帳號:guest(18.224.44.168)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):岳庭如
作者(外文):Yueh, Ting-Ju
論文名稱(中文):自動抓取胚胎與子宮內膜細胞共養之微流體晶片
論文名稱(外文):Automated embryo trapping and coculture of endometrial cells within a microfluidic device
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):李岡遠
盧向成
口試委員(外文):Lee, Kang-Yun
Lu, Shiang-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033617
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:119
中文關鍵詞:共同培養體外胚胎培養生殖醫學細胞抓取
外文關鍵詞:Endometrial CellIn Vitro CultureReproductive TechnologyCell TrappingSingle Embryo CocultureMicrofluidic Device
相關次數:
  • 推薦推薦:0
  • 點閱點閱:341
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
2013年在世界各地平均每六對夫婦就有一對受孕困難,患有不孕症,在過去二十年來,生殖醫學致力於解決低懷孕率問題。本研究開發與應用整合微流體技術和共培養子宮內膜細胞以改善傳統方法對胚胎體外發展僅側重於調整靜態培養皿之化學溶液成分,希望提高胚胎在體外培養之效能。過去的文獻顯示,需透過人工繁複的操作來定位胚胎以達到後續觀察之目的,更新培養液與移動胚胎的過程都可能增加損傷胚胎之風險。
此研究欲探討胚胎體外仿生環境在晶片與傳統培養之差別,本論文提出一種簡便的方法利用液壓流阻概念和電路類比分析來設計自動定位單一小鼠胚胎之系統,減少對受精卵的操作次數以減少對生物不利之影響,並與子宮內膜細胞動態共養系統整合去模擬體內胚胎發育之情形,動態灌流系統用以排除廢棄物提供子宮內膜細胞新鮮的培養液,以維持體外小鼠胚胎最佳的體外共養環境,並以導流片結構減少氣泡停留於晶片內,藉以結合三者之優點完成體外發展至囊胚期之高良率和便利性。
本論文已完成了自動化胚胎共養晶片,採用動態微陣列的格式管理哺乳動物之胚胎並在各別的微槽中追蹤各時期之發展,已測試三大功能,抓取100um的粒子與8細胞之小鼠胚胎,與子宮內膜細胞共培養情形與胚胎取出,在比較傳統培養法與晶片上,單養胚胎囊胚期發展速率為55.6±3.4%和61.8±3.3%,共養則為69.8±7.8%和77.7±6.7%,共養晶片組比傳統法可提高發展至囊胚之比例,已建立合適的共培養制式程序與調整最佳化參數,提供更加良好的體外胚胎發展之環境,晶片具有更加便利的操作性且利用仿生的平台從而提高胚胎整體的囊胚期發展速度與胚胎品質,實現自動化的原型,該晶片將開啟體外共培養系統之前瞻研究,強化個別胚胎輔助生殖技之管理,是一個相當具有前景的自動化共養平台。
One in six couples worldwide has difficulty conceiving children in 2013. People have been suffering from infertility for the past two decades. In this research, Reproductive technology has been applied for the goal of improving the low pregnancy rate issues by integrating both microfluidic techniques and coculture of endometrial cells into enhance the embryo development in vitro. Traditional methods towards embryo development in vitro still required the complicated procedures which were all done manually for position the embryo, tracking each development, replacing medium and moving the embryo. The labor operation might increase the risks of cell damage.
In this study, the comparison of embryo coculture with endometrial cells on chip and in dish was investigated. This master study proposed a design of an automated positioning single murine embryo by utilizing a hydraulic concept and electrical circuit analysis to reduce the operation procedure and adverse effects on organism. The coculture of embryo with endometrial cells within a dynamic perfusion system was also applied in this master study to mimic the embryo development in vivo. The dynamic perfusion system was performed to exclude the waste, provide fresh medium and be combined with the designed microchannels of specific microfluidic streamline in the coculture chamber to minimize the trapped bubbles to enhance the coculture environment in vitro for murine embryo culture.
The automated embryo coculture device has been achieved in this study for the management of individual mammalian embryos by using the dynamic microarray format. The developed microsystem can manage and coculture individual embryos in each microchamber. The embryo development in whole culture period could be tracked via this microsystem design. 8-cell-stage murine embryos were used for the starting stage of embryo developments in our experiments. The results showed that the Blastocyst development rates in traditional method and device are 55.6±3.4% and 61.8±3.3%, respectively, for the monoculture group. They are 69.8±7.8% and 77.7±6.7%, respectively, for the coculture group. In addition, the microfluidic device developed in this master research is simple in operation, and is feasible to achieve the higher blastocyst rates. The coculture platform mimics the micro environment of embryo growth in vivo to enhance its overall development. An automated prototype is achieved through this master study. The development of individual embryo could be enhanced via this microsystem, which is a very promising coculture platform in vitro.
Abstract I
中文摘要 II
致謝 III
LIST OF FIGURES VIII
LIST OF TABLES XVII
Chapter 1 Introduction 1
1.1 BACKGROUND 1
1.1.1 Cause of Infertility 1
1.1.2 Assisted Reproductive Technology (ART) 3
1.1.3 Bio-MEMS and Lab on a chip (LOC) 5
1.1.4 Embryo culture in vivo. 6
1.1.5 Autologous coculture of endometrial cells and embry 7
1.2 MOTIVATION AND OBJECTIVE 8
1.3 LITERATURE REVIEW 10
1.3.1 Traditional IVC method 10
1.3.2 Selection of IVC material 10
1.3.3 Microfluidic device for embryo culture in vitro 11
1.3.3.1 Static culture in vitro 11
1.3.3.2 Dynamic culture in vitro 13
1.3.4 Co-culture microfluidic device 19
1.3.5 Technology for single embryo development tracking 21
1.3.5.1 Modified petri dish with Concave and Fence 22
1.3.5.2 Microfluidic device with Barrier and microwell 24
1.3.5.3. Hydraulic trapping 26
Chapter 2 Device development 28
2.1 PHYSICS OF PRESSURE-DRIVEN LAMINA FLOW IN MICROFLUIDIC CHANNELS 28
2.1.1 Reynolds number 29
2.1.2 Poiseuille flow 30
2.1.3 Hagen-Poiseuille’s law 32
2.1.4 Hydraulic resistance 33
2.1.5 Electrical circuits analogy 36
2.2 BRIEF INTRODUCTION OF TRIPLE-LAYER DEVICE 39
2.2.1 Working procedure 40
2.3 THE DESIGN OF UPPER LAYER 44
2.3.1 Rapid embryo trapping microchannel 45
2.3.2 Electrical circuit analogy of the trapping unit 46
2.3.3 Numerical simulation of trapping mechanism 50
2.4 DESIGN OF INTERMEDIATE LAYER 54
2.4.1 Electrical circuit analogy of the simplification moving path of the embryo 55
2.5 DESIGN OF BOTTOM LAYER 57
2.5.1 Multi-branched distribution and meandered microchannels 58
2.5.2 Coculture microchamber 59
2.5.3 Numerical simulation of perfusion system 61
Chapter 3 Fabrication of microchip 63
3.1 FABRICATION OF MASTER MOLD 65
3.1.1 Lithography procedure 65
3.1.2 CNC engraving procedure 67
3.2 PDMS REPLICAS AND BONDING 68
3.3 THE RESULT OF FABRICATION AND DISCUSSION 69
3.3.1 Dyed view of device 69
3.3.2 Measurements of master mold 71
3.3.3 Measurements of PDMS microchannel 73
3.3.4 Alignment precision 75
Chapter 4 Material and Experiment stetup 76
4.1 MATERIAL 76
4.1.1 SU-8 2150 76
4.1.2 PDMS 77
4.1.3 Agarose hydrogel beads 77
4.1.4 Collagen IV 78
4.1.5 Paraffin Oil 78
4.2 CELLS 79
4.2.1 Stromal cells (Endometrial Cells) 79
4.2.2 Embryo 81
4.3. INSTRUMENT SETUP 82
4.3.1 Surface modification 83
4.3.2 Sub culturing and endometrium cells seeding 84
Chapter 5 Results and Discussion 85
5.1 PRELIMINARY TESTS OF DIFFERENT BOTTOM DESIGN FOR COCULTURE 85
5.1.1 Double-layer microwell 86
5.1.2 Circular and Elliptic microchamber 87
5.1.3 Elliptic microchamber with circular array of columns and streamlined barrier 89
5.2 SYSTEMATIC EXPERIMENTAL PROGRAM 92
5.2.1 Dynamic versus static chip 93
5.2.2 Dynamic chip versus dish 94
5.2.3 Selection of coculture medium 96
5.2.4 High efficiency of microparticles trapping demonstration with Cytodex beads 98
5.2.5Automated embryo trapping system 101
5.3 THE RESULT OF EMBRYO CULTURE IN VITRO 104
5.3.1 Monoculture on chip versus in dish 104
5.3.2 Coculture on chip versus in dish 107
CHapter 6 Conclusion 111
Reference 114
[1]Gurunath S, P.Z., Anderson RA, Bhattacharya S., Defining infertility--a systematic review of prevalence studies. Hum Reprod Update., 2011. 17(5): p. 575-588.
[2] Shady Grove Fertility Center.
[3] FDA/Fenee Gordon.
[4] Steinke V , R.N., Middel A, Schräer A., Präimplantationsdiagnostik Ethics in the Life Sciences. 2009: Verlag Karl Alber.
[5] Drews, U., Taschenatlas der Embryologie. 1993: Stuttgart New York Thieme.
[6] Beier, H.M., Zum Status des menschlichen Embryos in vitro und in vivo vor der Implantation. Reproduktionsmedizin 2000. 16(5): p. 332-342.
[7] Barmat LI, L.H., Spandorfer SD, Kowalik A, Mele C, Xu K, Veeck L, Damario M, Rosenwaks Z., Autologous endometrial co-culture in patients with repeated failures of implantation after in vitro fertilization-embryo transfer. J Assist Reprod Genet., 1999. 16(3): p. 121-127.
[8] Deachapunya C, O.G.S., Epidermal growth factor regulates the transition from basal sodium absorption to anion secretion in cultured endometrial epithelial cells. J Cell Physiol., 2001. 186(2): p. 243-250.
[9] Dominguez F, G.B., Mercader A, Esteban FJ, Pellicer A, Simón C., Embryologic outcome and secretome profile of implanted blastocysts obtained after coculture in human endometrial epithelial cells versus the sequential system. Fertil Steril., 2010. 93(3): p. 774-782.
[10] Fukui, M.Y.A.M.E., A Successful Method in Mouse in vitro Fertilization for Beginners. Journal of Mammalian Ova Research., 2005. 22(4): p. 246-250.
[11] Veeck., L.L., Abnormal morphology of the human oocyte and conceptus. In Atlas of the Human Oocyte and Early Conceptus., 1991. 2: p. 151-153.
[12] Bongso A, N.S., Fong CY, Ratnam S., Cocultures: A new leadin embryo quality improvement for assisted reproduction. Fertil. Steril., 1991. 56: p. 179-191.
[13] Bongso A, F.C., Ng SC, Ratnam S., The search for improvedin-vitro systems should not be ignored: Embryo co-culture may be one ofthem. Hum. Reprod., 1993. 8: p. 1155-1160.
[14] Kimura H, Y.T., Sakai H, Sakai Y, Fujii T., An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip., 2008. 8(5): p. 741-746.
[15] Andrei P. Sommer, M.K.H., Hans-Joerg Fecht, It is Time for a Change: Petri Dishes Weaken Cells. Journal of Bionic Engineering, 2012. 9(3): p. 353-357.
[16] Swain JE, S.G., Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update., 2011. 17(4): p. 541-557.
[17] Kolahi KS, D.A., Liu X, Lin W, Simbulan RK, Bloise E, Maltepe E, Rinaudo P., Effect of substrate stiffness on early mouse embryo development. PLoS One., 2012. 7(7): p. e41717.
[18] Rappolee DA, B.C., Patel Y, Werb Z., Expression and function of FGF-4 in peri-implantation development in mouse embryos. Development., 1994 120(8): p. 2259-2269.
[19] Raty S, W.E., Davis J, Zeringue H, Beebe DJ, Rodriguez-Zas SL, Wheeler MB., Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip., 2004. 4(3): p. 186-190.
[20] Walters EM, C.C., Roseman HM, Beebe DJ, Wheeler MB., Production of live piglets following in vitro embryo culture in a microfluidic environment. Theriogenology., 2003. 59(1): p. 353
[21] Hickman DL, B.D., Rodriguez-Zas SL, Wheeler MB., Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos. Comp Med., 2002. 52(2): p. 122-126.
[22] Xie Y, W.F., Zhong W, Puscheck E, Shen H, Rappolee DA., Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis. Biol Reprod., 2006. 75(1): p. 45-55.
[23] Matsuura K, H.N., Kuroda Y, Takiue C, Hirata R, Takenami M, Aoi Y, Yoshioka N, Habara T, Mukaida T, Naruse K., Improved development of mouse and human embryos using a tilting embryo culture system. Reprod Biomed Online., 2010. 20(3): p. 358-364.
[24] Cabrera L, H.Y., Ding J, Takayama S, Smith G., O-100: Improved blastocyst development with microfluidics and Braille pin actuator enabled dynamic culture. Fertil. Steril., 2006. 86(3): p. S43.
[25] Heo YS, C.L., Bormann CL, Shah CT, Takayam Sa, Smith GD., Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum. Reprod., 2010. 25(3): p. 613-622.
[26] Bormann C, C.L., Heo Y, Takayama S, Smith G., Dynamic microfluidic embryo culture enhances blastocyst development of murine and bovine embryos. Biol. Reprod., 2007: p. 89.
[27] Bormann C, C.L., Heo Y, Takayama S, Smith G., Dynamic microfluidic embryo dynamic microfluidic embryo culture enhances blastocyst development of murine and bovine embryos. Proceedings from the 14th World Congress on in Vitro Fertilization., 2007: p. 84.
[28] Alegretti J, R.A., Barros B, Serafini P, Motta E, Smith G., Microfluidic dynamic embryo culture increases the production of top quality human embryos through reduction in embryo fragmentation. Fertil. Steril., 2011. 96(3): p. S58-S59.
[29] Kim MS, B.C., Wee G, Han YM, Park JK., A microfluidic in vitro cultivation system for mechanical stimulation of bovine embryos. Electrophoresis., 2009. 30(18): p. 3276-3282.
[30] Bai C, K.M., Park J., Mechanical stimulation of bovine embryos in a microfluidic culture platform. BioChip J., 2011. 5(2): p. 106-113.
[31] Isachenko E, M.R., Isachenko V, Roth S, Kreienberg R, Sterzik K., Mechanical agitation during the in vitro culture of human pre-implantation embryos drastically increases the pregnancy rate. Clin Lab., 2010. 56(11-12): p. 569-576.
[32] Isachenko V, M.R., Sterzik K, Strehler E, Kreinberg R, Hancke K, Roth S, Isachenko E., In-vitro culture of human embryos with mechanical micro-vibration increases implantation rates. Reprod. BioMed. Online, 2011. 22(6): p. 536-544.
[33] Xie Y, W.F., Puscheck EE, Rappolee DA., Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos. Mol Reprod Dev., 2007. 74(10): p. 1287-1294.
[34] Mizuno J, O.S., Sakai Y, Fujii T, Nakamura H, Inui H., Human ART on chip: improved human blastocyst development and quality with IVF-chip. Fertil. Steril., 2007. 88: p. S101.
[35] Jayot S, P.I., Verdaguer S, Discamps G, Audebert A, Emperaire JC., Coculture of embryos on homologous endometrial cells in patients with repeated failures of implantation. Fertil Steril, 1995. 63(1): p. 109-114.
[36] Eyheremendy V, R.F., Papayannis M, Barnes J, Granados C, Blaquier J., Beneficial effect of autologous endometrial cell coculture in patients with repeated implantation failure. Fertil Steril, 2010. 93(3): p. 769-773.
[37] Kimura H, N.H., Akai T, Yamamoto T, Hattori H, Sakai Y, Fujii T., On-chip single embryo coculture with microporous-membrane-supported endometrial cells. IEEE Trans Nanobioscience., 2009. 8(4): p. 318-324.
[38] Li WX, L.G., Zhang Q, Wang W, Zhou XM, Liu DY., Artificial Uterus on a Microfluidic Chip. Chinese Journal of Analytical Chemistry, 2013. 41(4): p. 467-602.
[39] Krisher RL, W.M., Towards the use of microfluidics for individual embryo culture. Reprod Fertil Dev., 2010. 22(1): p. 32-39.
[40] Vajta G, P.T., Holm P, Páldi A, Greve T, Trounson AO, Callesen H., New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system. Mol Reprod Dev., 2000. 55(3): p. 256-264.
[41] Sugimura S, A.T., Somfai T, Hirayama M, Aikawa Y, Ohtake M, Hattori H, Kobayashi S, Hashiyada Y, Konishi K, Imai K., Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos. Biol Reprod., 2010. 83(6): p. 970-978.
[42] D, R., Values are based on the results presented in Rieger. 14th World Congress on IVF & 3rd World Congress on IVM, 2007: p. 1202.
[43] Ma R, X.L., Han C, Su K, Qiu T, Wang L, Huang G, Xing W, Qiao J, Wang J, Cheng J., In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal Chem., 2011. 83(8): p. 2964-2970.
[44] Han C, Z.Q., Ma R, Xie L, Qiu T, Wang L, Mitchelson K, Wang J, Huang G, Qiao J, Cheng J., Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab Chip., 2010. 10(21): p. 2848-2854.
[45] Tan WH, T.S., A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci U S A. , 2007. 104(4): p. 1146-1151.
[46] Nilsson J, E.M., Hammarström B, Laurell T., Review of cell and particle trapping in microfluidic systems. Anal Chim Acta., 2009. 649(2): p. 141-157.
[47] Kirby., B., Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. 2010, New York: Cambridge University Press.
[48] Tanzer, M.L., Cross-linking of collagen. Science., 1973. 180: p. 561-566.
[49] Cornish., R.J., Flow in a pipe of rectangular cross-section. Proc. R.\ Soc. London, Ser. A., 1928. 120: p. 691-700.
[50] Stroock., G.M.W.a.A.D., Flexible methods for microfluidics. Physics Today., 2001. 54(6): p. 42-48.
[51] Lettieri GL, D.A., Boer G, de Rooij NF, Verpoorte E., A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows. Lab Chip., 2003. 3(1): p. 34-39.
[52] D., A., Highly Integrated Microfluidics Design. 2011: Artech House.
[53] Lee K, K.C., Ahn B, Panchapakesan R, Full AR, Nordee L, Kang JY, Oh KW., Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab Chip., 2009. 9(5): p. 709-717.
[54] White, F.M., Viscous Fluid Flow. 2005, Boston: McGraw-Hill Mechanical Engineering.
[55] Harrison., J.B.B.a.D.J., Measurement of flow in microfluidic networks with micrometer-sized flow restrictors. AIChE J., 2006. 52: p. 75-85.
[56] Teshima T, I.H., Iwai K, Adachi A, Takeuchi S., A dynamic microarray device for paired bead-based analysis. Lab Chip., 2010. 10(18): p. 2443-2448.
[57] Chung J, K.Y., Yoon E., Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures. Appl Phys Lett., 2011. 98(12): p. 123701-123703.
[58] Santiago., D.J.L.a.J.G., A review of micropumps. J. Micromech. Microeng., 2004. 14: p. R35-R64.
[59] M. J. Fuerstman, P.D., R. Kane, A. Schwartz, P. J. A. Kenis, J. M. Deutch and G. M. Whitesides., Solving mazes using microfluidic networks. Langmuir., 2003. 19: p. 4717-4722.
[60] Kim D, C.N., Beebe DJ., A method for dynamic system characterization using hydraulic series resistance. Lab Chip., 2006. 6(5): p. 639-644.
[61] Waldner, J.-B., Nanocomputers and Swarm Intelligence. 2008, London: John Wiley & Sons.
[62] Rogers, J.A.N., R. G., Recent progress in soft lithography. Materials today., 2005. 8(2): p. 50-56.
[63] Bornstein P, S.H., Structurally distinct collagen types. Annu Rev Biochem., 1980. 49: p. 597-1003.
[64] Khoshnoodi J, P.V., Hudson BG., Mammalian collagen IV. 2008. 71(5): p. 357-370.
[65] Kruegel J, M.N., Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci., 2010. 67(17): p. 2879-2895.
[66] Autio-Harmainen H, H.T., Niskasaari K, Höyhtyä M, Tryggvason K., Simultaneous expression of 70 kilodalton type IV collagenase and type IV collagen alpha 1 (IV) chain genes by cells of early human placenta and gestational endometrium. Lab Invest., 1992. 67(2): p. 191-200.
[67] Otsuki J, N.Y., Chiba K., Peroxidation of mineral oil used in droplet culture is detrimental to fertilization and embryo development. Fertil Steril., 2007. 88(3): p. 741-743.
[68] Tae JC, K.E., Lee WD, Park SP, Lim JH., Sterile filtered paraffin oil supports in vitro developmental competence in bovine embryos comparable to co-culture. J Assist Reprod Genet., 2006. 23(3): p. 121-127.
[69] Ajaev, V.S., Homsy, G. M., Modeling Shapes and Dynamics of Confined Bubbles. Annual Review of Fluid Mechanics., 2006. 38(1): p. 277-307.
[70] Bowen JA, N.G., Weise DW, Bazer FW, Burghardt RC., Characterization of a polarized porcine uterine epithelial model system. Biol Reprod., 1996. 55(3): p. 613-619.
[71] Rodrigues G, G.S., Mata L., Polarized epithelial cells of the hamster seminal vesicle in a serum-free bicameral culture system: Evidence of secretory and endocytic activities. Cell Tissue Res., 1995. 282: p. 181-192.
[72] Berthier E, B.D., Flow rate analysis of a surface tension driven passive micropump. Lab Chip., 2007. 7(11): p. 1475-1478.
[73] Gardner DK, L.H., Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J Reprod Fertil., 1990. 88(1): p. 361-368.
[74] Wakayama T, M.Y., Imamura K, Kurohmaru M, Hayashi Y, Fukuta K., Development of early-stage embryos of the Japanese field vole, Microtus montebelli, in vivo and in vitro. J Reprod Fertil., 1994. 101(3): p. 663-666.
[75] Ho LS, T.L., Chung YW, Chan HC., Establishment of a mouse primary co-culture of endometrial epithelial cells and peripheral blood leukocytes: effect on epithelial barrier function and leukocyte survival. Cell Biol Int., 2006. 30(12): p. 977-982.
[76] Carlo D, L.L., Dynamic single-cell analysis for quantitative biology. Anal Chem. , 2006. 78(56): p. 7918-7925.
[77] Carlo D, L.W., Luke L., Dynamic single cell culture array. Lab on a Chip., 2006. 6(11): p. 1445-1449.
[78] Skelley A, K.O., Suh H, Jaenisch R, Voldman J., Microfluidic Control of Cell Pairing and Fusion. Nat. Methods, 2009. 6(2): p. 147-152.
[79] Wang Z, K.M., Marquez M, Thorsen T., High-density microfluidic arrays for cell cytotoxicity analysis. Lab Chip., 2009. 7(6): p. 740-745.
[80] Erbach GT, B.P., Baltz JM, Biggers JD., Zinc is a possible toxic contaminant of silicone oil in microdrop cultures of preimplantation mouse embryos. Hum Reprod., 1995. 10(12): p. 3248-3254.
[81] Azadbakht M, V.M., Mowla SJ., Development of mouse embryos co-cultured with polarized or non-polarized uterine epithelial cells using sequential culture media. Anim Reprod Sci., 2007. 100(1-2): p. 141-157.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *