帳號:guest(3.15.31.22)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):游智傑
作者(外文):You, Jhih - Jie
論文名稱(中文):活塞式氣體動力引擎進排氣系統開發與載具應用
論文名稱(外文):Intake / Exhaust System Development and Vehicle Applications of Piston Type Compressed Air Engines
指導教授(中文):黃智永
指導教授(外文):Huang, Chih-Yung
口試委員(中文):林昭安
宋震國
黃國修
口試委員(外文):Lin, Chao-An
Sung, Cheng-Kuo
Huang, K. David
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033516
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:131
中文關鍵詞:活塞式氣動動力引擎進排氣系統轉動式進排氣機構氣動載具
外文關鍵詞:piston type compressed air enginesintake-exhaust systemrotatable intake-exhaust mechanismpneumatic vehicles
相關次數:
  • 推薦推薦:0
  • 點閱點閱:136
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究首先依據活塞式氣動引擎的作動原理及流體特性,以商用軟體MATLAB建立活塞式氣動引擎的理論分析模組,並利用理論計算方式來探討改變氣動引擎的進排氣時序、進排氣閥門大小、凸輪揚程大小對氣動引擎輸出功率之影響。最後則將理論計算結果與單缸活塞式氣動引擎的實驗量測結果進行比對討論。
氣動引擎實驗部分,則先將傳統內燃機四行程引擎改裝為以高壓氣體驅動的二行程氣動引擎,並量測此氣動引擎在不同進氣壓力下於不同轉速的輸出扭力、功率,同時記錄氣動引擎的流量、汽缸內壓力變化,進而了解氣動引擎的流體特性。由理論計算結果及實驗結果顯示,因傳統引擎凸輪控制閥門的進氣方式為漸開漸閉,以及受凸輪揚程所限制,使高壓氣體將無法瞬間進入汽缸內。因此本研究後期針對氣動引擎設計出一新型轉塊式進排氣系統,此系統優點為閥門可以瞬間開啟與關閉,使氣動引擎在進氣時,高壓氣體可以瞬間地進入汽缸內,使汽缸內壓力快速到達所需之壓力;而排氣時,缸內高壓氣體可瞬間排出汽缸外,降低排氣之背壓,如此一來將可得到氣動引擎更高的功率輸出。氣動引擎安裝轉塊式進排氣系統後在進氣壓力13 bar時,可提供最大輸出功率為2.15 kW與最大輸出扭矩為15.97 N-m。而本研究為提升氣動引擎的能量使用效率,以Split-Cycle的概念運用在氣動引擎上,嘗試將高壓氣體在第一缸進行一次膨脹作功後,將還具有殘餘壓力的氣體傳至第二缸再進行一次膨脹作功,而由實驗結果顯示Split-Cycle氣動引擎於低轉速時,確實可以提升氣動引擎的能量使用效率。最後則將改良後的氣動引擎裝置原機車上作實車測試,完成零排放汙染之氣動載具。而載具在安裝單缸100 cc氣動引擎實車測試過程中最高車速約38.2 km/hr,測試行駛距離最遠為5 km。
This study aims to investigate the intake and exhaust system designed for a piston-type compressed air engine and examine the air engine application on motor vehicle. A simulation approach which uses thermodynamic and compressed gas models of single cylinder piston-type compressed air engine has been performed with MATLAB. The simulation is to evaluate the power performance and fluid characteristics of the compressed air engine at different valves timings, valves diameter sizes, and the cam lift effects.
A conventional 100 cc four-stroke internal combustion engine (IC engine) was modified to two-stroke compressed air engine to examine the power output and fluid properties at various intake pressures and rotation speeds. The torque output, air flow rate and cylinder pressure have been recorded which can help to understand the fluid characteristics of the compressed air engine during operation. The acquired experimental results have been compared with simulation and show that the conventional engine design uses cam mechanism to control intake and exhaust valves and has the consequence of gradually valve opening and closing. Therefore, this restricts the air flowing in and out of cylinder at high rotation speeds and high supplying air pressure. In order to solve this problem, a rotatable intake-exhaust system was designed and it has the advantages of fast valve opening and closing. The new system can sustain at high air pressure up to 13 bar and the cylinder pressure during operation can raise faster than the one using the conventional cam mechanism. The air engine installed with the rotatable intake-exhaust system can provide power output of 2.15 kW and 15.97 N-m at 13 bar air pressure.
The study of split-cycle concept of the compressed air engines has also been carried out. Split-cycle air engine is designed to recycle the exhaust compressed air by adding another cylinder to the system, and it can be improved the efficiency of air engine operating at low speed. Finally, the compressed air engine was installed in a small size motorcycle for vehicle application which demonstrates the concept of green energy vehicle with zero emission. The motorcycle installed with the compressed air engine can operate at maximum speed around 38.2 km/hr and range of 5 km.
摘要 I
ABSTRACT III
誌謝 V
目錄 VI
圖目錄 X
表目錄 XV
符號說明 XVI
一般符號 XVI
希臘符號 XVII
下標符號 XVII
第一章、序論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 氣體動力複合內燃機引擎之研究 2
1.2.2 氣體動力引擎作為動力源之研究 7
1.2.3 氣體動力引擎應用於載具之實例 10
1.2.4 Split-Cycle氣動引擎之研究 13
1.3 研究目的 14
1.4 研究架構 15
第二章、氣體動力引擎理論分析方法 17
2.1 理想假設 17
2.2 活塞式氣體動力引擎 18
2.2.1 汽缸進氣 19
2.2.2 等熵膨脹 20
2.2.3 汽缸排氣 21
2.2.4 等熵壓縮 22
2.3 SPLIT-CYCLE氣體動力引擎 24
第三章、氣體動力引擎理論分析 26
3.1 100 CC活塞式單缸氣體動力引擎理論分析 26
3.1.1 不同進排氣時序對氣動引擎之影響 27
3.1.2 進氣時序提前對氣動引擎之影響 32
3.1.3 進排氣閥門大小對氣動引擎之影響 34
3.1.4 凸輪揚程大小對氣動引擎之引擎 37
3.2 SPLIT-CYCLE氣體動力引擎理論分析 39
3.2.1 第一個汽缸不同進氣時序對Split-Cycle氣動引擎之影響 40
3.2.2 第二個汽缸不同進氣時序對Split-Cycle氣動引擎之影響 42
3.2.3 Split-Cycle氣動引擎與單缸氣動引擎之比較 45
第四章、實驗方法 47
4.1 活塞式氣動引擎 47
4.1.1 引擎凸輪軸改裝 47
4.1.2 引擎進排氣口改裝 48
4.1.3 引擎進排氣閥門及閥門彈簧改裝 49
4.2 實驗平台 52
4.2.1 實驗量測設備 53
4.2.2 實驗量測方法 55
4.2.3 誤差分析 57
4.3 轉塊式進排氣系統 58
4.3.1 轉塊式進排氣系統之優點 61
4.4 SPLIT-CYCLE 氣動引擎架設 64
第五章、實驗結果與討論 66
5.1 共軛凸輪控制進排氣時序量測 66
5.2 單軛型加大揚程凸輪軸量測 74
5.3 加大揚程凸輪於不同進排氣時序效能量測 78
5.4 轉塊式進排氣系統量測 90
5.4.1 提高氣動引擎進氣壓力 94
5.4.2 轉塊式與凸輪式輸出效率比較 96
5.5 SPLIT-CYCLE氣體動力引擎量測 98
5.6 理論計算結果與實驗結果比較 104
5.6.1 不同進氣時序輸出功率與缸內P-V圖 104
5.6.2 不同進氣時序的輸出效率 107
第六章、氣體動力引擎載具應用 109
6.1 行車模擬方法 109
6.2 行車模擬結果 112
6.2.1 不同進排氣時序 113
6.2.2 不同傳動減速比 115
6.3 氣動載具氣源及傳動系統配置 117
6.4 氣動載具實車測試 119
6.4.1 相同時序的實車測試結果 120
6.4.2 不同進排氣時序下的載具行駛距離測試結果 122
第七章、結論 124
參考文獻 126
附錄一、氣動引擎安裝排氣管量測 129

[1] http://www.gastmfg.com/product_overview_air_motors.aspx
[2] K. D. Huang and S. C. Tzeng, "Development of a hybrid pneumatic-power vehicle," Applied Energy, vol. 80, pp. 47-59, Jan 2005.
[3] K. D. Huang, S. C. Tzeng, and W. C. Chang, "Energy-saving hybrid vehicle using a pneumatic-power system," Applied Energy, vol. 81, pp. 1-18, May 2005.
[4] K. D. Huang, S. C. Tzeng, W. P. Ma, and W. C. Chang, "Hybrid pneumatic-power system which recycles exhaust gas of an internal-combustion engine," Applied Energy, vol. 82, pp. 117-132, Oct 2005.
[5] R. Hayeri, A. Taghavi, and M. Durali, "Preliminary design of a series Hybrid Pneumatic powertrain for a city car," in Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, 2010, pp. 1-6.
[6] M. M. Schechter, "New Cycles for Automobile Engines," SAE Paper, vol. No.1999-01-0623, 1999.
[7] P. Higelin, A. Charlet, and Y. Chamaillard, "Thermodynamic Simulation of a Hybrid Pneumatic-Combustion Engine Concept," ISSN paper, vol. Vol.5, No.1, pp. 1-11, 2002.
[8] A. Fazeli, A. Khajepour, C. Devaud, and N. L. Azad, "A New Air Hybrid Engine Using Throttle Control," SAE Paper, vol. No.2009-01-1319, 2009.
[9] S. Trajkovic, P. Tunestål, and B. Johansson, "Introductory Study of Variable Valve Actuation for Pneumatic Hybridization " SAE paper vol. No.2007-01-0288, 2007.
[10] X. Y. Wang, T. C. Tsao, C. Tai, H. S. Kang, and P. N. Blumberg, "Modeling of Compressed Air Hybrid Operation for a Heavy Duty Diesel Engine," Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, vol. 131, Sep 2009.
[11] M. Masood, "Compressed Air Engine: A New IC engine that can work on compressed air," presented at the STCEX, Saudi Arabia, 2006.
[12] C. Y. Huang, C. K. Hu, C. J. Yu, and C. K. Sung, "Experimental Investigation on the Performance of a Compressed-Air Driven Piston Engine," Energies, vol. 6, pp. 1731-1745, 2013.
[13] Y. T. Shen and Y. R. Hwang, "Design and implementation of an air-powered motorcycles," Applied Energy, vol. 86, pp. 1105-1110, Jul-Aug 2009.
[14] http://www.mdi.lu/english/index.php
[15] http://www.futurerayz.com/toyota-kurin-car-will-work-by-compressed-air
[16] C. Wen, R. R. Chang, and C. M. Sun, "Study on Compressed Air Driven Golf Car," Journal of China University of Science and Technology, vol. Vol.43-2010.04, 2010.
[17] C. Y. Huang, C. K. Sung, C. A. Lin, C. K. Hu, S. S. Liu, and Y. F. Fan, "The Investigation of Split-cycle Air Engine," presented at the 28th CSME national conference,Taichung, Taiwan., 2011.
[18] H. Liu, G. Tao, and Y. Chen, "Study on the two-stage expansion air-powered engine," presented at the JFPS International Symposium on Fluid Power., 2008.
[19] R. E. Sonntag, C. Borgnakke, and G. J. V. Wylen, Fundamentals of thermodynamics Sixth ed.: John Wiley & Sons, 2003.
[20] J. D. Anderson, Modern compressible flow with historical perspective, third ed.: McGraw-Hill, 2004.
[21] 樊毓芬, "氣動引擎性能之理論及實驗分析," 碩士論文, 動力機械研究所, 國立清華大學, 2012.
[22] http://www.kymco.com.tw
[23] 劉行憲, "氣動引擎性能數值分析與實驗結果討論," 碩士論文, 動力機械研究所, 國立清華大學, 2011.
[24] 胡政綱, "活塞式氣體動力引擎分析與效能提升," 碩士論文, 動力機械研究所, 國立清華大學, 2012.
[25] http://www.kyowa-ei.co.jp/eng/product/sensors/torque/tps_a.html
[26] http://www.tokyokeiso.co.jp/products/download/tg/TF-4150_TG-ES913.pdf
[27] 黃智永、游智傑、宋震國、林昭安, "具有轉動式進氣排氣機構的氣動引擎," 中華民國專利:申請案號 102101162,2013/01.
[28] C. Y. Huang, J. J. You, C. K. Sung, and C. A. Lin, "Air Engine with Rotatable Intake-Exhaust Mechanism," US Patent : Application Number 13/831274 , 2013/3.
[29] N. W. Sung, J. W. Song, Y. Jeong, and C. S. Kim, "Flow Modeling for the Branched Intake Manifold Engine," SAE paper, vol. No.960079, 1996.
[30] G. A. González, A. C. Palma, and A. L. Galicia, "Maximum irreversible work and efficiency in power cycles," Journal of Physics D-Applied Physics, vol. 33, pp. 1403–1409, 2000.
[31] J. Y. Wong, Theory of ground vehicles, Third ed.: John Wiley & Sons, 2001.
[32] 張超群、劉成群, 摩托車動力學: 五南圖書, 2012-08.
[33] http://maps.google.com.tw/maps?hl=zh-TW&tab=wl
(此全文未開放授權)
論文電子全文檔
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *