帳號:guest(18.116.23.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊于瑩
作者(外文):Chuang, Yu-Ying
論文名稱(中文):小球藻超音波破壁實驗與數值分析
論文名稱(外文):Cell-wall Fracture Study on Chlorella pyrenoidosa by Sonication Method and Numerical Analysis
指導教授(中文):蔡宏營
指導教授(外文):Tsai, Hung-Yin
口試委員(中文):白明憲
郭桂林
王星豪
口試委員(外文):Bai, Ming-Sian
Kuo, Kei-Lin
Wang, Shing Hoa
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033562
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:71
中文關鍵詞:微藻類超音波震盪細胞破壞空蝕現象
外文關鍵詞:MicroalgaeSonicationCell disruptionCavitation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1608
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
本研究選擇高油脂含量的微藻類Chlorella pyrenoidosa,簡稱小球藻,作為產製生質柴油的油脂來源,並從眾多細胞破壞萃取藻油方法中採用超音波震盪法來對小球藻壁進行破壞實驗。
實驗設置分為藻體培養與超音波震盪實驗。首先利用非封閉式管狀培養法培養小球藻,培養溫度32℃,通入35 c.c/min的CO2以及空氣1000 c.c/min的氣體,光週期為光照14小時、黑暗10小時,培養時間為8~9天。超音波實驗分單振源及雙振源實驗設計,實驗參數為頻率、功率、震盪時間、細胞濃度及溫度,利用錐藍染劑法、螢光染劑法及半徑縮減率等三種檢測方法來檢測小球藻破壞比例及半徑縮減率,最後單振源實驗中藻種保存時間1.5個月、震盪前未烘烤下,震盪頻率40 kHz、輸入功率300 W、震盪溫度範圍為40~50 ℃以及細胞濃度為1 %的細胞破壞率7 %為最大破壞率,為小球藻的最佳破壞參數。
超音波震盪法的破壞機制為空蝕現象,產生的空泡在爆破時瞬間產生高溫高壓進而對小球藻造成破壞,本研究除了超音波破壁實驗之外,也進行了實驗參數的空泡數值分析,利用Matlab軟體及引用四階Runge-Kutta數值方法求解。數值分析結果中在單振源頻率40 kHz、功率300 W、功率強度為7.639 W/cm^2下,空泡成長的最大半徑約為0.173 mm,最大半徑和初始半徑比可達150倍、爆破壓力可達9.69×〖10〗^7 atm,分析結果與超音波實驗之破壞率相印證。
In this study, a species of high lipid content microalgae:Chlorella pyrenoidosa, or called Chlorella sp. is used to be the lipid source of biodiesel production. From the variety of cell disruption and lipid extraction methods, we choose the sonication method to proceed the cell-wall disruption experiments.
There are two parts of experiment set-up, one is microalgae cultivation and another is sonication experiment. We use the open- tube cultivation method to cultivate the Chlorella sp. The temperature is maintained at 32 ℃, the flow rate of CO2 and air are 35 c.c/min and 1000 c.c/min. The light cycle is 14 hours in light, and 10 hours in dark. The cultivation time is 8-9 days. In sonication experiment part, it can be divided to single-frequency part and dual- frequency part. The experiment parameters are frequency, power, sonication time, cell concentration and temperature. We used the Trypan-blue method, fluorescent dye Calcofluor White Stain and the rate of radius reduction to evaluate the experiment results. Finally, we found that the cell disruption rate can reach 7 %, when the sonication parameters are: conservation time in 1.5 month, unbaked algae, sonication frequency at 40 kHz, power at 300 W, temperature between 40 and 50 ℃, and concentration of 1 %, This is the best disruption parameters in single-frequency experiment.
The mechanism of sonication method to disrupt the cell is cavitation. When the cavitation bubbles explode, it can generate the high temperature and pressure so that it can make algae to be disrupted. In addition to sonication experiments, we also do the numerical analysis about the cavitation bubble. The Matlab software and 4-order Runge-Kutta method are applied to solve equation. The results showed that the single frequency parameters with 40 kHz, power of 300 W, and the power intensity of 7.639 W/cm^2, the bubble can reach the maximum radius about 0.173 mm, the ratio of the maximum radius and the initial radius can reach 150, and the collapse pressure can reach 9.69×〖10〗^7 atm. The results of numerical analysis are used to put sonication experiment results to the proof.
第一章 前言 1
第二章 文獻回顧 2
2.1 機械性破壞 3
2.2 化學性破壞 5
2.3 萃取法 6
2.4 水力空蝕破壞(Hydrodynamic cavitation) 8
2.5 超音波破壞 11
2.6 文獻整理 13
第三章 原理與方法 17
3.1 超音波參數探討 18
3.2 機械性破壞機制 19
3.2.1 頻率 20
3.2.2 震盪時間 20
3.2.3 功率與功率強度 20
3.2.4 溫度 21
3.3 化學性破壞機制 21
3.4 超音波空泡模擬 22
3.5 超音波空蝕場模擬 26
第四章 研究方法 27
4.1 實驗藻體Chlorella pyrenoidosa 27
4.2 超音波實驗 31
4.2.1 單振源實驗 31
4.2.2 雙振源實驗 32
4.2.3 檢測方法 34
第五章 結果與討論 37
5.1 超音波單振源實驗 37
5.1.1 錐藍染色法-藻種烘烤 37
5.1.2 藻種存放時間 39
5.1.3 溫度參數 41
5.1.4 功率參數 44
5.1.5 細胞濃度參數 48
5.2 超音波雙振源實驗 50
5.3 空泡模擬 52
5.4 細胞破壁機制探討 59
第六章 結論與未來展望 63
文獻回顧 65
附錄一、超音波單振源溫度參數實驗數據 68
附錄二、超音波單振源功率參數實驗數據 69
附錄三、超音波單振源細胞濃度實驗數據 70
附錄四、超音波雙振源頻實驗數據 71

[1] J. Geciova, D. Bury, P. Jelen,” Method for disruption of microbial cells for potential use in the dairy industry—a review,” International Dairy Journal 12 (2002) 541–553
[2] S. J. Lee, B. D. Yoon and H. M. Oh,“ Rapid method for the determination of lipid from the green alga Botryococcus braunii,” Biotechnology Techniques 12, No 7 (1998) 553–556
[3] R. Halim, R. Harun, M. K. Danquah, P. A. Webley, “Microalgal cell disruption for biofuel development,” Applied Energy 91 (2012) 116–121
[4] G. Cravotto, L. Boffa, S. Mantegna, P. Perego, M. Avogadro, P. Cintas ,“Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves,” Ultrasonics Sonochemistry, 15 Issue 5 (2008) 898-902
[5] H. Zheng, J. Yin, Z. Gao, H. Huang, X. Ji, C, Dou, “Disruption of Chlorella vulgaris Cells for the Release of Biodiesel-Producing Lipids: A Comparison of Grinding, Ultrasonication, Bead Milling, Enzymatic Lysis, and Microwaves,” Appl Biochem Biotechnol 164(2011) 1215–1224
[6] http://zh.wikipedia.org/zh-hant/%E7%B4%A2%E6%8F%90
[7] B. Balasundaram, S. T. L. Harrison, ” Study of Physical and Biological Factors Involved in the Disruption of E. coli by Hydrodynamic Cavitation,” Biotechnol. Prog. 22 (2006) 907-913
[8] B. Balasundaram, S.T.L. Harrison, “Disruption of Brewers’ Yeast by Hydrodynamic Cavitation: Process Variables and Their Influence on Selective Release,” Biotechnology and Bioengineering Volume 94 (2006) 303–311
[9] A. A. Bsoul, J. P. Magnin, N. C. Bernole, N. Gondrexon, J. Willison, Christian Petrier, “Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain (6PY1),” Ultrasonics Sonochemistry 17 (2010) 106–110
[10] Y. Iida, T. Tuziuti, K. Yasui, T. Kozuka, A. Towata, ” Protein release from yeast cells as an evaluation method of physical effects in ultrasonic field,” Ultrasonics Sonochemistry 15 (2008) 995–1000
[11] K. Y. Show, T. Mao, D. J. Lee, ” Optimisation of sludge disruption by sonication,” WATER RESEARCH 41 (2007) 4741 – 4747
[12] Y. Shen, Z. Pei, W. Yuan, Enrong Mao, “Effect of nitrogen and extraction method on algae lipid yield,” Int J Agric & Biol Eng 2 (2009) 51-57
[13] H. Zheng, J. Yin, Z. Gao, H. Huang, X. Ji, C. Dou, “Disruption of Chlorella vulgaris Cells for the Release of Biodiesel-Producing Lipids: A Comparison of Grinding, Ultrasonication, Bead Milling, Enzymatic Lysis, and Microwaves,” Appl Biochem Biotechnol 164 (2011) 1215–1224
[14] A. Ranjan, C. Patil, V. S. Moholkar, “Mechanistic Assessment of Microalgal Lipid Extraction,” Ind. Eng. Chem. Res. 49 (2010) 2979–2985
[15] P. Rajasekhar, L. Fan, T. Nguyen, F. A. Roddick, “Impact of sonication at 20 kHz on Microcystis aeruginosa, Anabaena circinalis and Chlorella sp.,” Water Research (2011) 1-9
[16] P. Prabakaran, A.D. Ravindran, ”A comparative study on effective cell disruption methods for lipid extraction from microalgae,” Letters in Applied Microbiology 53 (2011) 150-154
[17] J. Y. Lee, C. Yoo, S. Y. Jun, C. Y. Ahn, H. M. Oh, “Comparison of several methods for effective lipid extraction from microalgae,” Bioresource Technology 101 (2010) S75–S77
[18] G. Zhang, P. Zhang, M. Fan, ” Ultrasound-enhanced coagulation for Microcystis aeruginosa removal,” Ultrasonics Sonochemistry 16 (2009) 334–338
[19] D. Bury, P. Jelena, M. Kal´ab, “Disruption of Lactobacillus delbrueckii ssp. bulgaricus 11842 cells for lactose hydrolysis in dairy products: a comparison of sonication, high-pressure homogenization and bead milling,” Innovative Food Science & Emerging Technologies 2 (2001) 23-29
[20] C. W. Ho, T. K. Chew, T. C. Ling, S. Kamaruddin, W. S. Tan, B. T. Tey, ” Efficient mechanical cell disruption of Escherichia coli by an ultrasonicator and recovery of intracellular hepatitis B core antigen,” Process Biochemistry 41 (2006) 1829–1834
[21] S.S. Save, A.B. Pandit, J.B. Joshi, ” Microbial cell disruption: role of cavitation,” The Chemical Engineering Journal 55 (1994) B67-B72
[22] K.K. Jyoti, A.B. Pandit, “Water disinfection by acoustic and hydrodynamic cavitation,” Biochemical Engineering Journal 7 (2001) 201–212
[23] S. Arrojo, Y. Benito, A. Martı´nez Tarifa, “A parametrical study of disinfection with hydrodynamic cavitation,” Ultrasonics Sonochemistry 15 (2008) 903–908
[24] M. Franke, P. Braeutigam, Z. L. Wu, Y. Ren, B. Ondruschka, “Enhancement of chloroform degradation by the combination of hydrodynamic and acoustic cavitation,” Ultrasonics Sonochemistry 18 (2011) 888–894
[25] C. C. Pozuelo, C. Granger, C. Vanhille, A. Moussatov, B. Dubus, ” Experimental and theoretical investigation of the mean acoustic pressure in the cavitation field,” Ultrasonics Sonochemistry 12 (2005) 79–84
[26] Y. J. Chen, H. Y. Teng, P. S. Wei, Y. C. Dung, ” Monitoring and Analysis of Acoustic Cavitation Behaviors in Liquids,” Journal of Advanced Engineering 2 (2007) 157-161
[27] Y.T. Didenko, D.N. Nastich, S.P. Pugach, Y.A. Polovinka, V.I. Kvochk, ” The effect of bulk solution temperature on the intensity and spectra of water sonoluminescence,” Ultrasonics 32 (1994) 71~76
[28] M. H. Entezari, P. Kruus, ” Effect of frequency on sonochemical reactions II. Temperature and intensity effects,” Ultrasonics Sonochemistry 3 (1996) 19-24
[29] Y. T. Shah, A. B. Pandit, V. S. Moholkar, “Cavitation Reaction Engineering,” Kluwer Academic/ Plenum Publishers, (1999)
[30] G. Mark, A. Tauber, R. Laupert, H.P. Schuchmann, D. Schulz, A. Mues, C. vonSonntag, “OH radical formation by ultrasound in aqueous solution Part II. Terephthalate and fricke dosimetry and the influence of various conditions on the sonolytic yield,” Ultrason. Sonochem. 5 (1998) 41–52
[31] P. A. Tatake, A. B. Pandit, ” Modelling and experimental investigation into cavity dynamics and cavitational yield: influence of dual frequency ultrasound sources,” Chemical Engineering Science 57 (2002) 4987 – 4995
[32] P. M. Kanthale, P. R. Gogate, A. B. Pandit, ” Modeling aspects of dual frequency sonochemical reactors,” Chemical Engineering Journal 127 (2007) 71–79
[33] P. R. Gogate, A. B. Pandit, “Engineering Design Method for Cavitational Reactors: I. Sonochemical Reactors,” AIChE Journal February 46 (2000) 372-379
[34] H. Kwak, H. Yang, “An aspect of sonoluminescence from hydrodynamic theory,” J. Phys. Soc. Jpn. 64 (1995) 1980–1992.
[35] N.A. Tsochatzidis, P. Guiraud, A.M. Wilhelm, H. Delmas, ” Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique,” Chemical Engineering Science 56 (2001) 1831-1840
[36] P. M. Kanthale, P. R. Gogate, A. B. Pandit, A. M. Wilhelm, ” Mapping of an ultrasonic horn: link primary and secondary effects of ultrasound,” Ultrasonics Sonochemistry 10 (2003) 331–335
[37] V. Sa´ez, A. Frı´as-Ferrer, J. Iniesta, J. Gonza´lez-Garcı´a, A. Aldaz, E. Riera, ” Chacterization of a 20 kHz sonoreactor. Part I: Analysis of mechanical effects by classical and numerical methods,” Ultrasonics Sonochemistry 12 (2005) 59–65
[38] V. S. Moholkar, S. Rekveld, M. M. C. G. Warmoeskerken, ” Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor,” Ultrasonics 38 (2000) 666–670
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *