帳號:guest(3.147.57.197)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝政良
作者(外文):Hsieh, Cheng-Liang
論文名稱(中文):以雙層奈米多孔隙陽極氧化鋁為感測材料及具埋藏電極之電容式濕度感測器
論文名稱(外文):Dual-Layer Nanoporous Anodic Aluminum Oxide with Embedded Electrodes for Capacitive Relative Humidity Sensor
指導教授(中文):方維倫
指導教授(外文):Fang, Weileun
口試委員(中文):鄭裕庭
羅丞曜
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033609
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:83
中文關鍵詞:奈米多孔隙陽極氧化鋁相對溼度感測器電容式感測器雙層介電材料
外文關鍵詞:Nanoporous Anodic Aluminum OxideRelative Humidity SensorCapacitive SensorDual Layer dielectrics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:544
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
現今微機電系統(Micro-Electro-Mechanical System, MEMS)技術主要為利用半導體製程技術,隨著科技演進,半導體技術的發展,元件尺寸開始從微米尺寸往奈米尺寸發展,因此奈米等級元件開始受到重視,許多新興奈米材料開始被利用於製作奈米尺寸的薄膜感測器或是致動器。
本研究所使用的奈米多孔隙陽極氧化鋁具有良好的介電特性,同時由於為孔洞結構,造成體表面積較一般連續材料為大,因此能夠擁有與外界較多接觸的面積,因此本研究利用奈米多孔隙陽極氧化鋁之孔洞特性,將其運用於相對濕度的電容式感測器。透過氧化鋁表面與水分子鍵結達成化學性吸附,進而造成介電係數的上升,因此透過電容訊號感測溼度造成的訊號變化。本研究主要有兩項優點:(1) 由於使用雙層的孔洞形感測材料,因此能夠得到比單層感測材料較多的水分子吸附面積;(2)利用將感測電極埋藏於介電感測材料之中,電場線能通過上方及下方感測材料,進而造成有效感測面積的上升,已增加元件之感測訊號。單層感測材料之元件之靈敏度為0.04%/%RH,雙層感測材料之元件之靈敏度為0.15%/%RH,靈敏度之提升約為四倍左右。
Now the days, the technology of Micro- Electro- Mechanical System (MEMS) is primary using the semiconductor manufacture technology. As technology developed and semiconductor manufacture technology improved, the chip size start to narrow down from micrometer to nanometer. Therefore, the nano-size component has attracted lots of attention. Various nano material have been used to develop thin film sensors and actuators of nano-size.
Nanoporous anodic aluminum oxide (np-AAO) has good dielectric property. Due to the nanoporous structure, the volume-to-surface is large than other continuous material, and the area contacting surrounding is also large. Thus, this study uses the nanoporous structure to implement capacitive relative humidity sensor (RH sensor). After moister absorbing, the dielectric constant change of np-AAO will lead sensing capacitance change. The present RH sensors has two merits, (1) dual-layer np-AAO will increase the area for moister absorbing, (2) the electric field of embedded sensing electrodes will pass through both top and bottom np-AAO layers to increase the sensing signals.
中文摘要 I
Abstract II
致謝 III
目 錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 文獻回顧 5
1-3.1 奈米多孔隙陽極氧化鋁結構 5
1-3.2電容式溼度感測器 8
1-4 研究目標 11
第二章 元件設計與製造 25
2-1 電容式溼度感測元件原理與設計 25
2-2 具雙層陽極氧化鋁之埋藏式同平面電極之濕度感測器 27
2-3 電容式濕度感測元件整合微加熱器之設計與模擬 29
第三章 製程與結果 40
3-1奈米多孔隙陽極氧化鋁介電材料成長 40
3-2電容式溼度感測元件與整合微加熱器之製造 41
3-3 製程結果與討論 44
第四章 量測與討論 60
4-1電容式相對溼度感測器量測 60
4-2雙層感測材料對靈敏度改善之量測與比較 61
4-3元件反應時間與穩定度之量測 63
4-4元件溫度相依性之量測與改進 64
第五章 結論與未來工作 72
5-1 結論 72
5-2 未來工作 73
參考資料: 79
[1] L. Yi, L. Zhiyuan, H. Xing, L. Yisen and C. Yi, “Formation and microstructures of unique nanoporous AAO films fabricatedby high voltage anodization,” Journal of Materials Chemistry, vol. 21, pp. 9661-9666, 2011
[2] W. Lee, K. Schwirn, M. Steninhart, E. Pipple, R. Scholz, and U. Gösele, “Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium,” Nature Nanotechnology, vol. 3, pp 234-249, 2008
[3] K. Lee, Y. Tang, and M. Ouyang, “Self-ordered, controlled structure nanoporous mambranes using constant current anodization,” Nano Letters, pp. 4624-4629, 2008
[4] H. Masuda, and K. Fukuda, “Ordered metal nanohole arrays made by two-step replication of honeycomb structure of anodic alumina,” Science, vol. 268, pp. 1466-1468, 1995
[5] F. Keller, M.S. Hunter, and D. L. Robinson, “Structural features of coating on aluminum ,” Journal of The Electrochemical Society, vol. 100, pp. 411, 1953
[6] C. Hong, T.-T. Tang, C.-Y. Hung, R.-P. Pan and W. Fang, “Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications,” Nature Nanotechnology, Vol. 21, 2010
[7] M. Norek, W.J. Stepniowski, M. Polanski, D. Zasada, Z. Bojar, and J. Bystrzycki, “A comparative study on the hydrogen absorption of thin films at room temperature deposited on non-porous glass substrate and nano-porous anodic aluminum oxide (AAO) template, ” International Journal of Hydrogen Energy, vol. 36, 2011
[8] V. Vega, V. M. Prida., J. A. Garc, and M. Vazquez, “Torque magnetometry analysis of magnetic anisotropy distribution in Ni nanowire arrays,” Phys. Status Solidi A, vol. 208, pp. 553-558, 2011
[9] D.K. Roveti, "Choosing a Humidity Sensor: A Review of Three Technologies " Sensors-the Journal of Applied Sensing Technology, vol. 18, pp. 54-58, 2001
[10] AZoSensors.com
[11] H. Liu, S. Dharmatilleke, D. K. Maurya, and A. A. O. Tay, “Dielectric materials for electrowetting-on-dielectric actuation,” Microsystem Technologies, vol. 16, pp. 449-460, 2010
[12] A. Akseli, “Conduction and dielectric polarization in thin anodic aluminium oxide films,” Thin Solid Films, vol. 80, pp. 395–401, 1981
[13] Z. Chen, and C. Lu, “Humidity sensors: A review of materials and mechanisms,” Sensor Letters, vol. 3, pp. 274–295, 2005
[14] V. Timár-Horváth, L. Juhász, A. Vass-Várnai, and G. Perlaky, “Usage of porous Al2O3 layers for RH sensing,” Microsystem Technologies, vol. 14, pp. 1081-1086, 2008
[15] O. K. Varghese, and C.A. Grimes, “Metal oxide nanoarchitectures for environmental sensing,” Journal of Nanoscience and Nanotechnology, vol. 3, pp. 277-293, 2002
[16] K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gosele, “Self ordering regimes of porous alumina: The 10% porosity rule,” Nano Letters, vol. 7, pp. 677-680, 2002
[17] J. Park, J. Fattaccioli, H. Fujita, and B. Kim, “Fabrication of aluminum/alumina patterns using localized anodization of aluminum,” International Journal of Precision Engineering and Manufacturing, Vol. 13, pp. 765-770, 2012
[18] C. Hennesthal, “Anodization of aluminum: new applications for a common technology,” Application report nanowizard, JPK Instruments AG, Germany, 2003
[19] P. Skeldon, G. E. Thompson, S. J. Garcia-Vergara, L.Iglesias-Rubianes, and C. E. Blanco-Pinzon, “A tracer study of porous anodic alumina,” Solid State Letters, vol. 9, pp. B47-B51, 2006
[20] S. K. Thamida, and H. C. Chang, “Nanoscale pore formation dynamics during aluminum anodization,” Chaos, vol. 12, pp. 240-251, 2002
[21] Y. B. Li, and M. J. Zheng, “High speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range,” Applied Physics Letters, vol. 91, 073109, 2007
[22] K. H. Lee, and C. C. Wong, “Decoupling two-step anodization in anodic aluminum oxide,” Journal of Applied Physics, vol. 106, 104305, 2009
[23] M. A. Barrett and A. B. Winterbottom, “1st international congress on metal corrosion, 1961” Butterworth & Co., London, pp. 657, 1962
[24] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao and T.Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Advanced Materials, vol. 13, pp. 189-192, 2001
[25] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters, vol. 71, pp. 2770-2772, 1997
[26] C. Y. Liu, A. Datta and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Applied Physics Letters, vol. 78, pp.120-122, 2001
[27] H. Asoh, S. Ono, T. Hirose, M. Nakao, and H. Masuda, “Growth of anodic porous alumina with square cells,” Electrochimica Acta, 48, pp.3171-3174, 2003
[28] H. Habazaki, K. Shimizu, P. Skeldon, G. E. Thompson, and G. C. Woodj, "The incorporation of metal ions into anodic films on aluminium alloys," Philosophical Magazine Part B, vol. 73, pp. 445-460, 1996
[29] U. Kang, and K. D. Wise, “High-speed capacitive humidity sensor with on-chip thermal reset,” IEEE Transactions on Electron Devices, vol. 47, pp. 702-710, 2000
[30] N. Lazarus, and G. K. Fedder, “Integrated vertical parallel-plate capacitive humidity sensor,” Journal of Micromechanics and Microengineering, vol. 21, 065028, 2011
[31] H. Lee, S. Lee, S. Jung, and J. Lee, “Nano-grass polyimide-based humidity sensors,” Sensors and Actuators B: Chemical, vol. 154, pp. 2–8, 2011
[32] V. K. Khanna, and R. K. Nahar, “Effect of moisture on the dielectric properties of porous alumina films.” Sensors and Actuators, vol. 5, pp. 187 – 198, 1984
[33] L. Juhász, and J. Mizsei, “Humidity sensor structures with thin film porous alumina for on-chip integration,” Thin Solid Films, vol. 517, pp. 6198–6201, 2009
[34] Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sensors and Actuators B, vol. 141, pp. 441-446, 2009
[35] H.-E. Endres, and S. Drost, “Optimization of the geometry of gas-sensitive interdigital capacitors,” Sensors and Actuators B, vol. 4, pp. 95–98, 1991
[36] L. H. Mai, P. M. Hoa, N. T. Binh, N. Ha, and D. K. An, “Some invesgation results of the instability of humidity sensors based on alumina and porous silicon,” Sensors and Actuators B, vol. 66, pp. 63–65, 2000
[37] C.Y. Lee, and G.B. Lee, “Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation,” Journal of Micromechanics and Microengineering, vol. 13, pp. 620–627, 2003
[38] L. Juhász, and J. Mizsei, “A simple humidity sensor with thin film porous alumina and integrated heating,” Procedia Engineering, vol. 5, pp. 701–704, 2010
[39] Nanomaterials.it Srl Company, “Geometrical Considerations about Porous Anodic Alumina,” San Giuliano Milanese, Italy, 2009
[40] X. Zhao, U.J. Lee, S.K. Seo, and K.H. Lee, “The nanoporous structure of anodic aluminum oxide fabricated on the Au/Nb/Si substrate,” Materials Science and Engineering C, vol. 29, pp. 1156–1160, 2009
[41] T. R. B. Foong, A. Sellinger, and X. Hu, “Origin of the bottlenecks in preparing anodized aluminum oxide(AAO) templates on ITO glass,” ACS Nano, vol. 2, pp. 2250-2256, 2008
[42] E. Zampetti, S. Pantalei, A. Pecora, A. Valletta, L. Maiolo, A. Minotti, A. Macagnano, G. Fortunato, and A. Bearzotti, “Design and optimization of an ultra thin flexible capacitive humidity sensor,” Sensors and Actuators B: Chemical, vol. 143, pp. 302–307, 2009
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *