帳號:guest(18.118.27.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳泊瑜
作者(外文):Chen, Bo-Yu
論文名稱(中文):應用於微投影顯示技術之二維靜電式微掃描鏡回授控制系統設計與實現
論文名稱(外文):Feedback Control System Design and Implementation of 2D Electrostatic Microscanner Applied for Pico-Projection Display Technology
指導教授(中文):陳榮順
口試委員(中文):杜佳潁
陳宗麟
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033545
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:77
中文關鍵詞:靜電式微掃描鏡控制電容式感測電路PID控制器
相關次數:
  • 推薦推薦:0
  • 點閱點閱:305
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
本研究主要為改善靜電式微掃描鏡慢軸,在垂直方向上因掃描速度不均,而造成的明顯亮暗帶投影畫面品質,希望透過電容式感測訊號機制,量測微掃描鏡在致動過程中,元件等效電容值大小即時變化,且與實際的描軌跡相互參照驗證其正確性。同時建立靜電式微掃瞄鏡慢軸行為的動態模型,透過系統鑑別得到真實受控場的系統參數。將系統參數代入動態模型並輔以商用軟體Simulink與回授控制理論,設計及模擬微掃瞄鏡慢軸經控制器補償後之輸出響應。最後,實現加入PID控制器的完整閉迴路控制系統,以達到即時控制之目的並驗證其效能與可行性。
摘要 I
致謝 II
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 微型投影顯示技術介紹 1
1.3 微掃瞄鏡快軸及慢軸 7
1.4 研究背景與動機 7
1.5 文獻回顧 9
1.6 本文大綱 11
第二章 電容式回授訊號感測機制 13
2.1 電容式感測電路設計 13
2.2 電容式感測電路實現 16
第三章 靜電式微掃描鏡動態模型 20
3.1 靜電式微掃描鏡驅動原理 20
3.2 靜電式微掃描鏡系統架構 21
3.2.1 快軸元件介紹 21
3.2.2 慢軸元件介紹 23
3.3 理論模型 26
3.4 系統鑑別 29
3.5 二維掃描軌跡 34
第四章 控制系設計與模擬 38
4.1 控制目標與策略 38
4.2 PID控制器設計 41
4.3 PID控制器模擬結果 47
4.3.1 慢軸之開迴路系統模擬結果 47
4.3.2 慢軸之閉迴路系統模擬結果 50
第五章 實驗結果與討論 53
5.1 實驗平台架構 53
5.2 位置感測系統 59
5.3 實驗結果 61
5.3.1 僅慢軸致動之實驗結果 62
5.3.2 快慢軸同步致動之實驗結果 65
第六章 結論與未來工作 71
6.1 結論 71
6.2 未來工作 72
參考文獻 74
[1] T. Ewing, J. Buck, S. Serati, A. Linnenberger, H. Masterson, and J. Stockley, “Liquid Crystal on Silicon (LCOS) Devices and Their Application to Scene Projection,” Proc. SPIE, vol. 8381, 83560A, 2012..

[2] H. Urey, S. Madhavan, and M. Brown, "MEMS Microdisplays," Handbook of Visual Display Technology: Springer-Verlag Berlin Heidelberg, 2012.

[3] MicroVision. "http://www.microvision.com/."

[4] S. Pal, and H. Xie, “Pre-Shaped Open Loop Drive of Electrothermal Micromirror by Continuous and Pulse Width Modulated Waveforms,” IEEE Journal of Quantum Electronics, vol. 46, no. 9, pp. 1254-1260, Sep., 2010.

[5] C. Zhang, Z. You, H. Huang, and G. Li, “Study on a Two-dimensional Scanning Micro-mirror and Its Application in a MOEMS Target Detector,” Sensors (Basel), vol. 10, no. 7, pp. 6848-6860, 2010.

[6] K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric Scanning Mirrors for Endoscopic Optical Coherence Tomography,” Journal of Micromechanics and Microengineering, vol. 19, no. 9, 095012, Sep., 2009.

[7] N. Asada, H. Matsuki, K. Minami, and M. Esashi, “Silicon Micromachined Two-Dimensional Galvano Optical Scanner,” IEEE Transactions on Magnetics, vol. 30, no. 6, pp. 4647-4649, Nov., 1994.

[8] A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-Axis Electromagnetic Microscanner for High Resolution Displays,” Journal of Microelectromechanical Systems, vol. 15, no. 4, pp. 786-794, Aug., 2006.
[9] A. Arslan, S. Holmstrom, S. K. Gokce, and H. Urey, “Comb- actuated Resonant Torsional Scanner for Microdisplays,” IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, Clearwater, FL, 2009, pp. 139-140.

[10] S. Pannu, C. Chang, R. S. Muller, and A. P. Pisano, "Closed-loop Feedback-control System for Improved Tracking in Magnetically Actuated Micromirrors," IEEE/LEOS International Conference on Optical MEMS, Kauai, HI, Aug. 21-28, 2000, pp. 107-108.

[11] N. O. Perez-Arancibia, J. S. Gibson, and T. Tsu-Chin, "Laser Beam Pointing and Stabilization by Intensity Feedback Control," American Control Conference, St. Louis, MO, Jun. 10-12, 2009, pp. 2837-2842.

[12] 蔡旻儒,雙軸微掃瞄鏡之共振頻追蹤與控制系統設計,國立清華大學動力機械工程學系,碩士論文,2012.

[13] J. H. Park, T. Chung, J. A. Jeon, J. E. Kim, M. Kim, Y. K. Kim, G. Na, I. H. Park, and B. W. Yoo, “Tracking Control of Electrostatically Actuated Micromirror with Closed-loop Feedback Circuit,” Electronics Letters, vol. 44, no. 22, pp. 1295-1296, Oct. 23, 2008.

[14] J. C. Chiou, Y. C. Lin, and S. D. Wu, "Closed-loop Fuzzy Control of Torsional Micromirror with Multiple Electrostatic Electrodes," IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, Aug. 20-23, 2002, pp. 85-86.

[15] N. Yazdi, H. Sane, and C. H. Mastrangelo, "Robust Digital Control of Nonlinear Microelectro-mechanical Actuators using Sliding-mode Control," The Thirty-Eighth Asilomar Conference on Signal, Systems and Computers, Nov. 07-10, 2004, vol. 1, pp. 34-38.

[16] K. M. Liao, Y. C. Wang, C. H. Yeh, and R. Chen, “Closed-loop Adaptive Control for Electrostatically Driven Torsional Micromirrors,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 4, no. 4, 041503, 2005.

[17] T. C. Tsai, and R. Chen, “A Novel Two-dimensional Curled-hinge Comb-drive Micromirror using CMOS-MEMS Fabrication Process,” Asia-Pacific Conference of Transducers and Micro-Nano Technology, Singapore, 2006.

[18] Y. Pan, Y. Ma, and S. Islam, "Electrostatic Torsional Micromirror: Its Active Control and Applications in Optical Network," IEEE International Conference on Automation Science and Engineering, Arlington, VA, Aug. 23-26, pp. 151-156, 2008.

[19] C. G. Agudelo, M. Packirisamy, Z. Guchuan, and L. Saydy, “Nonlinear Control of an Electrostatic Micromirror Beyond Pull-in with Experimental Validation,” Journal of Microelectromechanical Systems, vol. 18, no. 4, pp. 914-923, 2009.

[20] Y. Ma, S. Islam, and Y. Pan, “Electrostatic Torsional Micromirror with Enhanced Tilting Angle using Active Control Methods,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 6, pp. 994-1001, 2011.

[21] B. Cagdaser, A. Jog, M. Last, B. S. Leibowitz, L. Zhou, E. Shelton, K. S. J. Pister, and B. E. Boser, “Capacitive Sense Feedback Control for MEMS Beam Steering Mirrors,” Jun. 06, 2004.

[22] D. Fernández, J. Madrenas, M. Domínguez, J. Pons, and J. Ricart, “Pulse Drive and Capacitance Measurement Circuit for MEMS Electrostatic Actuators,” Analog Integrated Circuits and Signal Processing, vol. 57, no. 3, pp. 225-232, Dec., 2008.

[23] J. Dong, and P. M. Ferreira, “Simultaneous Actuation and Displacement Sensing for Electrostatic Drives,” Journal of Micromechanics and Microengineering, vol. 18, no. 3, 035011, 2008.

[24] K. Oda, H. Takao, K. Terao, T. Suzuki, F. Shimokawa, I. Ishimaru, and F. Oohira, “Vertical Comb-drive MEMS Mirror with Sensing Function for Phase-shift Device,” Sensors and Actuators A: Physical, vol. 181, pp. 61-69, 2012.

[25] N. Goren, I. Luft, and S. Sourani, “Method and Device for Monitoring Movement of Mirrors in a MEMS Device,” US Patent 0109951, to Btendo, Oct. 29, 2011.

[26] C. Ataman, and H. Urey, “Modeling and Characterization of Comb-actuated Resonant Microscanners,” Journal of Micromechanics and Microengineering, vol. 16, no. 1, pp. 9-16, 2006.

[27] Y. Fu, “A Large MEMS Scanning Mirror for Laser Printing Application,” Advanced Numicro Systems, Santa Clara, CA, 2006.

[28] Y. Liu, J. Xu, S. Zhong, and Y. Wu, “Large Size MEMS Scanning Mirror with Vertical Comb Drive for Tunable Optical Filter,” Optics and Lasers in Engineering, vol. 51, no. 1, pp. 54-60, Jan., 2013.

[29] R. A. Conant, "Micromachined Mirrors," Ph.D Dissertation, EECS, U. C. Berkley, 2002.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *