|
[1] G. K. Fedder, , R. T. Howe, T.-J. K. Liu, and E. P. Quevy “Technologies for Cofabricating MEMS and Electronics”, Proceedings of the IEEE, vol.96, pp.306-322, 2008. [2] Texas Instruments, Inc.web., http://www.ti.com/ [3] 王嘉熙 清華大學碩士論文“CMOS 標準製程於設計Fabry-Pérot 干涉元件之開發與實現”, 2011. [4] Qualcomm MEMS tech., Inc. web., http://www.qualcomm.com/qmt/ [5] Pixtronix, Inc. web., http://www.pixtronix.com/ [6] S. J. Walker and D. J. Nagel , Optics and MEMS , Washington D.C., Naval Res. Lab, 1999. [7] M. -C. Wu, “Micromachining for optical and optoelectronic systems”, Proceedings of the IEEE , vol. 85, pp 1833-1856, 1997. [8] Silicon Light Machines, Inc.web., http://www.siliconlight.com/ [9] 微奥科技, http://a10017565773.lanlinweb.cn/_d270941057.htm [10] J. M. Vaughan and M. A. D. Phil, “The Fabry-Pérot Interferometer: History,Theory, Practice and Application” 1nd Ed., Oxon , UK: Taylor & Francis,1989. [11] J. H. Jerman, D. J. Clift and S. R. Mallinson, “A miniature Fabry-Pérot interfeometer with a corrugated silicon diaphragm support”, Solid-State Sensor and Actuator Workshop 4th Technical Digest, Hilton Head Island, SC, USA, June, 1990, pp 140-144. [12] N. F. Raley, D. R. Ciario, J. C. Koo, B. Beiriger, J. Trujillo, C. Yu, G.Loomis and R. Chow , “A Fabry-Pérot microinterferometer for visible wavelength”, Solid-State Sensor and Actuator Workshop 5th Technical Digest, Hilton Head Island, SC, USA, June, 1992, pp 170-173. [13] C. -P. Chang , R. -S. Huang “A 16-channel array-type microspectrometer using integrated Fabry-Pérot etalons and lateral pin photodetectors”, IEEE Sensors Journal, vol.1, pp.675-678, 2003. [14] J. P. Carmo, R. P. Rocha, M. Bartek, G. Graaf, R. F. Wolffenbuttel, J. H. Correia “A review of visible-range Fabry-Pérot microspectrometers in silicon for the industry”, Optics and Laser Technology, vol.44, pp.2312-2320, 2012. [15] H. Huang, K. Winchester, Y. Liu, X. Z. Hu, C. A. Musca, J. M. Dell and L. Faraone, “Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS Fabry–Pérot optical filters”, Journal of Micromechanics and Microengineering, vol.15, No.3, 2005. [16] D. Felnhofer, K. Khazeni, M. Mignard, Y.J. Tung, C. J.R. Webster, C. Chui and E.P. Gusev, “Device physics of capacitive MEMS”, Microelectronic Engineering , vol.84, pp.2158-2164, 2007. [17] W. Groot, D. Felnhofer, E. Gusev, “Reliability aspect of capacitive MEMS devices”, Procedia engineering , vol.25, pp.180-186, 2011. [18] Q. B. He, P. Yeh and C. Gu, “ Analysis of photorefractive Fabry-Pérot etalons: a novel device ”, Optics Letters, vol. 17, pp.664-666, 1992. [19] A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, “ Surface Micromachined Fabry-Pérot Tunable Filter ”, IEEE Photonics Technology Letters, vol. 8, pp.393-395, 1996. [20] J. S. Milne, J.M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Pérot filter”, Journal of Microelectromechanical System, vol.18, pp.905-913, 2009. [21] H. Mao, J. Ke, P. Xing, and Z. Lai, “ Characterization of Micromechanical Optical Modulator ”, Journal of Microelectromechanical System, vol.10, pp.589-592, 2001. [22] H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, Joo Yull Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “ Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Pérot cavity resonance ”, Optics Express, vol.20, pp.24002-24009, 2012. [23] C. A. Barrios, V. R. Almeida,R. R. Panepucci, B. S. Schmidt, and M. Lipson, “ Compact Silicon Tunable Fabry–Pérot Resonator With Low Power Consumption ”, IEEE Photonics Technology Letters, vol. 16, pp.506-508, 2004. [24] M Tuohiniemi, M Blomberg, A Akujarv, J Antila and H Saari, “ Optical transmission performance of a surface-micromachined Fabry–Pérot interferometer for thermal infrared ”, Journal of Micromechanics and Microengineering, vol.22, pp.115004-115011, 2008. [25] J. Antoszewski, K. J. Winchester, T. Nguyen, A. J. Keating, K. K. M. B. D. Silva, C. A. Musca, J. M. Dell, and L. Faraone “ Materials and Processes for MEMS-Based Infrared Microspectrometer Integrated on HgCdTe Detector ”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, pp.1031-1041, 2008. [26] K. Reck, E. V. Thomsen, and O. Hansen, “ Mems bragg grating force sensor ” Optics Express, vol.19, pp.19190-19198, 2011. [27] W. J. Wang, R. M. Lin, D. G. Guo, T.T. Sun, “Development of a novel Fabry–Pérot pressure microsensor”, Sensor and Actuator A, vol.116, pp.59-65, 2004. [28] K. Totsu, Y. Haga and M. Esashi, “ Ultra-miniature fiber-optic pressure sensor using white light interferometry ”, Journal of Micromechanics and Microengineering, vol.15, pp.71-75, 2005. [29] C. -J. Lin, F. -G. Tseng, “Polymer MEMS-Based Fabry–Pérot shear stress sensor” IEEE Sensors Journal, vol.3, pp.812-817, 2003. [30] F. -G. Tseng, C. -J. Lin, “A micro Fabry-Pérot sensor for nano-lateral displacement sensing with enhanced sensitivity and pressure resistance”, Sensor and Actuator A, vol.113, pp.12-19, 2004. [31] M. Noro, K. Suzuki, N. Kishi, H. Hara, T. Watanabe, and H. Iwaoka, “CO2/H2O gas sensor using a tunable Fabry-Pérot filter with wide wavelength range” IEEE MEMS, Kyoto, Japan, January, 2003, pp.319-322. [32] C. Akkaya, O. Kilic, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Modeling and Demonstration of Thermally Stable High-Sensitivity Reproducible Acoustic Sensors ” Journal of Microelectromechanical System, vol.21, pp.1347-1356, 2012. [33] M. A. Perez and A. M. Shkel, “ The effect of squeeze film constriction on bandwidth improvement in interferometric accelerometers ”, Journal of Micromechanics and Microengineering, vol.18, pp.55031-55041, 2008. [34] A. Poulin, R. St-Gelais, A. L. Eichenberger, L. Thevenaz, and Y. A. Peter,“ MEMS Tunable Asymmetric Fabry–Pérot Cavity for High-Precision Weighing of Macro Samples ”, Journal of Microelectromechanical System, Early Access Article, 2013. [35] F. Xiao, G. Li, K. Alameh and A. Xu, “ Fabry-Pérot based surface plasmon resonance sensors ”, Optics Letters, vol. 37, pp.4582-4584, 2012. [36] C. -Y. Lo, O. Huttunen, J. Hiitola-Keinänen, J. Petäjä, H. Fujita,and H. Toshiyoshi, “MEMS-Controlled Paper-Like Transmissive Flexible Display”, Journal of Microelectromechanical systems, vol.19, pp.812-817, 2010. [37] W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, Hongkun Park, “Fabry-Perot interference in a nanotube electron waveguide”, Nature vol.411, pp.665-669, 2001. [38] SiTime Corporation web., http://www.sitime.com/ [39] Analog devices Inc web.. http: //www.analog.com/ [40] G. K. Fedder “ CMOS-based sensors ” IEEE Sensors, Irvine, CA, USA, November, 2005, pp.125-128. [41] M. -H. Tsai, C. -M. Sun, Y. -C. Liu, C. Wang and W. Fang “ Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors ”, Journal of Micromechanics and Microengineering, vol.19, pp.105-117, 2009. [42] L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, Simulation, and Characterization of a Bimorph Varifocal Micromirror and Its Application in an Optical Imaging System”, Journal of Microelectromechanical System, vol.22, pp.285-294, 2013. [43] A. Jain and H. Xie, “ An electrothermal microlens scanner with low-voltage and large- vertical displacement actuation ”, IEEE Photonics Technology Letters, vol. 17, pp 1971-1973, 2005. [44] C. -M. Sun, C. -W. Wang, and W. Fang, “ CMOS MEMS lorentz force dual-axis scanning-stage ”, IEEE NEMS, Bangkok, Thailand, January, 2007, pp 580-583. [45] 楊智翔, “新型 CMOS MEMS 微光學定位、聚焦平台之設計與製造", 清華大學碩士論文 , 2008. [46] H. K. Xie , Y. Pan , G. K. Fedder , “ A CMOS-MEMS mirror with curled-hinge comb drives ", Journal of Microelectromechanical System , vol. 12, NO. 4, 2003 . [47] Y. Pan, H. Xie, G. K. Fedder, “ Endoscopic optical coherence tomography based on a microelectromechanical mirror ”, Optics Letters, vol.26, pp. 1966-1968, 2001. [48] C. - Z. Guo and G. K. Fedder , “2-DoF twisting electro-thermal actuator for scanning laser rangefinder application”, IEEE MEMS , Cancun, Mexico, January, 2011, pp.1205-1208. [49] S. T. Todd, A. Jain, H. Qu, H. Xie, “ A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators ”, Journal of Optics A: Pure and Applied Optics, vol.8, No.7, 2006. [50] J. -C. Chiou, C. -C. Hung, and L. -J. Shieh, “ CMOS-MEMS Based Optical Electrostatic Phase Shifter Array With Low Driving Voltage and High Fill Factor ”, IEEE Journal of quantum electronics, vol.46, No. 9, 2010. [51] J.-C. Chiou, C. -F. Kou, and Y. -J. Lin, “ A Micromirror With Large Static Rotation and Vertical Actuation ”, IEEE Journal of Selected Topics in Quantum Electronics, vol.13, pp.297-303, 2007. [52] Y. -C. Cheng, C. -L. Dai, C.-Y. Lee, and P. -Z. Chang, “ A MEMS micromirror fabricated using CMOS post-process”, Sensors and Actuators A, vol.120, pp.573-581, 2005. [53] J. H. Correia, G. de Graaf, S.H. Kong, M. Bartek, R.F. Wolffenbutte “ Single-chip CMOS optical microspectrometer”, Sensors and Actuators A, vol.82, pp.191–197, 2000. [54] J. H. Correia, , G. de Graaf, M. Bartek, and R. F. Wolffenbuttel, “A CMOS optical microspectrometer with light-to-frequency converter, bus interface, and stray-light compensation ” IEEE Transactions on Instrumentation and Measurement, vol.50, pp.1530-1537, 2001. [55] J. H. Correia, , G. de Graaf, M. Bartek, and R. F. Wolffenbuttel, “A Single-Chip CMOS Optical Microspectrometer With Light-to-Frequency Converter and Bus Interface”, IEEE Journal of Solid-State Circuits, vol.37, pp.1344-1347, 2002. [56] C. A. Musca, J. Antoszewski, K. J. Winchester, A. J. Keating, T. Nguyen, K. D. Silva, J. M. Dell, L. Faraone, P. Mitra, J. D. Beck, M. R. Skokan, and J. E. Robinson, “Monolithic integration of an infrared photon detector with MEMS-based tunable filter”, IEEE Electron Device Letters, vol.26, pp.888-890, 2005. [57] Richard Soref, “ The Past, Present, and Future of Silicon Photonics ” IEEE Journal of Selected Topics in Quantum Electronics, vol.12, pp.1678-1687, 2006. [58] H. Takeuchi, A. Wung, X, Sun, R. T. Howe, T. -J. King, “ Thermal Budget Limits of Quarter-Micrometer Foundry CMOS for Post-Processing MEMS Devices ” IEEE Transactions on Electron Devices, vol.52, pp.2081-2086, 2005. [59] Eugene Hecht , Optics , 4th Ed., Addison Wesley, 2001. [60] CMOSIS, Inc. web., http://www.cmosis.com/ [61] Y. -J. Huang, T. -L. Chang, H. -P Chou, H. -P. Chou, “ Study of symmetric microstructures for CMOS multilayer residue stress”, Sensors and Actuators A, vol.150, pp.237–242, 2009. [62] T. -H. Yen, M. -H. Tsai, C. -I Chang, Y. -C. Liu, S. -S. Li, R. Chen, J. -C. Chiou, W. Fang “ Study of symmetric microstructures for CMOS multilayer residue stress”, IEEE Sensors, Limerick, Ireland, October, 2011, pp.145-148. [63] Yongtek., Inc. web., http://www.yongtek.com/
|