帳號:guest(3.147.58.159)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃湘珺
作者(外文):Huang, Hsiang-Chun
論文名稱(中文):溫度負載形式對功率模組之可靠度影響評估
論文名稱(外文):Reliability assessment of the temperature profiles effect on the power module
指導教授(中文):江國寧
指導教授(外文):Chiang, Kuo-Ning
口試委員(中文):李昌駿
劉德騏
江國寧
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033554
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:84
中文關鍵詞:功率模組潛變升降溫速率持溫時間Darveaux 壽命預估模型裂紋長度溫度循環
外文關鍵詞:power modulecreepramp ratedwell timeDarveaux life prediction modelcrack lengththermal cycling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:274
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
  隨著半導體製程的改善,功率元件(Power Device)擁有低轉換損耗及低傳導損耗的特性,因上述特性使絕緣柵雙極性電晶體(Insulated gate bipolar transistor, IGBT)被廣泛應用於功率模組(Power Module)中。當功率模組承受循環溫度負載時,材料的熱膨脹係數不匹配造成熱應力產生,導致材料介面間疲勞。根據不同的操作需求,模組將承受不同的溫度曲線條件。不同的持溫時間和升降溫速率導致不同的應力釋放,最終影響功率模組之可靠度。
  本研究依據實際樣本建立二維有限元素模型。此模型透過承受-40到125°C的熱循環以探討持溫時間及升降溫速率對於焊料合金潛變行為之影響。結果顯示由於應力釋放,持溫時間會造成潛變應變的累積,尤其是持溫於高溫段會導致更顯著的應力釋放。比較持溫段與升降溫的過程,在一次熱循環中,升降溫過程累積的潛變應變比持溫階段明顯。關於升降溫速率的探討,升降溫速率越慢會使越多的潛變應變累積,而造成可靠度下降。
  本研究提出潛變應變為物理量之壽命預估模型,即類Darveaux經驗式。藉由三維有限元素模型計算得到之潛變應變搭配實驗結果建立此壽命預估模型。最後,由定義之臨界裂紋長度得到錫銀焊料合金之總壽命值。結果顯示當熱循環的週期越長,功率模組所受之損傷會越嚴重。
  Power devices have possessed low switching and conduction loss characteristics with the improvement in semiconductor device manufacturing. Insulated gate bipolar transistors have been widely used in power module because of such characteristics. When the power module is subjected to the cyclic temperature load, the thermal stress resulting from the mismatch between the coefficients of thermal expansion (CTE) of materials causes the interface of the materials to fatigue. According to the different operating requirements, the module is under different temperature profiles. Different dwell times and ramp rates produce different stress relaxation, which eventually affect the reliability of the power module.
  A two-dimensional finite-element model was established based on real sample. The models were subjected to thermal cycling between -40 and 125 °C to discuss the effect of the dwell time and the ramp rate on the creep behavior of the solder. The results indicated that the dwell time brings accumulative creep strain due to stress relaxation; furthermore, dwell time at the high temperature segment leads to more evident stress relaxation. Compared dwell phase with ramp section, ramp section brings more significant accumulative creep strain than dwell phase in one thermal cycle. About the discussion of ramp rate, decreasing the ramp rate causes more creep strain, and deteriorates the reliability.
  A creep strain-based life prediction model, i.e. Darveaux-like equation, was proposed in this study. The creep strain was calculated by a three-dimensional finite element model, together with the experimental results, to establish the life prediction model. Finally, the critical crack length was determined to obtain the total life of Sn96.5Ag3.5 solder. The result indicated the longer the period of thermal cycling is, the more damage the power module accumulates.
摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章  緒論 1
1.1  研究動機 1
1.2  文獻回顧 3
1.3  研究目標 12
第二章  基礎理論 13
2.1  有限元素法理論基礎 13
2.1.1 線彈性有限元素法理論 13
2.1.2 材料非線性有限元素法理論 17
2.1.3 數值方法與收斂準則 20
2.2  Garofalo-Arrhenius潛變理論 22
2.3  封裝結構之熱傳遞行為 24
2.3.1 功率模組結構散熱機制 25
2.3.2 接面溫度量測理論 27
2.4  破壞準則 30
2.4.1 Tresca準則 30
2.4.2 von Mises準則 32
2.5  封裝結構可靠度之預測 33
2.5.1 Coffin-Manson應變法 33
2.5.2 Darveaux能量密度法 33
第三章  溫度負載測試實驗 36
3.1  溫度循環測試實驗 36
3.1.1 實驗流程 36
3.1.2 裂紋長度測量 42
3.1.3 初始裂紋壽命與裂紋成長 43
3.2  焊料合金失效準則 46
第四章  焊料合金之潛變行為分析 50
4.1  二維有限元素模型 50
4.1.1 模型建立及材料參數設定 50
4.1.2 邊界條件與負載設定 53
4.2  焊料合金之潛變行為探討 54
4.2.1 錫銀焊料合金厚度影響 58
4.2.2 溫度負載形式影響 59
4.2.3 焊料合金之壽命預估模型 64
第五章  錫銀焊料合金之壽命預估模型 68
5.1  三維有限元素模型 68
5.2  焊料合金之溫度循環分析結果 70
5.2.1 網格密度影響與數值方法 72
5.2.2 壽命預估模型 75
第六章  結論與未來展望 78
參考文獻 81
[1] M. Ciappa, “Selected failure mechanisms of modern power modules,” Microelectronics Reliability, Vol. 42, Issue 4-5, pp. 653-667, 2002.
[2] Y. Hua, L. Minghui, and C. Basaran, “Failure modes and FEM analysis of power electronic packaging,” Finite Elements in Analysis and Design, Vol. 38, Issue 7, pp. 601-612, 2002.
[3] J. M. Thebaud, E. Woirgard, C. Zardini, S. Azzopardi, O. Briat, and J. M. Vinassa, “Strategy for designing accelerated aging tests to evaluate IGBT power modules lifetime in real operation mode,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, Issue 2, pp. 429-438, 2003.
[4] M. Bouarroudj, Z. Khatir, S. Lefebvre, and L. Dupont, “Thermo-mechanical investigation on the effects of the solder meniscus design in solder joint lifetime for power electronic device,” International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-System, pp. 409-415, London, UK, Apr. 16-18, 2007.
[5] M. Bouarroudj, Z. Khatir, S. Lefebvre, L. Dupont, J. P. Ousten, and F. Badel, “Comparison of stress distributions and failure modes during thermal cycling and power cycling on high power IGBT modules,” European Conference on Power Electronics and Applications, pp. 1-10, Aalborg, Denmark, Sep. 2-5, 2007.
[6] L. Hua, T. Tilford, and D. R. Newcombe, “Lifetime prediction for power electronics module substrate mount-down solder interconnect,” International Symposium on International Symposium on High Density Packaging and Microsystem Integration, pp. 1-6, Shanghai, China, Jun. 26-28, 2007.
[7] J. M. Fusaro, “Effects of multiple ceramics on reliability in high current power modules,” Conference Record of the 1996 IEEE Industry Applications Conference, Thirty-First IAS Annual Meeting, pp, 1433-1440, San Diego, USA, Oct. 6-10, 1996.
[8] M. Warner, J. Parry, C. Bailey, and L. Hua, “Solder life prediction in a thermal analysis software environment,” Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, pp. 391-396, Las Vegas, USA, Jun. 1-4, 2004.
[9] X. Xinpeng, B. Xiangdong, and L. Guoyuan, “Thermal-mechanical fatigue reliability of PbSnAg solder layer of die attachment for power electronic devices,” International Conference on Electronic Packaging Technology & High Density Packaging, pp.1181-1185, Beijing, China, Aug. 10-13, 2009.
[10] R. Darveaux, “Effect of simulation methodology on solder joint crack growth correlation and fatigue life prediction,” Transactions of the ASME. Journal of Electronic Packaging, Vol. 124, Issue 3, pp. 147-154, 2002.
[11] Y. H. Pao, E. Jih, R. Liu, V. Siddapureddy, X. Song, R. McMillan, and J. M. Hu, “A thermal fatigue model for surface mount leadless chip resistor solder joints,” Sensing, Modeling and Simulation in Emerging Electronic Packaging, American Society of Mechanical Engineers, pp. 1-12, Atlanta, USA, Nov. 17-22, 1996.
[12] M. Bouarroudj, Z. Khatir, J. P. Ousten, and S. Lefebvre, “Temperature-level effect on solder lifetime during thermal cycling of power modules,” IEEE Transactions on Device and Materials Reliability, Vol. 8, Issue 3, pp. 471-477, 2008.
[13] G. Lefranc, T. Licht, and G. Mitic, “Properties of solders and their fatigue in power modules,” Microelectronics Reliability, Vol. 42, Issue 9-11, pp. 1641-1646, 2002.
[14] M. Dusek, M. Wickham, and C. Hunt, “The impact of thermal cycling regime on the shear strength of lead-free solder joints,” Soldering & Surface Mount Technology, Vol. 17, Issue 2, pp. 22-31, 2005.
[15] J. K. Spelt, Q. Yan, R. Lam, H. R. Ghorbani, and P. Snugovsky, “Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints,” Microelectronics Reliability, Vol.46, Issue 2, pp. 574-588, 2006.
[16] X. Fan, G. Raiser, and V. S. Vasudevan, “Effects of dwell time and ramp rate on lead-free solder joints in FCBGA packages,” 55th Electronic Components and Technology, pp. 901-906, Lake Buena Vista, USA, May. 31-June. 4, 2005.
[17] A. Yeo, C. Lee, and J. H. L. Pang, “Flip chip solder joint reliability analysis using viscoplastic and elastic-plastic-creep constitutive models,” IEEE Transactions on Components and Packaging Technologies, Vol. 29, Issue 2, pp. 355-363, 2006.
[18] Q. Yan, H. R. Ghorbani, and J. K. Spelt, “Thermal fatigue of SnPb and SAC resistor joints: analysis of stress-strain as a function of cycle parameters,” IEEE Transactions on Advanced Packaging, Vol.29, Issue 4, pp. 690-700, 2006.
[19] 江國寧,微電子系統封裝基礎理論與應用技術,滄海書局,2006.
[20] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and applications of finite element analysis 4th, Wiley, 2002.
[21] R. C. Hibbeler, Mechanics of materials 6th, Pearson Education Inc., 2005.
[22] N. E. Dowling, Mechanical behavior of materials 2nd, Prentice-Hall, 1999.
[23] ANSYS User’s Mannual, ANSYS Inc. Company.
[24] F. Garofalo, Fundamentals of creep and creep-rupture in metals, Macmillan Company, New York, 1965.
[25] L. Hua, S. Ridout, C. Bailey, L. S. Wei, A. Pearl, and M. Johnson, “Computer simulation of crack propagation in power electronics module solder joints,” International Conference on Electronic Packaging Technology & High Density Packaging, pp. 1-6, Shanghai, China, Jul. 28-31, 2008.
[26] L. Hua, T. Tilford, X. Xiangdong, C. Bailey, “Thermal-mechanical modeling of power electronic module packaging,” International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, pp. 249-254, London, UK, Apr. 16-18, 2007.
[27] H. Ma, and C. J. Suhling, “A review of mechanical properties of lead-free solders for electronic packaging,” Journal of Materials Science, Vol. 44, Issue 5, pp. 1141-1158, 2009.
[28] W. H. Mcdams, Heat Transmission 3rd, McGraw Hill, 1954.
[29] JEDEC EIA/JESD51-1, “Integrated circuits thermal measurement method-electrical test method,” Dec., 1995.
[30] J. A. Collins, Failure of materials in mechanical design 2nd, Wiley, 1993.
[31] A. C. Ugural, and S. K. Fenster, Advanced strength and applied elasticity 4th, Pearson, 2003.
[32] T. Y. Hung, C. J. Huang, C. C. Lee, C. C. Wang, K. C. Lu, and K. N. Chiang, “Investigation of Solder Crack Behavior and Fatigue Life of the Power Module on Different Thermal Cycling Period,” Microelectronic Engineering, Vol. 107, pp. 125-129, 2013
[33] JEDEC Standard/JESD22-A104-B, “Temperature cycling,” Jul., 2000.
[34] Reliability Tests for Standard Products, EUPEC Inc.
[35] T. Lhommeau, C. Martin, M. Karama, R. Meuret, and M. Mermet-Guyennet, “Base-plate solder reliability study of IGBT modules for aeronautical application,” European Conference on Power Electronics and Applications, pp. 1-10, Aalborg, Denmark, Sep. 2-5, 2007.
[36] C. C. Chiu, C. J. Wu, C. T. Peng, K. N. Chiang, T. Ku, and K. Cheng, “Failure life prediction and factorial design of lead-free flip chip package,” Journal of the Chinese Institute of Engineers, Vol. 30, Issue 3, pp. 481-490, 2007.
[37] R. Darveaux, K. Banerji, A. Mawer, and G. Dody, Ball grid array technology, McGraw-Hill, 1995.
[38] R. Darveaux, and K. Banerji, “Fatigue analysis of flip chip assemblies using thermal stress simulations and a Coffin-Manson relation,” 41st Electronic Components and Technology Conference, pp. 797-805, Atlanta, USA, May 11-16, 1991.
[39] J. H. L. Pang, C. W. Seetoh, and Z. P. Wang, “CBGA solder joint reliability evaluation based on elastic-plastic-creep analysis,” Transactions of the ASME. Journal of Electronic Packaging, Vol. 122, Issue 3, pp. 255-261, 2000.
[40] R. H. Hong, and J. Wang, “Effect of thermal shock profile on solder joint of WLCSP,” 12th International Conference on Electronic Packaging Technology & High Density Packaging, pp. 1-6, Shanghai, China, Aug. 8-11, 2011
[41] J. P. Sommer, T. Licht, H. Berg, K. Appelhoff, and B. Michel, “Solder fatigue at high power IGBT modules,” 4th International Conference on Integrated Power Systems, pp. 1-6, Berlin, Germany, Jul. 7-9, 2006.
[42] E. Herr, T. Frey, R. Schlegel, A. Stuck, and R. Zehringer, “Substrate-to-base solder joint reliability in high power IGBT modules,” Microelectronics Reliability, Vol. 37, Issue 10-11, pp. 1719-1722, 1997.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *