帳號:guest(3.22.240.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐意晴
作者(外文):Hsu, Yi-Ching
論文名稱(中文):探討差分干涉顯微術量測特定形狀的透明待測物之表面形貌
論文名稱(外文):Three-dimensional topography measurement for transparent object with specific profile by Phase shifting Differential Interference Contrast Microscopy (PS-DIC)
指導教授(中文):林士傑
口試委員(中文):陳政寰
李企桓
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033579
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:105
中文關鍵詞:差分干涉對比術表面形貌量測透明待測物定量化相位還原
外文關鍵詞:Differential Interference Contrast(DIC)surface profiletransparent objectsquantitative phase restoration
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
近年來光電產品的使用越來越大眾化,其中各種具備顯示器的光電產品像是電腦螢幕、手機、PDA、數位相機、平板電腦等等的需求與使用量逐年增加。而這類元件由於材料透明且尺寸較小,一般的量測方法並不適用於此。在先前的研究中,已經驗證了差分干涉對比顯微術(Differential Interference Contrast Microscopy, 以下簡稱:PS-DIC)用於量測透明材質元件高度的可行性。然而,要將此技術應用在生產線上,必須要探討更多不同待測物的量測效果。
本研究探討系統對於不同外貌的透形待測物量測可行性,我們設定的待測物為具有傾斜面的梯形待測物及圓弧形待測物。首先,以軟體模擬分析系統量測條件極限及準確範圍,分析重建結果及誤差原因並提出修正方法。最後再以穿透式架構的PS-DIC量測系統量測透明材質的薄膜電晶體玻璃基板及弧形壓印試片,以驗證模擬結果及探討本差分干涉系統用於量測透明材質的梯形待測物及弧形待測物的可行性。
Due to the fact that opto-electronic products have become more and more popular in recent years, the demand for displays used in computer monitors, mobile phones, PDAs, digital cameras and tablet PCs has continued to increase significantly. General methods of measurement are not particularly suitable for these objects, which are often transparent and small.
The previous study has shown that PS-DIC (phase shifting differential interference contrast interferometer) can be used to measure the profile of transparent specimen with inclined surfaces. However, to apply this technology within the actual production, we must consider more complex geometry measurements with quantitative DIC techniques.

In this study, we aim to verify the feasibility of measuring specimens with different profiles, such as trapezoid objects with inclined surfaces and elliptic specimens. Software simulation system was first used to analyze the cause of reconstruction errors, and a method to amend such errors is consequently applied. Next, we set a transmitted PS-DIC measurement system to verify the simulation. The result can provide useful information to improve the accuracy of PS-DIC.
摘要 2
Abstract 3
誌謝 4
第一章 緒論 14
第二章 文獻回顧 16
2-1形貌量測技術的發展 16
2-2差分干涉對比顯微術 21
2-3 DIC成像原理及重建方法 30
2-4其他形式的DIC 39
2-5光學元件表面形貌的量測方法與討論 41
第三章 研究目的與方法 44
3-1 研究規劃 44
第四章 梯形待測物模擬 46
4-1系統參數設定說明 46
4-2梯形待測物參數設定 48
4-3梯形待測物模擬結果 53
第五章 弧形待測物模擬 69
5-1弧形待測物參數設定 69
5-2弧形待測物模擬結果與討論分析 70
第六章 實驗設備與結果 82
6-1實驗架構 82
6-2梯型待測物形貌重建結果 88
6-3弧形待測物形貌重建結果 95
第七章 結果與建議 100
7-1結果討論 100
7-2建議 102
參考文獻 103
[1] 劉俊葳,“利用滾筒微壓印技術製作高效率顯示器用之次波長結構導光棒” 國立清華大學動力機械工程研究所碩士論文
[2] Te-micon /micro optics,
http://www.temicon.com/index.php/en/micro-optics
[3] Science In Your Eyes, “Atomic Force Microscopy”,
http://scienceinyoureyes.memphys.sdu.dk/atomarkraftmikroskopi_en.php (2012/08)
[4] B. Bhushan, J.C. Wyant, J. Meiling, “A New Three-Dimensional Non-Contact Digital Optical Profile” , Wear, Vol. 122, pp.301-312 (1988).
[5] 楊練根, 王選擇, “新型表面形貌測量儀器”, 科學出版社, pp.17-18, (2008).
[6] 林文泉 ,“三維形貌高速量測-二步相位移式差分干涉對比顯微術為例”, 國立清華大學動力機械工程研究所碩士論文(2012)
[7] 國衛院核心儀器設備中心, “共軛焦顯微鏡”, http://core.nhri.org.tw/webcore/webcont!Cont.action?news_id=201102211298256389949&lab_id=opticalcore#
[8] 柯佳儀, “光學元件展望”,康和證卷雙周刊(2010/07)
[9] 陳偉倫,“探討待測物表面型貌對於差分干涉對比術量測的影響”,國立清華大學動力機械工程研究所碩士論文 (2011).
[10] 余昇剛,“應用差分干涉對比術於透明材質的三維形貌量測方法”,國立清華大學動力機械工程研究所碩士論文, (2009).
[11] 劉濬嘉,“應用差分干涉對比術於微米及透明材質的高度量測方法”,國立清華大學動力機械工程研究所碩士論文 (2010).
[12] D.B.Murphy, “Fundamentals of Light Microscopy and Electronic Imaging”, Wiley, (2003).
[13] “The components of the basic differential interference contrast microscopesetup” ,http://en.wikipedia.org/wiki/Differential_interference_contrast_microscopy
[14] AMS Glossary, “Wollastonprism” ,http://www.nikoninstruments.com/Information-Center/DIC( 2010/05)
[15] D. Malacare, “Optical Shop Testing”, Wiley, (2006).
[16] P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm”, APPLIED OPTIC, Vol. 45, No. 21(2006)
[17] D. C. Ghiglia and M. D. Pritt, “Two-Dimensional Phase Unwrapping”, Wiley (1998).
[18] M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. Cogswell, “Linear Phase Imaging Using Differential Interference Contrast Microscopy” , J. Microsc. , vol. 214, pp.7-12 (2004)
[19] K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural Demodulation of Two-dimensional Fringe Patterns. I. General Background of the Spiral Phase Quadrature Transform”, J. Opt. Soc. Am. A, vol.18, no.8, pp.1862-1870 (2001)
[20] K. G. Larkin, “Natural Demodulation of Two-dimensional Fringe Patterns. II.Stationary Phase Analysis of the Spiral Phase Quadrature Transform”, J. Opt. Soc. Am. A, vol.18, no.8, pp.1871-1881 (2001)
[21] S. K. Yu, W.C. Chen, T. K. Liu, and S. C. Lin, “Profile measurement of transparent inclined surface with transmitted differential interference contrast shearing interferometer ”, 27 August 2012 / Vol. 20, No. 18 / OPTICS EXPRESS(2012)
[22] R. N. Zahreddine, R. H.cormack, “ Real-time quantitative differential interference contrast (DIC) microscopy implemented via novel liquid crystal prisms”,moisl.colorado.edu(2012)
[23] M. Shribak and S. Inoué,“Orientation-independent differential interference contrast microscopy“, APPLIED OPTICS _ Vol. 45, No. 3 (2006/01)
[24] S.S. Kou, “Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging“,/ Vol. 35, No. 3 447~449/ OPTICS
[25] C. Quan , S.H. Wang, “Integrated optical inspection on surface geometry and refractive index distribution of microlens array”, Optics Communications 225 P.223–231 (2003)
[26] S.Y. Huang , T. C. Tung“Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array”
S.-Y. Apply Phys B 104:93–97(2011)
[27] P. Lehmann, J. Niehues, “Measurement of rectangular edge and grating structures using extended low-coherenceinterferometry”, Proc. of SPIE Vol. 8430 84300U_1-11(2012)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *