3991-4000, 2006.
[39] A. A. Wereszczak, A. S. Barnes, K. Breder, and S. Binapal, “Probabilistic Strength of {111} N-Type Silicon,” Journal of Materials Science-Materials in Electronics, vol. 11, pp. 291-303, 2000.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *