帳號:guest(3.145.161.235)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃柏翰
作者(外文):Huang, Bo-Han
論文名稱(中文):溫度螢光感測技術與粒子影像速度量測技術應用於兩相區段流熱傳分析
論文名稱(外文):The experimental study of heat transfer with segemnted flow in microchannel using temperature sensitive paint and micro particle image velocimetry
指導教授(中文):黃智永
劉通敏
口試委員(中文):翁輝竹
陳紹文
劉通敏
黃智永
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033511
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:175
中文關鍵詞:雙相空氣/乙醇區段流PDMS微蛇形流道溫度螢光微分子技術微粒子影像測速
外文關鍵詞:Two-phase ethanol/air segmented flowPDMS serpentine microchannelTSP techniqueMicro-PIV
相關次數:
  • 推薦推薦:0
  • 點閱點閱:476
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究使用溫度感測微分子技術量測單邊定熱通量邊界條件下的PDMS微矩形蛇型彎道之單相、兩相溶液與壁面溫度場分佈以及討論其熱傳特性。研究同時使用Micro-PIV技術量測微矩形流道的單相、雙相速度場分佈,並將速度場結果與溫度場結果相互比較印證,建立微流道兩相熱傳現象的研究與結果討論。
本研究以模擬的方式證實溫度螢光感測微分子所量測的到的溫度T_(m,x)可以取代理論定義上的整體平均溫度T_(b,x),進而分析流體的熱傳行為。溫度感測微分子量測技術具有高空間解析度優點,可用於討論在低雷諾數下軸向熱傳的影響,在單相熱傳量測實驗中,實驗結果發現不論工作流體為乙醇或是去離子水,於雷諾數11-93的區間其軸向壁面、液體溫度分佈接近微直管道的溫度分佈。根據實驗結果計算單相乙醇熱傳全展Nu值為2.61、平均Nu值2.95,單相去離子水熱傳全展Nu值2.7、平均Nu值3.1。於兩相實驗中,本研究以Micro-PIV技術量測乙醇/空氣所組成的兩相區段流的速度場分佈,成功觀察到其渦旋結構,並在固定液相流量下,發現提高氣相流量可增加流場中液體段的迴旋渦流強度。本研究成功以溫度感測微分子技術以非侵入式的方式量測全域兩相區段流的壁面以及溶液溫度分佈,相較於文獻以紅外線技術量測兩相流外壁面溫度,本研究所使用的光學量測技術能夠直接觀測到流道內壁面以及溶液溫度隨著不同位置往下游發展的溫度分佈情形,並發現液體段溶液溫度因為渦旋結構其溶液溫度有混合的現象,其前段加熱區域的壁面溫度能夠有效的降低,同時溶液溫度則有明顯的溫度上升趨勢。當L_b/W=7.32時,完全發展區域Nu為3.23較單相實驗Nu值2.42高(在相同液相雷諾數〖Re〗_l),而兩相流的平均Nu值相較於單相平均Nu值(相同液相雷諾數〖Re〗_l)增加了30%。在考慮了氣體在流道所佔的比例後,發現平均Nu值相較於單相Nu值成長了200%。本研究於兩相熱傳中的全域溫度量測以及速度場量測可以提供相關散熱應用作為參考,整體熱傳分析誤差約為8%。
The study aims to investigate the characteristics of heat transfer with segmented flow in PDMS microchannel under one side constant wall heat flux thermal boundary condition using temperature sensitive paint (TSP) and Micro Particle Image Velocimetry (Micro-PIV). Detailed Temperature distributions in fluid and wall surface have been acquired by temperature sensitive luminescent sensors in the form of temperature sensitive solution and temperature sensitive paint. Velocity profiles in the microchannel devices with single phase flow and two phase flow (segmented flow) have also been measured by Micro PIV.
Additionally, ANSYS simulation has been performed to examine the bulk mean temperature profiles acquired by TSP technique using luminescent intensity measurements. The results show that the depth-averaged temperature profiles acquired by TSP technique agree with the bulk-mean temperature calculated from simulation. TSP technique has the advantages of high spatial resolution (200μm/pixel) and global fluid temperature measurements, and heat flux variation from channel entrance can be calculated and the effect from axial heat conduction has been observed.In single phase heat transfer measurement, the fluid and surface temperature distributions in the microchannel device are close to the temperature distribution in straight microchannel at Re number ranging from 11 to 93. The local Nu number in fully developed region and averaged Nu number of ethanol is 2.61 and 2.95. The local Nu number in fully developed region and averaged Nu number of DI water is 2.7 and 3.1
Micro-PIV technique has also been performed to provide the velocity distribution in two phase segmented flow. The structure of flow circulation in ethanol/air two phase flow was identified. The vortex structure in liquid segment can be enhanced by increasing gas phase flow rate while maintaining liquid phase flow rate. Compared with heat transfer from single phase flow, the two phase segmented flow helps the flow mixing in the liquid segment and the fluid temperature rises more quickly while the wall surface temperature decreases faster in the beginning of heating. When L_b/W_m=7.32,the Nu number of 3.23 has been calculated in the two phase segmented flow which is higher than 2.42 measured from single phase (liquid) flow at the same Reynolds number (〖Re〗_L) in the fully developed region. The averaged Nu number of two phase segmented flow shows about 30% increases compared to the Nu Number measured from single phase flow.Considered the effect with void fraction of gas, the veraged Nu number of two phase segmented flow shows about 200% increases compared to the Nu Number measured from single phase flow
摘要 I
ABSTRACT III
誌謝 V
目錄 VI
圖目錄 X
表目錄 XVIII
符號說明 XX
第一章、 序論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 Micro-PIV發展及回顧 2
1.2.2 氣泡區段流(segmented flow)回顧 7
1.2.3 微流道兩相區段流速度場研究回顧 9
1.2.4 微流道單相熱傳回顧 13
1.2.5 微流道兩相熱傳回顧 19
1.2.6 TSP螢光溫度感測塗料發展 22
1.3 研究目的 24
1.4 論文架構 24
第二章、 實驗原理 26
2.1 Micro -PIV量測原理 26
2.2 螢光溫度感測實驗原理 27
2.3 微流道單相熱傳分析原理 30
2.3.1 熱傳特性分析原理 30
2.4 兩相熱傳分析原理 38
第三章、 實驗方法 39
3.1 微流道製作 39
3.2 Micro-PIV系統介紹 42
3.2.1 Micro-PIV 實驗儀器架設 42
3.2.2 流量控制/訊號產生器設定 44
3.2.3 景深與解析度計算 47
3.3 螢光溫度感測塗料研究 49
3.3.1 螢光溫度感測溶液/塗料調配測試 49
3.3.2 溫度校正實驗儀器架設 54
3.3.3 螢光溫度感測溶液校正曲線 56
3.3.4 螢光溫度感測塗料校正曲線 61
3.3.5 校正公式 64
3.4 加熱裝置設置與熱損控制 67
第四章、 單相流場與熱傳實驗量測 76
4.1 單相速度場量測結果 76
4.1.1 彎管前速度完全發展區(Section 1) 77
4.1.2 彎管速度場(section 2) 86
4.1.3 彎管後速度場(Section 3) 91
4.2 單相溫度場量測結果 93
4.2.1 校正方式 93
4.2.2 熱損計算 97
4.2.3 工作流體去離子水溶液溫度場量測 99
4.2.4 工作流體去離子水壁面溫度場量測 103
4.2.5 工作流體去離子水熱傳特性探討 105
4.2.6 工作流體乙醇溶液溫度場量測 110
4.2.7 工作流體乙醇壁面溫度場量測 113
4.2.8 工作流體乙醇熱傳特性探討 115
第五章、 兩相流場與熱傳研究 120
5.1 兩相速度場量測結果 121
5.2 兩相溫度場量測 126
5.2.1 兩相溶液軸向溫度場量測 127
5.2.2 兩相軸向壁面溫度場量測 130
5.2.3 兩相熱傳特性探討 132
第六章、 影像處理與誤差分析 137
6.1 影像處理 137
6.1.1 PIV影像處理 137
6.1.2 溫度影像校正 141
6.1.3 兩相流影像處理 148
6.2 誤差分析 153
第七章、 結論與未來工作建議 158
7.1 結論 158
7.2 未來工作建議 161
參考文獻 162
附錄一 169
附錄二 170
附錄三 173
附錄四 174
Vita 175

[1] N. R. Rosaguti, D. F. Fletcher, and B. S. Haynes, "Laminar flow and heat transfer in a periodic serpentine channel with semi-circular cross-section," International Journal of Heat and Mass Transfer, vol. 49, pp. 2912-2923, 8// 2006.
[2] I. Mudawar and M. B. Bowers, "Ultra-high critical heat flux (CHF) for subcooled water flow boiling—I: CHF data and parametric effects for small diameter tubes," International Journal of Heat and Mass Transfer, vol. 42, pp. 1405-1428, 4// 1999.
[3] R.J.Adrain, "Particle-image Techniques for Experimental Fluid Mechanics," Annual Review of Fluid Mechanics, vol. 23, pp. 261-304, 1991.
[4] C. D. Meinhart, A. K. Prasad, and R. J. Adrian, "A parallel digital processor system for particle image velocimetry," Measurement Science and Technology, vol. 4, p. 619, 1993.
[5] J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Experiments in Fluids, vol. 25, pp. 316-319, 1998/09/01 1998.
[6] C. D. Meinhart, S. T. Wereley, and J. G. Santiago, "PIV measurements of a microchannel flow," Experiments in Fluids, vol. 27, pp. 414-419, 1999/10/01 1999.
[7] X. Zheng and Z.-h. Silber-Li, "Measurement of velocity profiles in a rectangular microchannel with aspect ratio α = 0.35," Experiments in Fluids, vol. 44, pp. 951-959, 2008/06/01 2008.
[8] G. I. Taylor, "Deposition of a viscous fluid on the wall of a tube," Journal of Fluid Mechanics, vol. 10, pp. 161-165, 1961.
[9] F. P. Bretherton, "The motion of long bubbles in tubes," Journal of Fluid Mechanics, vol. 10, pp. 166-188, 1961.
[10] M. T. Kreutzer, F. Kapteijn, J. A. Moulijn, and J. J. Heiszwolf, "Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels," Chemical Engineering Science, vol. 60, pp. 5895-5916, 11// 2005.
[11] V. van Steijn, M. T. Kreutzer, and C. R. Kleijn, "Velocity fluctuations of segmented flow in microchannels," Chemical Engineering Journal, vol. 135, Supplement 1, pp. S159-S165, 1/15/ 2008.
[12] A. Gunther, S. A. Khan, M. Thalmann, F. Trachsel, and K. F. Jensen, "Transport and reaction in microscale segmented gas-liquid flow," Lab on a Chip, vol. 4, pp. 278-286, 2004.
[13] V. van Steijn, M. T. Kreutzer, and C. R. Kleijn, "-PIV study of the formation of segmented flow in microfluidic T-junctions," Chemical Engineering Science, vol. 62, pp. 7505-7514, 12// 2007.
[14] A. Asthana, I. Zinovik, C. Weinmueller, and D. Poulikakos, "Significant Nusselt number increase in microchannels with a segmented flow of two immiscible liquids: An experimental study," International Journal of Heat and Mass Transfer, vol. 54, pp. 1456-1464, 3// 2011.
[15] Q. He, Y. Hasegawa, and N. Kasagi, "Heat transfer modelling of gas–liquid slug flow without phase change in a micro tube," International Journal of Heat and Fluid Flow, vol. 31, pp. 126-136, 2// 2010.
[16] U. Miessner, "3 D velocity measurement in micro two-phase flows by means of micro PIV," presented at the 14th Int Symp on Application of Laser Techniques to Fluid Mechanics.
[17] G. L. Morini, "Single-phase convective heat transfer in microchannels: a review of experimental results," International Journal of Thermal Sciences, vol. 43, pp. 631-651, 7// 2004.
[18] Z. Y. Guo and Z. X. Li, "Size effect on microscale single-phase flow and heat transfer," International Journal of Heat and Mass Transfer, vol. 46, pp. 149-159, Jan 2003.
[19] N. Caney, P. Marty, and J. Bigot, "Friction losses and heat transfer of single-phase flow in a mini-channel," Applied Thermal Engineering, vol. 27, pp. 1715-1721, 7// 2007.
[20] M. K. Moharana, G. Agarwal, and S. Khandekar, "Axial conduction in single-phase simultaneously developing flow in a rectangular mini-channel array," International Journal of Thermal Sciences, vol. 50, pp. 1001-1012, 6// 2011.
[21] G. Hetsroni, A. Mosyak, E. Pogrebnyak, and L. P. Yarin, "Heat transfer in micro-channels: Comparison of experiments with theory and numerical results," International Journal of Heat and Mass Transfer, vol. 48, pp. 5580-5601, 12// 2005.
[22] P. S. Lee, S. V. Garimella, and D. Liu, "Investigation of heat transfer in rectangular microchannels," International Journal of Heat and Mass Transfer, vol. 48, pp. 1688-1704, Apr 2005.
[23] C. Y. Yang and T. Y. Lin, "Heat transfer characteristics of water flow in microtubes," Experimental Thermal and Fluid Science, vol. 32, pp. 432-439, 11// 2007.
[24] S.-S. Hsieh and C.-Y. Lin, "Convective heat transfer in liquid microchannels with hydrophobic and hydrophilic surfaces," International Journal of Heat and Mass Transfer, vol. 52, pp. 260-270, 1/15/ 2009.
[25] M. b. .Steinke, "SINGLE-PHASE HEAT TRANSFER ENHANCEMENT TECHNIQUES IN MICROCHANNEL," presented at the Microchannels and Minichannels, New York, 2004.
[26] A. R. Betz and D. Attinger, "Can segmented flow enhance heat transfer in microchannel heat sinks?," International Journal of Heat and Mass Transfer, vol. 53, pp. 3683-3691, 9// 2010.
[27] P. A. Walsh, E. J. Walsh, and Y. S. Muzychka, "Heat transfer model for gas-liquid slug flows under constant flux," International Journal of Heat and Mass Transfer, vol. 53, pp. 3193-3201, Jul 2010.
[28] T.Liu, PRESSURE AND TEMPERATURE SENSITIVE PAINTS: Springer.
[29] J. Lee, J. C. Dutton, and A. Jacobi, "Application of temperature-sensitive paint for surface temperature measurement in heat transfer enhancement applications," Journal of Mechanical Science and Technology, vol. 21, pp. 1253-1262, 2007/08/01 2007.
[30] C. Jim, L. Nate, G. Marianne, S. John, and J. Jeffrey, "Application of temperature and pressure sensitive paint to an obliquely impinging jet," in 37th Aerospace Sciences Meeting and Exhibit, ed: American Institute of Aeronautics and Astronautics, 1999.
[31] C. Y. Huang, "Molecular Sensors in Microturbine Measurement," Proc. of 2006 ASME International Mechanical Engineering Congress and Exposition, 11, 2006 2006.
[32] R. Samy, T. Glawdel, and C. L. Ren, "Method for Microfluidic Whole-Chip Temperature Measurement Using Thin-Film Poly(dimethylsiloxane)/Rhodamine B," Analytical Chemistry, vol. 80, pp. 369-375, 2008/01/01 2007.
[33] C.-Y. Huang, C.-A. Li, H.-Y. Wang, and T.-M. Liou, "The application of temperature-sensitive paints for surface and fluid temperature measurements in both thermal developing and fully developed regions of a microchannel," Journal of Micromechanics and Microengineering, vol. 23, p. 037001, 2013.
[34] R.K.Shah, LAMINAR FLOW FORCED CONECTION IN DUCTS, 1978.
[35] S. I. K.Spring, Vedio Microscopy:The Fundamentals, 1997.
[36] C. D. Meinhart, S. T. Wereley, and M. H. B. Gray, "Volume illumination for two-dimensional particle image velocimetry," Measurement Science and Technology, vol. 11, pp. 809-814, // 2000.
[37] M. Arık and Y. Onganer, "Molecular excitons of Pyronin B and Pyronin Y in colloidal silica suspension," Chemical Physics Letters, vol. 375, pp. 126-133, 6/25/ 2003.
[38] K. W. Lee, J. D. Slinker, A. A. Gorodetsky, S. Flores-Torres, H. D. Abruna, P. L. Houston, et al., "Photophysical properties of tris(bipyridyl)ruthenium(ii) thin films and devices," Physical Chemistry Chemical Physics, vol. 5, pp. 2706-2709, 2003.
[39] C. M. Wu, "The application of molecule-based temperature sensors for surface and surface and fluid temperature measurement inside retangular microchannel and under constant heat flux boundary condition," PME, NTHU, 2012.
[40] C. A. Li, "The study of Fluid Flow and Heat Transfer inside Rectangular PDMS Microchannels," PME, NTHU, 2011.
[41] T. Robinson, Y. Schaerli, R. Wootton, F. Hollfelder, C. Dunsby, G. Baldwin, et al., "Removal of background signals from fluorescence thermometry measurements in PDMS microchannels using fluorescence lifetime imaging," Lab on a Chip, vol. 9, pp. 3437-3441, 2009.
[42] Y. S. M. Zhipeng Duan "Slip Flow in the HydrodynamicEntrance Region of Circular and Noncircular Microchannels," Journal of Fluids Engineering, vol. 132, JANUARY 2010 2010.
[43] R. Lima, S. Wada, K.-i. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Measurement Science and Technology, vol. 17, p. 797, 2006.
[44] K. Haubert, T. Drier, and D. Beebe, "PDMS bonding by means of a portable, low-cost corona system," Lab on a Chip, vol. 6, pp. 1548-1549, Dec 2006.
[45] N. Ichikawa, K. Hosokawa, and R. Maeda, "Interface motion of capillary-driven flow in rectangular microchannel," Journal of Colloid and Interface Science, vol. 280, pp. 155-164, Dec 1 2004.
[46] C. Nguyen, A. Fouras, and J. Carberry, "Improvement of measurement accuracy in micro PIV by image overlapping," Experiments in Fluids, vol. 49, pp. 701-712, 2010/09/01 2010.
[47] D. C. Tretheway and C. D. Meinhart, "A generating mechanism for apparent fluid slip in hydrophobic microchannels," Physics of Fluids, vol. 16, pp. 1509-1515, May 2004.
[48] P.-S. Lee and S. V. Garimella, "Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios," International Journal of Heat and Mass Transfer, vol. 49, pp. 3060-3067, 8// 2006.
[49] G. Maranzana, I. Perry, and D. Maillet, "Mini- and micro-channels: influence of axial conduction in the walls," International Journal of Heat and Mass Transfer, vol. 47, pp. 3993-4004, 8// 2004.
[50] C. Buffone, K. Sefiane, and J. R. E. Christy, "Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro--particle image velocimetry," Physics of Fluids, vol. 17, pp. 052104-18, 05/00/ 2005.
[51] P. Zaloha, J. Kristal, V. Jiricny, N. Völkel, C. Xuereb, and J. Aubin, "Characteristics of liquid slugs in gas–liquid Taylor flow in microchannels," Chemical Engineering Science, vol. 68, pp. 640-649, 1/22/ 2012.
[52] D. Qian and A. Lawal, "Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel," Chemical Engineering Science, vol. 61, pp. 7609-7625, 12// 2006.
[53] D. M. Fries, S. Waelchli, and P. Rudolf von Rohr, "Gas–liquid two-phase flow in meandering microchannels," Chemical Engineering Journal, vol. 135, Supplement 1, pp. S37-S45, 1/15/ 2008.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *