|
[1] J. Geciova, D. Bury, P. Jelen,” Method for disruption of microbial cells for potential use in the dairy industry—a review,” International Dairy Journal 12 (2002) 541–553 [2] S. J. Lee, B. D. Yoon and H. M. Oh,“ Rapid method for the determination of lipid from the green alga Botryococcus braunii,” Biotechnology Techniques 12, No 7 (1998) 553–556 [3] R. Halim, R. Harun, M. K. Danquah, P. A. Webley, “Microalgal cell disruption for biofuel development,” Applied Energy 91 (2012) 116–121 [4] G. Cravotto, L. Boffa, S. Mantegna, P. Perego, M. Avogadro, P. Cintas ,“Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves,” Ultrasonics Sonochemistry, 15 Issue 5 (2008) 898-902 [5] H. Zheng, J. Yin, Z. Gao, H. Huang, X. Ji, C, Dou, “Disruption of Chlorella vulgaris Cells for the Release of Biodiesel-Producing Lipids: A Comparison of Grinding, Ultrasonication, Bead Milling, Enzymatic Lysis, and Microwaves,” Appl Biochem Biotechnol 164(2011) 1215–1224 [6] http://zh.wikipedia.org/zh-hant/%E7%B4%A2%E6%8F%90 [7] B. Balasundaram, S. T. L. Harrison, ” Study of Physical and Biological Factors Involved in the Disruption of E. coli by Hydrodynamic Cavitation,” Biotechnol. Prog. 22 (2006) 907-913 [8] B. Balasundaram, S.T.L. Harrison, “Disruption of Brewers’ Yeast by Hydrodynamic Cavitation: Process Variables and Their Influence on Selective Release,” Biotechnology and Bioengineering Volume 94 (2006) 303–311 [9] A. A. Bsoul, J. P. Magnin, N. C. Bernole, N. Gondrexon, J. Willison, Christian Petrier, “Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain (6PY1),” Ultrasonics Sonochemistry 17 (2010) 106–110 [10] Y. Iida, T. Tuziuti, K. Yasui, T. Kozuka, A. Towata, ” Protein release from yeast cells as an evaluation method of physical effects in ultrasonic field,” Ultrasonics Sonochemistry 15 (2008) 995–1000 [11] K. Y. Show, T. Mao, D. J. Lee, ” Optimisation of sludge disruption by sonication,” WATER RESEARCH 41 (2007) 4741 – 4747 [12] Y. Shen, Z. Pei, W. Yuan, Enrong Mao, “Effect of nitrogen and extraction method on algae lipid yield,” Int J Agric & Biol Eng 2 (2009) 51-57 [13] H. Zheng, J. Yin, Z. Gao, H. Huang, X. Ji, C. Dou, “Disruption of Chlorella vulgaris Cells for the Release of Biodiesel-Producing Lipids: A Comparison of Grinding, Ultrasonication, Bead Milling, Enzymatic Lysis, and Microwaves,” Appl Biochem Biotechnol 164 (2011) 1215–1224 [14] A. Ranjan, C. Patil, V. S. Moholkar, “Mechanistic Assessment of Microalgal Lipid Extraction,” Ind. Eng. Chem. Res. 49 (2010) 2979–2985 [15] P. Rajasekhar, L. Fan, T. Nguyen, F. A. Roddick, “Impact of sonication at 20 kHz on Microcystis aeruginosa, Anabaena circinalis and Chlorella sp.,” Water Research (2011) 1-9 [16] P. Prabakaran, A.D. Ravindran, ”A comparative study on effective cell disruption methods for lipid extraction from microalgae,” Letters in Applied Microbiology 53 (2011) 150-154 [17] J. Y. Lee, C. Yoo, S. Y. Jun, C. Y. Ahn, H. M. Oh, “Comparison of several methods for effective lipid extraction from microalgae,” Bioresource Technology 101 (2010) S75–S77 [18] G. Zhang, P. Zhang, M. Fan, ” Ultrasound-enhanced coagulation for Microcystis aeruginosa removal,” Ultrasonics Sonochemistry 16 (2009) 334–338 [19] D. Bury, P. Jelena, M. Kal´ab, “Disruption of Lactobacillus delbrueckii ssp. bulgaricus 11842 cells for lactose hydrolysis in dairy products: a comparison of sonication, high-pressure homogenization and bead milling,” Innovative Food Science & Emerging Technologies 2 (2001) 23-29 [20] C. W. Ho, T. K. Chew, T. C. Ling, S. Kamaruddin, W. S. Tan, B. T. Tey, ” Efficient mechanical cell disruption of Escherichia coli by an ultrasonicator and recovery of intracellular hepatitis B core antigen,” Process Biochemistry 41 (2006) 1829–1834 [21] S.S. Save, A.B. Pandit, J.B. Joshi, ” Microbial cell disruption: role of cavitation,” The Chemical Engineering Journal 55 (1994) B67-B72 [22] K.K. Jyoti, A.B. Pandit, “Water disinfection by acoustic and hydrodynamic cavitation,” Biochemical Engineering Journal 7 (2001) 201–212 [23] S. Arrojo, Y. Benito, A. Martı´nez Tarifa, “A parametrical study of disinfection with hydrodynamic cavitation,” Ultrasonics Sonochemistry 15 (2008) 903–908 [24] M. Franke, P. Braeutigam, Z. L. Wu, Y. Ren, B. Ondruschka, “Enhancement of chloroform degradation by the combination of hydrodynamic and acoustic cavitation,” Ultrasonics Sonochemistry 18 (2011) 888–894 [25] C. C. Pozuelo, C. Granger, C. Vanhille, A. Moussatov, B. Dubus, ” Experimental and theoretical investigation of the mean acoustic pressure in the cavitation field,” Ultrasonics Sonochemistry 12 (2005) 79–84 [26] Y. J. Chen, H. Y. Teng, P. S. Wei, Y. C. Dung, ” Monitoring and Analysis of Acoustic Cavitation Behaviors in Liquids,” Journal of Advanced Engineering 2 (2007) 157-161 [27] Y.T. Didenko, D.N. Nastich, S.P. Pugach, Y.A. Polovinka, V.I. Kvochk, ” The effect of bulk solution temperature on the intensity and spectra of water sonoluminescence,” Ultrasonics 32 (1994) 71~76 [28] M. H. Entezari, P. Kruus, ” Effect of frequency on sonochemical reactions II. Temperature and intensity effects,” Ultrasonics Sonochemistry 3 (1996) 19-24 [29] Y. T. Shah, A. B. Pandit, V. S. Moholkar, “Cavitation Reaction Engineering,” Kluwer Academic/ Plenum Publishers, (1999) [30] G. Mark, A. Tauber, R. Laupert, H.P. Schuchmann, D. Schulz, A. Mues, C. vonSonntag, “OH radical formation by ultrasound in aqueous solution Part II. Terephthalate and fricke dosimetry and the influence of various conditions on the sonolytic yield,” Ultrason. Sonochem. 5 (1998) 41–52 [31] P. A. Tatake, A. B. Pandit, ” Modelling and experimental investigation into cavity dynamics and cavitational yield: influence of dual frequency ultrasound sources,” Chemical Engineering Science 57 (2002) 4987 – 4995 [32] P. M. Kanthale, P. R. Gogate, A. B. Pandit, ” Modeling aspects of dual frequency sonochemical reactors,” Chemical Engineering Journal 127 (2007) 71–79 [33] P. R. Gogate, A. B. Pandit, “Engineering Design Method for Cavitational Reactors: I. Sonochemical Reactors,” AIChE Journal February 46 (2000) 372-379 [34] H. Kwak, H. Yang, “An aspect of sonoluminescence from hydrodynamic theory,” J. Phys. Soc. Jpn. 64 (1995) 1980–1992. [35] N.A. Tsochatzidis, P. Guiraud, A.M. Wilhelm, H. Delmas, ” Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique,” Chemical Engineering Science 56 (2001) 1831-1840 [36] P. M. Kanthale, P. R. Gogate, A. B. Pandit, A. M. Wilhelm, ” Mapping of an ultrasonic horn: link primary and secondary effects of ultrasound,” Ultrasonics Sonochemistry 10 (2003) 331–335 [37] V. Sa´ez, A. Frı´as-Ferrer, J. Iniesta, J. Gonza´lez-Garcı´a, A. Aldaz, E. Riera, ” Chacterization of a 20 kHz sonoreactor. Part I: Analysis of mechanical effects by classical and numerical methods,” Ultrasonics Sonochemistry 12 (2005) 59–65 [38] V. S. Moholkar, S. Rekveld, M. M. C. G. Warmoeskerken, ” Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor,” Ultrasonics 38 (2000) 666–670
|