帳號:guest(3.149.249.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭憲昇
論文名稱(中文):毛細具縱向親水性變化之平板熱管可視化實驗
論文名稱(外文):Visualization Experiments on Flat-plate Heat Pipes Having a Wick with Longitudinally Variational Wettability
指導教授(中文):王訓忠
口試委員(中文):王訓忠
簡國祥
許文震
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033508
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:44
中文關鍵詞:熱管毛細結構潤濕性蒸發熱阻冷凝熱阻
外文關鍵詞:Heat pipewettabilitywickevaporator resistance,condenser resistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:263
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
本研究採用具縱向親疏水性變化之毛細結構以量測熱管的熱性能,實驗包括:無表面處理之靜態接觸角約為13゚、親水處理後靜態接觸角0゚、冷凝區疏水處理靜態接觸角80゚或120゚的熱管。實驗方法採用特殊設計之可視化平板熱管,以觀察此種熱管的冷凝特性,並量測熱管性能變化的幅度。一般而言,蒸發區親水性佳有利於薄膜蒸發,增加熱傳率,而冷凝區則是滴式凝結具有較佳的冷凝效果,此種凝結模態在疏水表面較容易發生。因此本研究在蒸發區與冷凝區分別採用不同的表面處理方式,達到蒸發區親水、冷凝區疏水的效果。可視化觀察的結果發現冷凝區靜態接觸角越大者,其滴式凝結的程度亦越高。但可能因熱管經親水處理後會產生化學堆積物在毛細結構中,使流阻變大進而讓熱管回水不易,因此進行表面改質後之平板熱管,其最大熱傳量未獲改善。
Wicks with longitudinally variational wettability will be adopted to improve the thermal performance of heat pipes. Visualization and simultaneous performance measurements will be made using a specially designed flat-plate heat pipe test apparatus with a glass wall. In general, good wettability in the evaporator enhances thin-film evaporation and increases the maximum heat load. Dropwise condensation with poor wettability leads to higher condenser performance. Therefore, wicks will be treated to exhibit high wettability at the evaporator and low wettability at the condenser. The effects of variational wettability on the evaporation and condensation characteristics will be observed and quatitatively measured.
目錄 i
圖片目錄 iii
第一章 緒論 1
1.1研究背景 1
1.2基礎原理與文獻回顧 1
1.2.1熱管的結構與工作原理 1
1.2.2熱管蒸發區毛細結構之熱傳模式 3
1.2.3熱管冷凝區之凝結機制 5
1.3研究動機與目的 7
第二章 實驗設備與方法 15
2.1 實驗設計 15
2.2 實驗架構與設備 17
2.3 實驗步驟 18
2.3.1 前置作業流程 18
2.3.2 實驗流程 19
2.4 實驗數據計算方式 19
第三章 結果與討論 26
3.1 銅板表面處理之實驗 26
3.2 平板熱管可視化實驗 27
3.2.1 未經任何表面處理之平板熱管 27
3.2.2表面經親水處理之平板熱管 28
3.2.3冷凝區表面疏水、蒸發區表面親水之平板熱管 30
第四章 結論與未來工作 41
參考文獻 43
[1] S.C. Wong, Y.C. Lin, Effect of copper surface wettability on the evaporation performance: Tests in a flat-plate heat pipe with visualization, Int. J. Heat Mass Transfer 54(2011)3921-3926.
[2] J.H. Liou, C.W. Chang, C. Chao, S.C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes Int. J. Heat Mass Transfer, 53(2010)1498-1506.
[3] S.C. Wong, J.H. Liou, C.W. Chang, Evaporation resistance measurement and visualization for sinter copper-powder evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53(2010)3792-3798.
[4] S.C. Wong, Y.C. Lin, J.H. Liou, Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone, Int. J. Therm. Sci. 52(2012)154-160.
[5] H. Wang, S.V. Garimella, J.Y. Murthy, Characteristics of an evaporating thin film in a microchannel, Int. J. Heat Mass Transfer 50 (2007)3933-3942.
[6] Y. Wang, G.P. Peterson, Investigation of a novel flat heat pipe, ASME J. Heat Transfer 127(2005)165-170.
[7] J.Y. Chang, R.S. Prasher, S. Prstic, P. Cheng, H.B. Ma, Evaporative thermal performance of vapor chambers under nonuniform heating conditions, ASME J. Heat Transfer 130(2008)121501(9pp).
[8] F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th, John Wiley & Sons, 2007.
[9] 曾新和,平板熱管冷凝區可視化觀察與量測,國立清華大學碩士論文,2012。
[10] S. Machiroutu, B. Kluge, M. Kuroda, H. Pokharna, Evaluation of heat pipe condenser performance for laptop cooling, (2006) Proc. 8th Int. Heat Pipe Symp., Kumamoto, Japan.
[11] R. Kempers, A.J. Robinson, D. Ewing, C.Y. Ching, Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe, Int. J. Heat Mass Transfer 51(2008)6039–6046.
[12] Z. Huang, J. Zhang, J. Cheng, S. Xu, P. Pi, Z. Cai, X. Wen, Z. Yang, Preparation and characterization of gradient wettability surface depending on controlling Cu(OH)2 nanoribbon arrays growth on copper substrate, Appl. Surface Sci. 259(2012)142–146
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *