|
[1] Hsin-Wei Hsu and Feng-Nan Hwang Zih-Hao Wei, and Sheng-Hong Lai and Chao-An Lin, A parallel multilevel preconditioned iterative pressure Poisson solver for the large-eddy simulation of turbulent flow inside a duct. Computers and Fluids,45 (2011) 138-146. [2] U.Ghia,K.N. Ghia, C.T. Shinl, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys. 48 (1982) 387-411. [3] R. Schreiberm H. B. Keller, Driven cavity flows by efficient numerical techniques, J. Comput. Phys. 49 (1983) 310-333. [4] O. R. Burggraf, Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech. 24 (1966) 113-151. [5] F. Pan, A. Acrivos, Steady flows in a rectangular cavities, J. Fluid Mech. 28 (1967) 643-655. [6] O. Botella and R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Comput. Fluids 27 (1998) 421-433. [7] A. Yu. Gelfgat, Implement of arbitrary inner product in the global Galerkin method for incompressible Navior-Stokes equations, J. Comput. Phys. 211 (2006) 513-530. [8] Reima Iwatsu, Katsuya Ishii, Numerical simulation of three dimensional flow structure in a driven cavity, Fluid Dyn. Res. 5 (1989) 173-189. [9] Li Q. Tang, TiWu Cheng and Tate T. H. Tsang , Transient solutions for threedimensional lid-driven cavity flows by a least-squares finite element method, International Journal for numerical methods in fluids. 21 (1995) 413-432. [10] T. W. H. Sheu, S. F. Tsai, Flow topology in a steady three-dimensional liddriven cavity, Compt. Fluids 31 (2002) 911-934. [11] J. L. Guermond, C. Migeon, G. Pineau and L. Quartapelle, Start-up ows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re = 1000, J. Fluid Mech. 450 (2002) . [12] Yuri Feldman and Alexander Yu. Gelfgat, Oscillatory instability of a threedimensional lid-driven ow in a cube, Physics of fluids 22 (2010) 093602. [13] C.H. Bruneau, and M. Saad, The 2D lid-driven cavity problem revisited, Comput. fluids 35 (2006) 326. [14] A. Fortin, M.Jardak, J. J. Gervais, and R. Pierre, Localization of Hopfbifurcations in fluid flow problems, Int. J. Number. Methods Fluids 24 (1997) 1185. [15] F. Auterim, N.Parolini, and L. Quartapelle , Numerical investigation on the stability of singular driven cavity flow, J Comput. Phys 183 (2002) 1-25. [16] G. D. Davis, G. D. Mallinson, An evalution of upwind and central difference approximations by a study of recirculating flow, Comput. Fluids 28 (1967) 643-655. [17] S. Balay and K. Buschelman and W. D. Gropp and D. Kaushik and M. G. Knepley and L. C. Mclnnes, PETSc Web page, (2010) < http : //www.mcs.anl.gov/petsc >. Bibliography 47 [18] C. G. Speziale. On nonlinear k − ϵ and k − l models of turbulence. J. Fluid Mech., 178 (1987) 459-475. [19] T. H. Chiu and L. K. Yeh and C. A. Lin, Explicit algebraic stress modelling of homogeneous and inhomogeneous flows.Int. J. Numer. Methods Fluids 49 (2005) 817-835. [20] T. J. Craft and B. E. Launder and K. Suga, Development and application of a cubic eddy-viscosity model of turbulence, Int. J. Heat Fluid Flow. 17 (1996) 108-115. [21] B. E. Launder and S. P. Li, On the elimination of wall-topography parameters from second moment closure, Phys. Fluids. 6 (1994) 990-1006. [22] J. M. Tsao and C. A. Lin, Reynolds stress modelling of jet and swirl interaction inside a gas turbine combustor,Int. J. Numer. Methods Fluids. 29 (1999) 451- 464. [23] M. Germano and U. Piomelli and P. Moin and W. Cabot, A dynamic subgridscale eddy viscosity model, Phys. Fluids. 3 (1991) 1760-1765. [24] J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiment, Mon. Weather Rev. 91 (1963) 99-164,3. [25] D. K. Lilly, A proposed modification of the Germano subgrid-scale closure method, 4 (1992) 633-635. [26] U. Piomelli and J. Liu, Large eddy simulation of rotating channel flows using a localized dynamic model, Phys. Fluids 7 (1995) 839-848. [27] J. Kim and P. Moin., Application of a fractional-step method to incompressible navior-stokes equations, J. Comput Phys., 177 (1987) 133-166. Bibliography 48 [28] Y. Saad, Iterative methods for sparse linear system. Second ed., Second ed.,Philadelphia: SIAM (2004). [29] B. Smith and P. Bjørstad and W. Gropp, Parallel multilevel methods for elliptic partial differential equations, Domain decomposition, Domain decomposition, (1996). [30] J. Kim and P. Moin., Application of a fractional-step method to incompressible navior-stokes equations, J. Comput Phys. 177 (1987) 133-166. [31] A. George, Nested dissection of a regular finite element mesh,SIAM J. Numer. Anal. 10 (1973) 345-363. [32] E. Ng, On one-way dissection schemes,University of Waterloo (1979). [33] E. Cuthill, Several strategies for reducing the bandwidth of matrices. in Sparse Matrices and Their Applications, Plenum, New York,edited by D. J. Rose and R. A. Willoughby, (2004) 157-169. [34] A. George and J.W.H. Liu, The evolution of the minimum degree ordering algorithm,SIAM Review. 32 (1989) 1-19. [35] I.S. Duff and G.A. Meurant, The effect of ordering on preconditioned conjugate gradients. BIT. 29 (1989) 635-657. [36] S. Albensoeder, H.C. Kuhlmann, Accurate three-dimensional lid-driven cavity flow, Journal of Computational Physics, 206 (2005) 536-558. [37] R. Schreiber, H.B. Keller,Driven cavity flows by efficient numerical techniques. (1983) 310-333. [38] A. J. Chorin, Numerical solution of the navier-stokes equations, Math Compute 22 (1968) 745-762. Bibliography 49 [39] M. Deville, T.-H. Le, Y. Morchoisne, Numerical simulation of 3-D incompressible unsteady vscous laminar flows, Note on Numerical Fluid Mechanics, Vieweg, Braunschweig 36 (1992). [40] Howard C. Elman, Victoria E. Howle, John N. Shadid, Ray S. Tuminaro, A parallel block multi-level preconditioner for the 3D incompressible NavierStokes equations, J. Computaional Phys. 187 (2003) 504-523. [41] S. Gavrilakis, Numerical simulation of low Reynolds number turbulent flow through a straight square duct, J. Fluid Mech. 244 (1992) 101-129. [42] J. Kim and P. Moin., Turbulent statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech. 177 (1987) 133-166. [43] K. Iwamoto, Y. Suzuki and N. Kasagi, Fully Developed 2-D Channel Flow at Re = 150 , http : //thtlab.jp/DNS/dnsdatabase.html(2002) [44] J. R. Koseff and R. L. Street, The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations , ASME 106 (1984) 390-398. [45] K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, J. Comput. Phys. 30 (1979) 76-95. [46] Y. Zang and R. L. Street and J. R. Koseff, A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows, Phys. Fluids, 5 (1993) 3186-3196 [47] K. M. Singh and J. J. J. R. Williams, Application of the additive Schwarz method to large scale Poisson problem., Commun Numer Methods Eng. 20 (2004) 193-205. [48] S. A. Nadeem and P. K. Jimack, Parallel implementation of an optimal twolevel additive Schwarz preconditioner for the 3-D finite element soltion of Bibliography 50 elliptic partial differential equations, Int, J. Numer Mech. Fluids, 40 (2002) 1571-1579. [49] L. C. Dutto, The effect of ordering on preconditioned GMRES algorithm for solving the compressible Navier-Stokes equations,Int. J. Numer Methods Eng. 36 (1993) 457-497. [50] A. George and W.P. Tang and Y.D. Wu, Multi-level one-way dissection factorization,SIAM J. Matrix Anal. appl. 22 (2000) 752-771. [51] M. Benzi, Preconditioning techniques for large linear systems: a survey,J. Comput. Phys. 182 (2002) 418-477. [52] R. Bridson and W.P. Tang, A structural diagnosis of some IC orderings,SIAM J. Sci. Comput. 22 (2000) 1527-1532. [53] M. Benzi and D.B. Szyld and A.V. Duin, Orderings for incomplete factorization preconditioning of nonsymmetric problems,SIAM J.
|