帳號:guest(3.135.184.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張翊
作者(外文):Chang, Kevin
論文名稱(中文):以菲左干涉儀探討液態透鏡介面行為
論文名稱(外文):Liquid-Liquid Interface Behavior of Liquid Lenses Measurement Using Fizeau Interferometer
指導教授(中文):葉哲良
指導教授(外文):Yeh, Jer-Liang
口試委員(中文):楊燿州
黃國政
蔡智偉
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033601
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:90
中文關鍵詞:介電力液態透鏡液-液介面液滴振動干涉條紋
外文關鍵詞:dielectric forceliquid lensliquid-liquid interfacedroplet oscillationinterferograms
相關次數:
  • 推薦推薦:0
  • 點閱點閱:519
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
近年來,微型液態透鏡在微光學系統中發展了許多重要的應用。液態透鏡不似傳統的玻璃透鏡,液體具有可變形的特性使得液態透鏡具有無限的發展潛力。然而,由於缺乏對液態鏡頭的量測方法以及對液體特性的認識,使得鏡頭的設計和改進面臨了許多困難。
這項研究提出了一種液體透鏡的測量方法,作者利用菲索干涉儀測試了由兩種液體介質組成的液態鏡頭。為了使電場對液滴的作用機制有更多的了解,這項研究著重於液體鏡頭的液-液界面行為,因為此界面的行為會影響液體鏡頭的品質和運動特性。該干涉儀被設置成兩種模式:反射模式和穿透模式。在反射模式中,液體界面的形貌及行為可以根據量測到的干涉條紋描繪出來。而在穿透模式中,我們可以找出液體透鏡元件對參考標準鏡的離球像差。在這項研究中,我們示範了幾個對介電式液態透鏡的測量工作,其中包含在靜態條件和準靜態行為下的測量。在穩定狀態下,我們討論了液體透鏡的對稱性,平坦度以及光學表現。另一方面,當我們將液態透鏡操作在低頻率時,液滴會產生準靜態的振動。而這些振動行為因為輸入頻率可以被分為幾種不同的模態。在各模態下,可以找到幾個接近共振的特定頻率使觀測到的條紋變化相當明顯。而共振的振幅會隨著頻率增加而減少但節點數則會增加。
本研究所觀察到的液滴行為,雖然提供的資訊未盡完整,然而以此非接觸式的光學量測方法卻可以在未來提供液態透鏡研發的基礎及品質的鑑定。此外,這項研究提出了以干涉儀量測液-液界面的概念,進一步對於液滴靜穩態行為做出描述,此亦可提升微型光流體應用發展的潛力。
Liquid microlenses have emerged and played an important role in micro-optical systems in recent years. Compared to the conventional glass lenses, the liquid lenses have the deformable characteristic of liquids, which endows them unlimited potential of development. However, lack of measuring method on liquid lenses makes design and improvement difficult. In the present study, we demonstrate a measuring method using the Fizeau interferometer to characterize the dielectric liquid lenses consisting of two sample liquids. Furthermore, this study focuses on the behavior of liquid-liquid interface which may influence the quality and characteristic of dielectric liquid lenses.
Two modes were used in the measuring experiments: reflective mode and transmission mode. The reflective mode is used to measure the profile of liquid-liquid interface including the symmetry, flatness, and quasi-static oscillation of the liquid drop, while the transmission mode can characterize the lens off-sphere aberrations.
Some resonant frequencies were found in the presence of interferograms which are categorized into several modes at frequency below 500 Hz. When the drop oscillates, the number of nodal points and amplitude of ripple on the liquid-liquid interface at different frequencies were discussed.
The measured phenomena in the study might be incomplete but it could provide some insights for further development of dielectric liquid lens. In addition, this work shared an idea of measuring liquid-liquid interface, which might be served as a reference in advancing opto-fluid systems.
致謝
中文摘要
Abstract
Contents
Figure Caption
Table Caption
Chapter I: Introduction
1.1 Background
1.2 Evolution of Liquid Lens
1.3 Objectives
1.4 Organization
1.5 Contribution
Chapter II: Measurements on Liquid Lenses
2.1 Two-Dimensional Profiles Captured by Cameras
2.2 Interferometry Measurement on Liquid Lenses
2.3 3D Surface Profile Measured by Wave-front Sensor
Chapter III: Theory and Model
3.1 Interaction forces
3.2 Behavior of a Liquid Lens Droplet
3.2.1 Steady State
3.2.2 Quasi-static State
3.3 Basic Optical Theory
3.4 Wavefront Aberration
3.4.1 Seidel Aberrations
3.4.2 Zernike Polynomials
Chapter IV: Dielectric Liquid Lenses under Fizeau Interferometer Testing
4.1 Experimental Setup
4.1.1 Sample Preparation
4.1.2 Fizeau Interferometer
4.2 Experimental Approach
4.3 Steady State of Liquid-liquid Interface
4.3.1 Surface Profile
4.3.2 Wavefront Aberrations
4.3.3 Flatness
4.4 Quasi-Static And Dynamic Behavior of Liquid-liquid Interface
4.4.1 Sine Wave AC Input
4.4.2 Square Wave AC Input
Chapter V: Conclusion
Chapter VI: Future Work
Reference
[1] L Mateu, and F Moll, “Review of energy harvesting techniques and applications for microelectronics,” Proc. SPIE, 2005.
[2] L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature, pp. 551-554, 2006.
[3] Su Xu, Hongwen Ren, Yifan Liu, and Shin-Tson Wu, Fellow, “Dielectric liquid microlens with switchable negative and positive optical power,” IEEE, pp. 297-301, 2011.
[4] D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Applied Physics Letters, pp. 3171-3172, 2003.
[5] J. Heikenfeld, and A. J. Steckl, “High-transmission electrowetting light valves,” Applied Physics Letters, 2005.
[6] N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Optics Express, pp. 2370-2378, 2003.
[7] R. A. Hayes, and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature, pp. 383-385, 2003.
[8] E. Simon, B. Berge, F. Fillit, H. Gaton, O. Jacques-Sermet, M. Guillet, F. Laune, J. Legrand, M. Maillard, and N. Tallaron, “Optical design rules of a camera module with a liquid lens and principle of command for AF and OIS function,” Proc. SPIE, 2010.
[9] C. C. Cheng, and J. A. Yeh, “Dielectrically actuated liquid lens,” Optics Express, pp. 7140-7145, 2007.
[10] C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photonics Technology Letters, pp. 1396-1398, 2009.
[11] L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and Pietro Ferraro, “Tunable liquid microlenses arrays in electrode-less configuration and their accurate characterization by interference microscopy,” OPTICS EXPRESS, pp. 2487-2499, 2009.
[12] Hongwen Ren, David Fox, P. Andrew Anderson, Benjamin Wu, and Shin-Tson Wu, “Tunable-focus liquid lens controlled using a servo motor,” OPTICS EXPRESS, pp. 8031-8036, 2006.
[13] B. Berge, and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” The European Physical Journal E: Soft Matter and Biological Physics, pp. 159-163, 2000.
[14] Yen-Sheng Lu, Ling-Yu Tsai, Kuo-Cheng Huang, C. Gary Tsai, Chih-Cheng Yang, and J. andrew Yeh, “Three-dimensional illumination system using dielectric liquid lenses,” OPTICS EXPRESS, pp. 740-746, 2011.
[15] S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” APPLIED PHYSICS LETTERS, pp. 1128-1130, 2004.
[16] C. C. Cheng, C. Alex Chang, and J. Andrew Yeh, “Variable focus dielectric liquid droplet lens,” OPTICS EXPRESS, pp. 4101-4106, 2006.
[17] M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey , “A CCD based approach to high-precision size and refractive index determination of levitated microdroplets using Fraunhofer diffraction,” Review of scientific instruments, pp. 2287-2291, 1997.
[18] Chih-Cheng Yang, Chih-Wei Gary Tsai, and J. Andrew Yeh, “Dynamic Behavior of Liquid Microlenses Actuated Using Dielectric Force,” IEEE, pp. 1143-1149, 2011.
[19] B. H. W. HENDRIKS, S. KUIPER, M. A. J. VAN AS, C. A. RENDERS and T. W. TUKKER, “Electrowetting-Based Variable-Focus Lens for Miniature Systems,” OPTICAL REVIEW, pp. 255-259, 2005.
[20] A. Santiago-Alvarado, S. Vázquez-Montiel, F. S. Granados-Agustín, J Munoz-López, E. Percino-Zacarias, and J. González-García1, “Functional characterization of a liquid lens using a Zygo interferometer,” Proc. of SPIE, 2009.
[21] Chenhui Li, Gunnsteinn Hall, Xuefeng Zeng, Difeng Zhu, and Kevin Eliceiri, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack–Hartmann wave front sensor,” APPLIED PHYSICS LETTERS, 2011.
[22] J. N. Israelachvili, “Intermolecular and surface forces: with applications to colloidal and biological systems,” Academic Press, 1985.
[23] Robert W. Fox, Philip J. Pritchard, and Alan T. McDonald, Introduction to Fluid Mechanics, Wiley, 2008.
[24] H. H. Woodson, and J. R. Melcher, Electromechanical Dynamics Part II: Field, Force, and Motion, Hoboken, NJ: Wiley, 1968.
[25] O. Lastow and W. Balachandran, “Numerical simulation of electrohydrodynamic (EHD) atomization,” J. Electrostat, pp. 850-859, 2006.
[26] Jung Min Oh, Sung Hee Ko, and Kwan Hyoung Kang, “Shape Oscillation of a Drop in ac Electrowetting,” Langmuir, pp. 8379-8386, 2008.
[27] Mei-Feng Lai, Chiun-Peng Lee, Chun-Neng Liao, and Zung-Hang Wei, “Oscillation spectrums and beat phenomenon of a water droplet driven by electrowetting,” APPLIED PHYSICS LETTER, 2009.
[28] Osamu Fujii, Khalil Honsali, Yukio Mizuno, and Katsuhiko Naito, “Vibration of a Water Droplet on a Polymeric Insulating Material Subjected to AC Voltage Stress,” IEEE, 2010.
[29] E. Hecht, Optics, Addison Wesley, 1998.
[30] Vigoureux, Jean-Marie, and Daniel Courjon, “Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion,” Applied Optic, pp. 3170-3177, 1992.
[31] Wang, Li, and Douglas D. Koch, “Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye,” Archives of ophthalmology, 2005.
[32] F. Zernike, “Diffraction theory of the knife-edge test and its improved form, the phase-contrast method,” Monthly Notices of the Royal Astronomical Society, 1934.
[33] Ruoff, Johannes, and Michael Totzeck, “ Orientation Zernike polynomials: a useful way to describe the polarization effects of optical imaging systems,” Journal of Micro/Nanolithography, MEMS, and MOEMS, 2009.
[34] E.P.Goodwin, and J.C.Wyant, “Interferometric optical testing,” SPIE Press, 2006.
[35] “Guideline for Use of Fizeau Interferometer in Optical Testing,” NASA.
[36] “Transmission Spheres Specifications,” ZYGO.
[37] Chung Yao Yang, Fu Han Ho, Pei Jen Wang, and J. Andrew Yeh, “Investigation of multiphase liquid roughness using an atomic force microscope,” Langmuir, pp. 6314-6319, 2010.
[38] Perez, M., Brechet, Y., Salvo, L., Papoular, M., and Suery, M. , “Oscillation of liquid drops under gravity: Influence of shape on the resonance frequency,” Europhysics Letters, 1999.
[39] Franklin, Gene F., Michael L. Workman, and Dave Powell., Digital control of dynamic systems., Addison-Wesley Longman Publishing Co., Inc., 1997.
[40] L. H., Hydrodynamics, Cambridge University Press, 1932.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *