帳號:guest(18.221.147.236)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅國綸
作者(外文):Luo, Guo-Lun
論文名稱(中文):CMOS-MEMS干涉式光學調變元件之設計與製造
論文名稱(外文):Design and Implementation of CMOS-MEMS Optical Interference Modulator
指導教授(中文):方維倫
口試委員(中文):林弘毅
吳名清
李昇憲
方維倫
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033600
出版年(民國):102
畢業學年度:101
語文別:中文英文
論文頁數:114
中文關鍵詞:CMOS-MEMSFabry-Pérot光學干涉調變
相關次數:
  • 推薦推薦:0
  • 點閱點閱:410
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
本研究主要係以標準CMOS製程與金屬濕蝕刻後製程技術來設計Fabry-Pérot光學干涉式微機電元件,以可調變之干涉共振腔達成光學強度與波長之調變與濾波等效能,可用於輔助顯示元件以及各種應用,未來甚至可應用於感測器、光通訊元件等元件。 微機電結構之製程採用金屬濕蝕刻,定義其光學干涉共振腔長度,而CMOS製程方面係利用台灣積體電路公司(TSMC)製程廠0.35m 2P4M製程,故在膜層堆疊上受限於多晶矽、鋁金屬、鎢金屬及二氧化矽、氮化鈦之材料,在其已知材料光學性質之條件下,本研究提出以光學干涉堆疊結構,利用後製程方式調整其二氧化矽薄膜厚度,使其作為半反射層以及可調變之二氧化矽共振腔,並結合出平面靜電致動器以調整空氣間隙共振腔長度,藉此上述兩種方式改變不同材料之光學共振腔長度,以達到光學干涉調變之效果。 本研究包含其元件之理論分析、設計、模擬、製造,與量測分析,微機電製程與CMOS製造技術,整合積體電路及光電二極體,並可透過相容之微機電製程開發微透鏡、微光開關等元件,並達成積體光學的概念。
This study implements the CMOS-MEMS Fabry-Pérot interference device (FPI) in standard TSMC 0.35m 2P4M CMOS platform by post-CMOS process. It might improve the performance of existing optical sensor, filters, and image sensors. The presented FPI could monolithically integrate with CMOS light sensor, and the single color reflective modulation is also achieved by color filter integration. The design was constrained by the design rule and the limited material in the specific layer-stacking. Following the principles, the concept in this thesis propose the stacking in Fabry-Pérot interference structure with the material of Poly-Si, Al, TiN, W, SiO2. The dual tunable cavities could decide the interference conditions to modulate the incident light. The features of this design are as follows, (1) two optical resonant cavities are provided by the transparent oxide layer and air-gap, (2) oxide thickness is determined by post-CMOS etching process, (3) tunable gap can be controlled by electrostatic force, (4) ring-type electrode is exploited as rib-reinforced structure for thin oxide membrane. In summary, the presented FPI could modulate optical intensity by varying the dielectric membrane thickness and resonant air-gap. Moreover, the thesis includes the theory analysis, optical design, simulation, fabrication, measurement. This CMOS-MEMS FPI device might be the component to approach “Integrated optics” for optical circuitry applications in the future.
目錄
中文摘要 I
Abstract II
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-2.1 光學微機電元件 3
1-2.2 Fabry-Pérot干涉光學元件之應用 6
1-2.3 CMOS-MEMS製程 9
1-3 研究動機 12
1-4 研究目標 14
第二章 元件之設計與分析 31
2-1 FABRY-PÉROT光學干涉原理 31
2-2 元件結構設計與模擬 35
2-3 光學干涉調變分析與模擬 41
第三章 製程與結果 58
3-1 元件之POST-CMOS製程設計 58
3-2 製程結果及討論 60
第四章 元件量測分析 75
4-1 元件結構量測 75
4-2 光學干涉調變量測 78
第五章 結論與未來工作 93
5-1 結論 93
5-2 未來工作 94
參考文獻 107
[1] G. K. Fedder, , R. T. Howe, T.-J. K. Liu, and E. P. Quevy “Technologies for Cofabricating MEMS and Electronics”, Proceedings of the IEEE, vol.96, pp.306-322, 2008.
[2] Texas Instruments, Inc.web., http://www.ti.com/
[3] 王嘉熙 清華大學碩士論文“CMOS 標準製程於設計Fabry-Pérot 干涉元件之開發與實現”, 2011.
[4] Qualcomm MEMS tech., Inc. web., http://www.qualcomm.com/qmt/
[5] Pixtronix, Inc. web., http://www.pixtronix.com/
[6] S. J. Walker and D. J. Nagel , Optics and MEMS , Washington D.C., Naval Res. Lab, 1999.
[7] M. -C. Wu, “Micromachining for optical and optoelectronic systems”, Proceedings of the IEEE , vol. 85, pp 1833-1856, 1997.
[8] Silicon Light Machines, Inc.web., http://www.siliconlight.com/
[9] 微奥科技, http://a10017565773.lanlinweb.cn/_d270941057.htm
[10] J. M. Vaughan and M. A. D. Phil, “The Fabry-Pérot Interferometer: History,Theory, Practice and Application” 1nd Ed., Oxon , UK: Taylor & Francis,1989.
[11] J. H. Jerman, D. J. Clift and S. R. Mallinson, “A miniature Fabry-Pérot interfeometer with a corrugated silicon diaphragm support”, Solid-State Sensor and Actuator Workshop 4th Technical Digest, Hilton Head Island, SC, USA, June, 1990, pp 140-144.
[12] N. F. Raley, D. R. Ciario, J. C. Koo, B. Beiriger, J. Trujillo, C. Yu, G.Loomis and R. Chow , “A Fabry-Pérot microinterferometer for visible wavelength”, Solid-State Sensor and Actuator Workshop 5th Technical Digest, Hilton Head Island, SC, USA, June, 1992, pp 170-173.
[13] C. -P. Chang , R. -S. Huang “A 16-channel array-type microspectrometer using integrated Fabry-Pérot etalons and lateral pin photodetectors”, IEEE Sensors Journal, vol.1, pp.675-678, 2003.
[14] J. P. Carmo, R. P. Rocha, M. Bartek, G. Graaf, R. F. Wolffenbuttel, J. H. Correia “A review of visible-range Fabry-Pérot microspectrometers in silicon for the industry”, Optics and Laser Technology, vol.44, pp.2312-2320, 2012.
[15] H. Huang, K. Winchester, Y. Liu, X. Z. Hu, C. A. Musca, J. M. Dell and L. Faraone, “Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS Fabry–Pérot optical filters”, Journal of Micromechanics and Microengineering, vol.15, No.3, 2005.
[16] D. Felnhofer, K. Khazeni, M. Mignard, Y.J. Tung, C. J.R. Webster, C. Chui and E.P. Gusev, “Device physics of capacitive MEMS”, Microelectronic Engineering , vol.84, pp.2158-2164, 2007.
[17] W. Groot, D. Felnhofer, E. Gusev, “Reliability aspect of capacitive MEMS devices”, Procedia engineering , vol.25, pp.180-186, 2011.
[18] Q. B. He, P. Yeh and C. Gu, “ Analysis of photorefractive Fabry-Pérot etalons: a novel device ”, Optics Letters, vol. 17, pp.664-666, 1992.
[19] A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, “ Surface Micromachined Fabry-Pérot Tunable Filter ”, IEEE Photonics Technology Letters, vol. 8, pp.393-395, 1996.
[20] J. S. Milne, J.M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Pérot filter”, Journal of Microelectromechanical System, vol.18, pp.905-913, 2009.
[21] H. Mao, J. Ke, P. Xing, and Z. Lai, “ Characterization of Micromechanical Optical Modulator ”, Journal of Microelectromechanical System, vol.10, pp.589-592, 2001.
[22] H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, Joo Yull Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “ Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Pérot cavity resonance ”, Optics Express, vol.20, pp.24002-24009, 2012.
[23] C. A. Barrios, V. R. Almeida,R. R. Panepucci, B. S. Schmidt, and M. Lipson, “ Compact Silicon Tunable Fabry–Pérot Resonator With Low Power Consumption ”, IEEE Photonics Technology Letters, vol. 16, pp.506-508, 2004.
[24] M Tuohiniemi, M Blomberg, A Akujarv, J Antila and H Saari, “ Optical transmission performance of a surface-micromachined Fabry–Pérot interferometer for thermal infrared ”, Journal of Micromechanics and Microengineering, vol.22, pp.115004-115011, 2008.
[25] J. Antoszewski, K. J. Winchester, T. Nguyen, A. J. Keating, K. K. M. B. D. Silva, C. A. Musca, J. M. Dell, and L. Faraone “ Materials and Processes for MEMS-Based Infrared Microspectrometer Integrated on HgCdTe Detector ”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, pp.1031-1041, 2008.
[26] K. Reck, E. V. Thomsen, and O. Hansen, “ Mems bragg grating force sensor ” Optics Express, vol.19, pp.19190-19198, 2011.
[27] W. J. Wang, R. M. Lin, D. G. Guo, T.T. Sun, “Development of a novel Fabry–Pérot pressure microsensor”, Sensor and Actuator A, vol.116, pp.59-65, 2004.
[28] K. Totsu, Y. Haga and M. Esashi, “ Ultra-miniature fiber-optic pressure sensor using white light interferometry ”, Journal of Micromechanics and Microengineering, vol.15, pp.71-75, 2005.
[29] C. -J. Lin, F. -G. Tseng, “Polymer MEMS-Based Fabry–Pérot shear stress sensor” IEEE Sensors Journal, vol.3, pp.812-817, 2003.
[30] F. -G. Tseng, C. -J. Lin, “A micro Fabry-Pérot sensor for nano-lateral displacement sensing with enhanced sensitivity and pressure resistance”, Sensor and Actuator A, vol.113, pp.12-19, 2004.
[31] M. Noro, K. Suzuki, N. Kishi, H. Hara, T. Watanabe, and H. Iwaoka, “CO2/H2O gas sensor using a tunable Fabry-Pérot filter with wide wavelength range” IEEE MEMS, Kyoto, Japan, January, 2003, pp.319-322.
[32] C. Akkaya, O. Kilic, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Modeling and Demonstration of Thermally Stable High-Sensitivity Reproducible Acoustic Sensors ” Journal of Microelectromechanical System, vol.21, pp.1347-1356, 2012.
[33] M. A. Perez and A. M. Shkel, “ The effect of squeeze film constriction on bandwidth improvement in interferometric accelerometers ”, Journal of Micromechanics and Microengineering, vol.18, pp.55031-55041, 2008.
[34] A. Poulin, R. St-Gelais, A. L. Eichenberger, L. Thevenaz, and Y. A. Peter,“ MEMS Tunable Asymmetric Fabry–Pérot Cavity for High-Precision Weighing of Macro Samples ”, Journal of Microelectromechanical System, Early Access Article, 2013.
[35] F. Xiao, G. Li, K. Alameh and A. Xu, “ Fabry-Pérot based surface plasmon resonance sensors ”, Optics Letters, vol. 37, pp.4582-4584, 2012.
[36] C. -Y. Lo, O. Huttunen, J. Hiitola-Keinänen, J. Petäjä, H. Fujita,and H. Toshiyoshi, “MEMS-Controlled Paper-Like Transmissive Flexible Display”, Journal of Microelectromechanical systems, vol.19, pp.812-817, 2010.
[37] W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, Hongkun Park, “Fabry-Perot interference in a nanotube electron waveguide”, Nature vol.411, pp.665-669, 2001.
[38] SiTime Corporation web., http://www.sitime.com/
[39] Analog devices Inc web.. http: //www.analog.com/
[40] G. K. Fedder “ CMOS-based sensors ” IEEE Sensors, Irvine, CA, USA, November, 2005, pp.125-128.
[41] M. -H. Tsai, C. -M. Sun, Y. -C. Liu, C. Wang and W. Fang “ Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors ”, Journal of Micromechanics and Microengineering, vol.19, pp.105-117, 2009.
[42] L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, Simulation, and Characterization of a Bimorph Varifocal Micromirror and Its Application in an Optical Imaging System”, Journal of Microelectromechanical System, vol.22, pp.285-294, 2013.
[43] A. Jain and H. Xie, “ An electrothermal microlens scanner with low-voltage and large- vertical displacement actuation ”, IEEE Photonics Technology Letters, vol. 17, pp 1971-1973, 2005.
[44] C. -M. Sun, C. -W. Wang, and W. Fang, “ CMOS MEMS lorentz force dual-axis scanning-stage ”, IEEE NEMS, Bangkok, Thailand, January, 2007, pp 580-583.
[45] 楊智翔, “新型 CMOS MEMS 微光學定位、聚焦平台之設計與製造", 清華大學碩士論文 , 2008.
[46] H. K. Xie , Y. Pan , G. K. Fedder , “ A CMOS-MEMS mirror with curled-hinge comb drives ", Journal of Microelectromechanical System , vol. 12, NO. 4, 2003 .
[47] Y. Pan, H. Xie, G. K. Fedder, “ Endoscopic optical coherence tomography based on a microelectromechanical mirror ”, Optics Letters, vol.26, pp. 1966-1968, 2001.
[48] C. - Z. Guo and G. K. Fedder , “2-DoF twisting electro-thermal actuator for scanning laser rangefinder application”, IEEE MEMS , Cancun, Mexico, January, 2011, pp.1205-1208.
[49] S. T. Todd, A. Jain, H. Qu, H. Xie, “ A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators ”, Journal of Optics A: Pure and Applied Optics, vol.8, No.7, 2006.
[50] J. -C. Chiou, C. -C. Hung, and L. -J. Shieh, “ CMOS-MEMS Based Optical Electrostatic Phase Shifter Array With Low Driving Voltage and High Fill Factor ”, IEEE Journal of quantum electronics, vol.46, No. 9, 2010.
[51] J.-C. Chiou, C. -F. Kou, and Y. -J. Lin, “ A Micromirror With Large Static Rotation and Vertical Actuation ”, IEEE Journal of Selected Topics in Quantum Electronics, vol.13, pp.297-303, 2007.
[52] Y. -C. Cheng, C. -L. Dai, C.-Y. Lee, and P. -Z. Chang, “ A MEMS micromirror fabricated using CMOS post-process”, Sensors and Actuators A, vol.120, pp.573-581, 2005.
[53] J. H. Correia, G. de Graaf, S.H. Kong, M. Bartek, R.F. Wolffenbutte “ Single-chip CMOS optical microspectrometer”, Sensors and Actuators A, vol.82, pp.191–197, 2000.
[54] J. H. Correia, , G. de Graaf, M. Bartek, and R. F. Wolffenbuttel, “A CMOS optical microspectrometer with light-to-frequency converter, bus interface, and stray-light compensation ” IEEE Transactions on Instrumentation and Measurement, vol.50, pp.1530-1537, 2001.
[55] J. H. Correia, , G. de Graaf, M. Bartek, and R. F. Wolffenbuttel, “A Single-Chip CMOS Optical Microspectrometer With Light-to-Frequency Converter and Bus Interface”, IEEE Journal of Solid-State Circuits, vol.37, pp.1344-1347, 2002.
[56] C. A. Musca, J. Antoszewski, K. J. Winchester, A. J. Keating, T. Nguyen, K. D. Silva, J. M. Dell, L. Faraone, P. Mitra, J. D. Beck, M. R. Skokan, and J. E. Robinson, “Monolithic integration of an infrared photon detector with MEMS-based tunable filter”, IEEE Electron Device Letters, vol.26, pp.888-890, 2005.
[57] Richard Soref, “ The Past, Present, and Future of Silicon Photonics ” IEEE Journal of Selected Topics in Quantum Electronics, vol.12, pp.1678-1687, 2006.
[58] H. Takeuchi, A. Wung, X, Sun, R. T. Howe, T. -J. King, “ Thermal Budget Limits of Quarter-Micrometer Foundry CMOS for Post-Processing MEMS Devices ” IEEE Transactions on Electron Devices, vol.52, pp.2081-2086, 2005.
[59] Eugene Hecht , Optics , 4th Ed., Addison Wesley, 2001.
[60] CMOSIS, Inc. web., http://www.cmosis.com/
[61] Y. -J. Huang, T. -L. Chang, H. -P Chou, H. -P. Chou, “ Study of symmetric microstructures for CMOS multilayer residue stress”, Sensors and Actuators A, vol.150, pp.237–242, 2009.
[62] T. -H. Yen, M. -H. Tsai, C. -I Chang, Y. -C. Liu, S. -S. Li, R. Chen, J. -C. Chiou, W. Fang “ Study of symmetric microstructures for CMOS multilayer residue stress”, IEEE Sensors, Limerick, Ireland, October, 2011, pp.145-148.
[63] Yongtek., Inc. web., http://www.yongtek.com/
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *