帳號:guest(18.117.254.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):姜文景
作者(外文):Chiang, Wen-Ching
論文名稱(中文):以晶格波茲曼法預測壁面上不同邊界條件對微流道內流場的影響
論文名稱(外文):Influence of boundary condition in the prediction of microchannel flow with Lattice Boltzmann Method
指導教授(中文):林昭安
口試委員(中文):楊照彥
吳宗信
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033527
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:75
中文關鍵詞:晶格波茲曼微流道過渡流
外文關鍵詞:LBMStops' wall functiontransitionmicrochannel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:398
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
The focus of the present study is the simulations of micro-channel flow at different Knudsen numbers using lattice Boltzmann method. There are two issues to be addressed, which are the influences of the boundary implementations and wall models. In order to capture the Knudsen layer near the wall, three different wall models are
adopted here, i.e. Stop wall function(SWF), Lockerby wall
function(LWF), and Guo wall function(GWF). As for the boundary condition implementation, this is achieved by the combinations of the bounce-back rule and diffusive-scattering boundary condition. The weighting of the boundary conditions combined with different wall models is obtained by optimizations with the fully developed
channel flow results from linearized Boltzmann equations at Knudsen number ranging from 0.1 to 10. The adopted lattice models are D2Q9, D2Q13, D2Q17 and D2Q21. Among the wall models, Stop's wall model
outperforms the other two. Using the Stop wall model, all the lattice models can be optimized to produce correct linearized Boltzmann solutions. The model results also compares favorably with the DSMC results for Knudsen number from 0.1 to 10. The capability of the models to predict developing channel flow are further examined. Due to the difficulty in implementing inlet and outlet
boundary conditions for D2Q13, D2Q17 and D2Q21, only D2Q9 is
adopted. Results show that simulations with Stop wall model can produce correctly the pressure variations in response the change of the Knudsen number and reproduce the results from DSMC simulations.
Contents
1 Introduction 1
1.1 Introduction to Lattice Boltzmann method and microflow Lattice
Boltzmann method: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Lattice Boltzmann method: . . . . . . . . . . . . . . . . . . . 1
1.1.2 Micro-flows: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Wall models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Boundary condition . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Objective and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Theory and governing equations 8
2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The BGK approximation . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The low-Mach-number approximation . . . . . . . . . . . . . . . . . . 12
2.4 Higher-order expansion of equilibrium distribution for gas flow in the
micro-channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Discretization of the Lattice Boltzmann equation for phase space . . . 14
2.6 Discretization of the Lattice Boltzmann equation for time . . . . . . . 17
2.7 Modifications for simulating isothermal gas flow in microflow by using
lattice Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7.1 Relaxation time . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7.2 Wall functions for bounded system . . . . . . . . . . . . . . . 20
3 Numerical algorithm 22
3.1 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Pressure boundary condition . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Boundary conditions in LBE simulations for microflow . . . . . . . . 25
3.3.1 Bounceback boundary condition . . . . . . . . . . . . . . . . . 25
3.3.2 Diffuse-scattering boundary condition . . . . . . . . . . . . . . 26
3.3.3 Diffusive-bounceback boundary condition . . . . . . . . . . . . 29
3.4 Periodic boundary condition . . . . . . . . . . . . . . . . . . . . . . . 32
4 Numerical results 34
4.1 Poiseuille microflow with periodic boundary condition . . . . . . . . . 34
4.2 Poiseuille microflow with pressure boundary condition . . . . . . . . . 38
5 Conclusions 41
6 Figures 43
Bibliography
[1] Frisch U, Hasslacher B, Pomeau Y. Lattice-Gas Automata for the Navier-Stokes
equation. Phys Rev Lett 1986.
[2] Higuera FJ, Jimenez J. Boltzmann Approach to Lattice Gas Simulations.
Europhys Lett 1989.
[3] Bhatnagar P, Gross EP, KrookMK. A Model for Collision Processes in Gases. I.
Small Amplitude Processes in Charged and Neutral One-Component systems.
Phys Rev E 1954.
[4] Cercignani S. Theory and Application of the Boltzmann equation. Scottish
Academic Press 1975.
[5] Zhang YH, Gu XJ, Barber RW, Emerson DR. Capturing Knudsen Layer
Phenomena Using a Lattice Boltzmann Model. Phys Rev R 2006.
[6] Bird GA. Molecular Gas Dynamics and the Direct Simulation of Gas Flows.
Oxford Science Publications 1994.
[7] Ohwada T, Sone Y, Aoki K. Numerical Analysis of the Poiseuille and Thermal
Transpiration Flows between Two Parallel Plates on the Basis of the Boltzmann
Equation for Hare-Sphere Molecules. Phys Fluids A 1989.
[8] Nie XD, Doolen G, Chen S. Lattice-Boltzmann Simulations of Fluid Flows in
MEMS. J Stat Phys 2002.
[9] Zhang YH, Qin RS, Sun YH, Barber RW, Emerson DR. Lattice Boltzmann
method for gaseous microflows using kinetic theory boundary conditions. J Stat
Phys 2005.
[10] Zhang R, Shan X, Chen H. Efficient Kinetic Method forFluid Simulation
beyond Navier-Stokes Equation. Phys Rev E 2006.
[11] Shan X, Yuan X. F, Chen H. Kinetic Theory Representation of Hydrodynamics:
a Way beyond the Navier-Stokes Equation. J Fluid Mech 2006.
[12] Lockerby DA, Reese JM, Gillis MA. Capturing the Knudsen Layer in
Continuum-Fluid Models of Nonequilibrium Gas Flows. AIAA J 2005.
[13] Stops DW. The Mean Free Path of Gas Molecules in the Transition Regime. J
Phys D 1970.
[14] Tang GH, Zhang YH, Gu XJ, Emerson DR. Lattice Boltzmann Modelling
Knudsen Layer Effect in Non-Equilibrium Flows. Europhys Lett 2008.
[15] Guo ZL, Zhao TS, Shi Y. Physical Symmetry, Spatial Accuracy, and Relaxation
Time of the Lattice Boltzmann Equation for Microgas Flow. J. Appl Phys 2006.
[16] Lockerby DA, Reese JM, Gillis MA. The usefulness of higher-order constitutive
relations for describing the Knudsen layer. Phys Fluids 2005.
[17] Zhang YH, Gu XJ, Barber RW, Modelling thermal flow in the transition regime
using a lattice Boltzmann approach. Europhys Lett 2007.
[18] Zhang YH, Gu XJ, Barber RW, Emerson DR. Modelling thermal flow in
the transition regime using a lattice Boltzmann appoach. A Letters Journal
Exploring the Frontiers of Physics 2006.
[19] Luo LS, He X, Zou Q, Dembo M. Analytic solutions of flows and analysis of
nonslip boundary conditions for the lattice boltzmann. J Stat Phys 1997.
[20] Agrawal A, Djenidi L. Simulation of gas flow in microchannels with a single 90
bend. Computer and Fluids 2009.
[21] Ansumali S, Karlin IV. Kinetic Boundary Condition in the Lattice Boltzmann
Method. Phys Rev E 2002.
[22] Niu XD, Shu C, Chew YT. A thermal lattice Boltzmann model with diffuse
scattering boundary condition for micro thermal flows. Computer and Fluids
2005.
[23] Kazuhiko Suga, Takahiko Ito. Lattice Boltzmann Flow Models for Micro/Nano
Fluidics. CMES 2010.
[24] Succi S. Mesoscopic Modeling of Slip Motion at Fluid-Solid Interfaces with
Heterogeneous Catalysis. Phys Rev Lett 2002.
[25] Tang GH, Tao WQ, He YL. Lattice Boltzmann Method for Simulating Gas
Flow in Microchannels. International J Phys C 2004.
[26] Sbragaglia M, Succi S. Analytical calculation of slip flow in lattice Boltzmann
models with kinetic boundary conditions. Phys Fluids 2005.
[27] Arkilic EB, Schmidt MA, Breuer KS. Gaseous slip flow in long microchannels.
J Microelectromech Syst 1997.
[28] Huang H, Lee TS, Shu C. Lattice Boltzmann method simulation gas slip flow
in long microtubes. J. of Numerical Methods for Heat and Fluid Flow 2006.
[29] Guo ZL, Shi B, Zhao TS, Zheng C. Disctete effects on boundary conditions for
the lattice Boltzmann equation in simulating microscale gas flow. Phys Rev E
2007.
[30] Guo ZL, Zheng C, Shi B. Lattice boltzmann equation with multiple effective
relaxation times for gaseous microscale flow. Phys Rev E 2008.
[31] Luo LS, Bart Blanpain, Frederik Verhaeghe. Lattice boltzmann modeling of
microchannel flow in slip flow regime. J Comput Phys 2009.
[32] Shokouhmand H, Meghdadi Isfahani AH. An improved thermal lattice
Boltzmann model for rarefield gas flows in wide range of Knudsen number.
International communication in Heat and Mass Transfer 2011.
[33] Li Q, He YL, Tang GH, Tao WQ. Lattice Boltzmann modeling of microchannel
flows in the transition flow regime. J. Microfluid 2010.
[34] Liu XM, Guo ZL. A lattice Boltzmann study of gas flows in a long micro-
channel. Computers and Mathematics with Applications 2011.
[35] Xu ZM, Guo Zl. Pressure distribution of the gaseous flow in microchannel: A
Lattice Boltzmann Study. Commun. Comput. Phys 2013.
[36] Chou WC. Numerical simulations of microflow by lattice boltzmann method
with different lattice models and wall functions. master thesis. National Tsing
Hua University 2010.
[37] Gombosi. Gas Kinetic Theory. Cambridge University Press 1944.
[38] He X, Chen S, Dollen G. A novel thermal model for the lattice boltzmann
method incompressible limit. J Comput Phys 1998.
[39] Niu XD, Hyodo SA, Munekata T. Kinetic Lattice Boltzmann Method for
Microscale Gas Flows: Issues on Boundary Condition, Relaxatio n time, and
Regularization. Phys Rev E 2007; 76: 036711.
[40] Chen S, Martinez D. On Boundary Conditions in Lattice Boltzmann Methods.
Phys Fluids 1996.
[41] Lin YC. Numerical simulations of microflow by lattice boltzmann method
with diffuse scattering noundary condition. master thesis. National Tsing Hua
University 2009.
[42] Shen C, Faa J, Xie C. Stastical simulation of rarefield gas flows in micro-
channels. J Comput Phys 2003.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *