帳號:guest(3.139.67.78)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇怡之
論文名稱(中文):利用分子信標結合整合式微流體系統於魚類病原體之快速檢測
論文名稱(外文):Integrated Molecular Beacon-based Microfluidic System for Rapid Detection of Fish Pathogens
指導教授(中文):李國賓
口試委員(中文):吳旻憲
林哲信
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033606
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:79
中文關鍵詞:神經壞死病毒虹彩病毒專一性磁珠分子信標微流體系統
相關次數:
  • 推薦推薦:0
  • 點閱點閱:123
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
神經壞死病毒與虹彩病毒皆為高傳染性及高致病性病毒,可感染多種魚類。以石斑魚魚苗為例,其感染神經壞死病毒或虹彩病毒,死亡率均高於百分之八十。高死亡率造成養殖漁業重大經濟損失。現有檢測技術如病毒培養、酵素免疫分析法、聚合酶鏈鎖反應/反轉錄聚合酶鏈鎖反應有些缺點,包含費時、操作過程複雜、需要大型專業儀器及訓練有素之專業人員操作實驗。此外,目前對已感染病毒的魚並沒有適當的治療方式。因此,快速及準確的診斷神經壞死病毒與虹彩病毒對於養殖漁業是非常重要的議題。若愈早診斷出受病毒感染的魚,可越早將其撲殺,以防止疾病的擴散,進而降低經濟損失。在本研究中,以整合式微流體系統,包括整合式機台、微流體晶片、專一性磁珠及專一性分子信標,能夠在三十分鐘內自動化診斷神經壞死病毒或虹彩病毒,大幅縮短檢測時間。在本研究中,偵測神經壞死病毒或虹彩病毒的最低偵測極限均為10 ng/μL。最重要的是,此整合式微流體系統可成功自魚苗魚體中偵測出受神經壞死病毒或虹彩病毒感染之魚苗。因此,本研究之微流體系統未來可運用於田間檢測魚類病原體的有效診斷工具。
Abstract I
中文摘要 III
誌謝 IV
Table of Content V
List of Figure X
List of Table XIII
Abbreviations XIV
Nomenclature XVI
Chapter 1: Introduction 1
1.1 MEMS and Bio-MEMS Technology 1
1.2 Molecular Beacon 3
1.3 Literature Review 4
1.3.1 Nervous Necrosis Virus 4
1.3.2 Iridovirus 5
1.3.3 Conventional Diagnosis Methods 6
1.4 Motivation and Objectives 7
Chapter 2: Theory 10
2.1 Microfluidic Control System 10
2.1.1 Suction-type Pneumatic-driven Micropump 10
2.1.2 Micro-mixer 12
2.2 Molecular Diagnosis 13
2.2.1 DNA and RNA 13
2.2.2 PCR and RT-PCR 14
2.2.3 Gel Electrophoresis 15
2.2.4 Fluorescence Resonance Energy Transfer 16
Chapter 3: Materials and Methods 23
3.1 Viral Strain 23
3.2 Probe Conjugated Magnetic Beads 25
3.2.1 Preparation of Probe Conjugated Magnetic Beads 25
3.2.2 Hybridization Condition of Probe Conjugated Magnetic Beads 26
3.3 Molecular Beacon 27
3.4 Chip Design 27
3.5 Fabrication of Microfluidic Chip 28
3.6 Experimental Procedure 29
3.7 Custom-made Control System 30
Chapter 4: Results and Discussion 36
4.1 NNV RNA2 Molecular Beacon Assays 36
4.1.1 Optimal Hybridization Temperature of Specific NNV RNA2 Probe Conjugated Magnetic Beads 37
4.1.2 Optimal Hybridization Temperature of Molecular Beacon 38
4.1.3 Optimal Hybridization Time of Molecular Beacon 39
4.1.4 Detection Limit of Molecular Beacon 40
4.1.5 Specificity Tests of Molecular Beacon 41
4.1.6 Diagnosed of Infected and Non-infected NNV Fish Sample by Specific Probe and Molecular Beacon 42
4.2 Iridovirus MCP Molecular Beacon Assays 44
4.2.1 Optimal Hybridization Temperature of Specific Iridovirus MCP Probe Conjugated Magnetic Beads 44
4.2.2 Optimal Hybridization Temperature of Iridovirus MCP Molecular Beacon 45
4.2.3 Optimal Hybridization Time of Molecular Beacon 46
4.2.4 Detection Limit of Molecular Beacon 47
4.2.5 Specificity Test of Molecular Beacon 48
4.2.6 Diagnosis of Iridovirus Infected and Non-infected Fish Sample 50
Chapter 5: Conclusions and Future Work 68
5.1 Conclusions 68
5.2 Future Work 69
References 71
[1] C.M. Ho, Y.C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu Rev Fluid Mech, 30(1998) 579-612.
[2] M. Tanaka, An industrial and applied review of new MEMS devices features, Microelectronic Engineering, 84(2007) 1341-4.
[3] S.M. Spearing, Materials issues in microelectromechanical systems (MEMS), Acta Materialia, 48(2000) 179-96.
[4] D.J. Beebe, G.A. Mensing, G.M. Walker, Physics and applications of microfluidics in biology, Annu Rev Biomed Eng, 4(2002) 261-86.
[5] R. Bashir, BioMEMS: state-of-the-art in detection, opportunities and prospects, Adv Drug Deliv Rev, 56(2004) 1565-86.
[6] Y. Hanein, Y.V. Pan, B.D. Ratner, D.D. Denton, K.F. Bohringer, Micromachining of non-fouling coatings for bio-MEMS applications, Sens Actuator B-Chem, 81(2001) 49-54.
[7] C.H. Wang, G.B. Lee, Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection, Biosensors & Bioelectronics, 21(2005) 419-25.
[8] C.S. Zhang, J.L. Xu, W.L. Ma, W.L. Zheng, PCR microfluidic devices for DNA amplification, Biotechnology Advances, 24(2006) 243-84.
[9] A. Manz, N. Graber, H.M. Widmer, MINIATURIZED TOTAL CHEMICAL-ANALYSIS SYSTEMS - A NOVEL CONCEPT FOR CHEMICAL SENSING, Sens Actuator B-Chem, 1(1990) 244-8.
[10] P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Micro total analysis systems. 2. Analytical standard operations and applications, Analytical Chemistry, 74(2002) 2637-52.
[11] D.R. Reyes, D. Iossifidis, P.A. Auroux, A. Manz, Micro total analysis systems. 1. Introduction, theory, and technology, Analytical Chemistry, 74(2002) 2623-36.
[12] T. Vilkner, D. Janasek, A. Manz, Micro total analysis systems. Recent developments, Analytical Chemistry, 76(2004) 3373-85.
[13] M. Gad-el-Hak, The fluid mechanics of microdevices - The Freeman Scholar Lecture, Journal of Fluids Engineering-Transactions of the Asme, 121(1999) 5-33.
[14] V. Hessel, H. Lowe, F. Schonfeld, Micromixers - a review on passive and active mixing principles, Chemical Engineering Science, 60(2005) 2479-501.
[15] T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration, Science, 298(2002) 580-4.
[16] W.H. Tan, K.M. Wang, T.J. Drake, Molecular beacons, Current Opinion in Chemical Biology, 8(2004) 547-53.
[17] D. Whitcombe, J. Theaker, S.P. Guy, T. Brown, S. Little, Detection of PCR products using self-probing amplicons and fluorescence, Nature Biotechnology, 17(1999) 804-7.
[18] M.L. Wong, J.F. Medrano, Real-time PCR for mRNA quantitation, Biotechniques, 39(2005) 75-85.
[19] S.A.E. Marras, F.R. Kramer, S. Tyagi, Multiplex detection of single-nucleotide variations using molecular beacons, Genetic Analysis-Biomolecular Engineering, 14(1999) 151-6.
[20] M.M. Mhlanga, L. Malmberg, Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR, Methods, 25(2001) 463-71.
[21] C. Nguyen, J. Grimes, Y.V. Gerasimova, D.M. Kolpashchikov, Molecular-Beacon-Based Tricomponent Probe for SNP Analysis in Folded Nucleic Acids, Chemistry-a European Journal, 17(2011) 13052-8.
[22] K.E. Sapsford, L. Berti, I.L. Medintz, Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations, Angewandte Chemie-International Edition, 45(2006) 4562-88.
[23] H.D. Nguyen, T. Mekuchi, K. Imura, T. Nakai, T. Nishizawa, K. Muroga, Occurrence of viral nervous necrosis (VNN) in hatchery-reared juvenile japanese flounder paralichthys-olivaceus, Fisheries Science, 60(1994) 551-4.
[24] C. Tan, B. Huang, S.F. Chang, G.H. Ngoh, B. Munday, S.C. Chen, et al., Determination of the complete nucleotide sequences of RNA1 and RNA2 from greasy grouper (Epinephelus tauvina) nervous necrosis virus, Singapore strain, J Gen Virol, 82(2001) 647-53.
[25] S.C. Chi, B.J. Lo, S.C. Lin, Characterization of grouper nervous necrosis virus (GNNV), Journal of Fish Diseases, 24(2001) 3-13.
[26] B.L. Munday, J. Kwang, N. Moody, Betanodavirus infections of teleost fish: a review, Journal of Fish Diseases, 25(2002) 127-42.
[27] M. Arimoto, J. Sato, K. Maruyama, G. Mimura, I. Furusawa, Effect of chemical and physical treatments on the inactivation of striped jack nervous necrosis virus (SJNNV), Aquaculture, 143(1996) 15-22.
[28] C.S. Wang, S.Y. Chao, C.C. Ku, C.M. Wen, H.H. Shih, PCR amplification and sequence analysis of the major capsid protein gene of megalocytiviruses isolated in Taiwan, Journal of Fish Diseases, 32(2009) 543-50.
[29] V.G. Chinchar, A. Hyatt, T. Miyazaki, T. Williams, Family Iridoviridae: Poor Viral Relations No Longer, in: J.L. VanEtten (Ed.) Lesser Known Large Dsdna Viruses, Springer-Verlag Berlin, Berlin, 2009, pp. 123-70.
[30] J.G. He, M. Deng, S.P. Weng, Z. Li, S.Y. Zhou, Q.X. Long, et al., Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus, Virology, 291(2001) 126-39.
[31] H.Y. Chou, C.C. Hsu, T.Y. Peng, Isolation and characterization of a pathogenic iridovirus from cultured grouper (Epinephelus sp.) in Taiwan, Fish Pathology, 33(1998) 201-6.
[32] T. Tamai, K. Tsujimura, S. Shirahata, H. Oda, T. Noguchi, R. Kusuda, et al., Development of DNA diagnostic methods for the detection of new fish iridoviral diseases, Cytotechnology, 23(1997) 211-20.
[33] J. Kurita, K. Nakajima, I. Hirono, T. Aoki, Polymerase chain reaction (PCR) amplification of DNA of red sea bream iridovirus (RSIV), Fish Pathology, 33(1998) 17-23.
[34] S.C. Chi, J.R. Shieh, S.J. Lin, Genetic and antigenic analysis of betanodaviruses isolated from aquatic organisms in Taiwan, Diseases of Aquatic Organisms, 55(2003) 221-8.
[35] C.M. Caipang, L. Hirono, T. Aoki, Development of a real-time PCR assay for the detection and quantification of red Seabream iridovirus (RSIV), Fish Pathology, 38(2003) 1-7.
[36] L. Dalla Valle, V. Toffolo, M. Lamprecht, C. Maltese, G. Bovo, P. Belvedere, et al., Development of a sensitive and quantitative diagnostic assay for fish nervous necrosis virus based on two-target real-time PCR, Veterinary Microbiology, 110(2005) 167-79.
[37] K. Watanabe, T. Nishizawa, M. Yoshimizu, Selection of brood stock candidates of barfin flounder using an ELISA system with recombinant protein of barfin flounder nervous necrosis virus, Diseases of Aquatic Organisms, 41(2000) 219-23.
[38] C.Y. Shi, Q. Wei, K.Y.H. Gin, T.J. Lam, Production and characterization of monoclonal antibodies to a grouper iridovirus, Journal of Virological Methods, 107(2003) 147-54.
[39] K. Inouye, K. Yamano, Y. Maeno, K. Nakajima, M. Matsuoka, Y. Wada, et al., Iridovirus infection of cultured red-sea bream, PAGRUS-MAJOR, Fish Pathology, 27(1992) 19-27.
[40] G.N. Frerichs, H.D. Rodger, Z. Peric, Cell culture isolation of piscine neuropathy nodavirus from juvenile sea bass, Dicentrarchus labrax, J Gen Virol, 77(1996) 2067-71.
[41] Y. Fukuda, H.D. Nguyen, M. Furuhashi, T. Nakai, Mass mortality of cultured sevenband grouper, Epinephelus septemfasciatus, associated with viral nervous necrosis, Fish Pathology, 31(1996) 165-70.
[42] B.L. Munday, T. Nakai, Nodaviruses as pathogens in larval and juvenile marine finfish, World Journal of Microbiology & Biotechnology, 13(1997) 375-81.
[43] H.C. Kuo, T.Y. Wang, P.P. Chen, Y.M. Chen, H.C. Chuang, T.Y. Chen, Real-Time Quantitative PCR Assay for Monitoring of Nervous Necrosis Virus Infection in Grouper Aquaculture, Journal of Clinical Microbiology, 49(2011) 1090-6.
[44] Y.N. Xia, G.M. Whitesides, Soft lithography, Annual Review of Materials Science, 28(1998) 153-84.
[45] Q. Yuan, J. Wu, Thermally biased AC electrokinetic pumping effect for Lab-on-a-chip based delivery of biofluids, Biomedical Microdevices, 15(2013) 125-33.
[46] S.L. Zeng, C.H. Chen, J.C. Mikkelsen, J.G. Santiago, Fabrication and characterization of electroosmotic micropumps, Sens Actuator B-Chem, 79(2001) 107-14.
[47] C. Yamahata, F. Lacharme, M.A.M. Gijs, Glass valveless micropump using electromagnetic actuation, Microelectronic Engineering, 78-79(2005) 132-7.
[48] L.H. He, C.W. Lim, B.S. Wu, A continuum model for size-dependent deformation of elastic films of nano-scale thickness, International Journal of Solids and Structures, 41(2004) 847-57.
[49] S.Y. Yang, J.L. Lin, G.B. Lee, A vortex-type micromixer utilizing pneumatically driven membranes, Journal of Micromechanics and Microengineering, 19(2009).
[50] C.H. Weng, K.Y. Lien, S.Y. Yang, G.B. Lee, A suction-type, pneumatic microfluidic device for liquid transport and mixing, Microfluidics and Nanofluidics, 10(2011) 301-10.
[51] J.H. Wang, A miniature polymerase chain reaction system for DNA detection and quantification. Dissertation for Doctor of Philosophy: National Cheng Kung University; 2008.
[52] W.H. Chang, S.Y. Yang, C.H. Wang, M.A. Tsai, P.C. Wang, T.Y. Chen, et al., Rapid isolation and detection of aquaculture pathogens in an integrated microfluidic system using loop-mediated isothermal amplification, Sens Actuator B-Chem, 180(2013) 96-106.
[53] C.Y. Zhang, S.Y. Chao, T.H. Wang, Comparative quantification of nucleic acids using single-molecule detection and molecular beacons, Analyst, 130(2005) 483-8.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *