帳號:guest(3.135.204.160)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉士煌
作者(外文):Liu, Shih-Huang
論文名稱(中文):應用多重鬆弛時間晶格波茲曼法與大渦數值模擬分析方管內紊流流場
論文名稱(外文):Analysis of Turbulent Flow in Square Duct by using Multiple-Relaxation Time Lattice Boltzmann Method and Large Eddy Simulation
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):吳宗信
黃楓南
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033506
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:43
中文關鍵詞:晶格波茲曼法大渦數值模擬方管壓力驅動流紊流
外文關鍵詞:lattice Boltzmann methodlarge eddy simulationsquare ductPoiseuille flowturbulence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:419
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
In this paper, lattice Boltzmann method and large eddy simulation are adopted to
simulate the laminar and turbulent Poiseuille flow through square duct. The shear
or friction Reynolds number based on the duct width are 10 for the laminar
flow, whereas are 360 for the turbulent flow. We validate the governing equations
and the boundary conditions by simulating laminar Poiseuille duct flow. The results
of the laminar flow show good agreement compared with analytic solution. For the
turbulent Poiseuille square duct flow at Re = 360, our simulation is able to capture
the turbulence quantities by observing the mean streamwise velocity profile along
the wall bisector compared with the direct numerical simulation data and the law
of the wall. Then the simulation result of turbulence intensities and the Reynolds
stress variation along the wall bisector is also shown in present research.
1 Introduction
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . 3
1.2.2 Multiple-relaxation-time lattice Boltzmann models . . . . . . 3
1.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Large eddy simulations . . . . . . . . . . . . . . . . . . .. 5
1.2.5 Turbulent Poiseuille flow . . . . . . . . . . . . . . . . . . 6
1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Methodology
2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . 7
2.2 The BGK and the low-Mach-number approximations . . .. . . . . . 9
2.2.1 The BGK approximation . . . . . . . . . . . . . . . . . . . . 9
2.2.2 The low-Mach-number approximation . . . . . . . . . . . . . . 11
2.3 Discretization of the BGK equation . . . . . . . . . . . . . . .12
2.3.1 Spatial discretization . . . . . . . . . . . . . . . . . . . .12
2.3.2 Temporal discretization . . . . . . . . . . . . . . . . . . . 14
2.4 The multiple-relaxation-time model . . . . . . . . . . . . . . .16
2.5 Large Eddy Simulation . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 The filtering operation . . . . . . . . . . . . . . . . . . . 18
2.5.2 The filtered Navier-Stokes equations . . . . . . . . . . . . .19
2.5.3 The lattice Boltzmann Subgrid-scale model . . . . . . . . . . 19
3 Numerical algorithm
3.1 Simulation procedure . . . . . . . . . . . . . . . . . . . . . .22
3.2 The external forcing term . . . . . . . . . . . . . . . . . . . 23
3.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Parallel algorithm . . . . . . . . . . . . . . . . . . . . . . .24
4 Numerical results
4.1 3D laminar Poiseuille flow . . . . . . . . . . . . . . . . . . .26
4.2 3D turbulent Poiseuille flow . . . . . . . . . . . . . . . . . .27
5 Conclusions
[1] S. Chen, H. Chen, D. O. Martinez, and W. H. Matthaeus, “Lattice Boltzmann model for simulation of magnetohydrodynamics”, Physics Review Letters 67,
3776, (1991).
[2] Y. H. Qian, D. d’Humi`eres, and P. Lallemand, “Lattice BGK model for Navier-Stokes equation”, Europhysics Letters 17, 479, (1992).
[3] S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flow”, Annual Reviews of Fluid Mechanics 30 329, (1998).
[4] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier-Stokes equation”, Physics Review Letters 56, 1505, (1986).
[5] S. Wolfram, “Cellular automaton fluids 1: Basic theory”, Journal Statistic Physics 45, 471, (1986).
[6] S. Succi, E. Foti and F. J. HIGUERA, “Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method”, Europhysics Letters 9, 345, (1989).
[7] F. J. Higuera, and J. Jem´enez, “Boltzmann approach to lattice gas simulations”, Europhysics Letters 9, 663, (1989).
[8] P. L. Bhatnagar, E. P. Gross, and M. Grook, “A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems”, Physics Reviews E 94, 511, (1954).
[9] S. Harris, “An introduction to the throry of the Boltzmann equation”, Holt, Rinehart and Winston, New York, (1971).
[10] Y. H. Qian, D. d’Humi´eres, and P. Lallemand, “Lattice BGK models for Navier- Stokes equation”, Europhysics Letters 17, 479, (1992).
[11] H. Chen, S. Chen, and W. H. Matthaeus, “Recovery of the Navier-Stokes quations using a lattice gas Boltzmann method”, Physics Reviews A 45, R5339, (1992).
[12] U. Frisch, D. d’Humi`eres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet. “Lattice gas hydrodynamics in two and three dimensions”, Complex System 1, 649, (1987).
[13] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, “Comparison of spectral method and lattice Boltzmann simulations of twodimensional hydrodynamics”, Phys. Fluids 6, 1285, (1994).
[14] P. Lallemand and L. S. Luo, “Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability“, Physics Review E 61, 6546, (2000).
[15] S. Succi S, G. Amati, R. Benzi, “Challenges in lattice Boltzmann computing“, Journal of Statistical Physics 81, 5, (1995).
[16] Y. H. Qian, S. Succi, S. A. Orszag, “Recent advances in lattice Boltzmann computing”, Annual Review of Computational Physics, vol. III, World Scientific: Singapore, 195, (1995).
[17] D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Timonen, PMA. Sloot, “Lattice Boltzmann hydrodynamics on parallel systems“, Computer Physics Communications 111, 14, (1998).
[18] A. Dieter, Wolf-Gladrow, “Lattice Gas Cellular Automata and Lattice Boltzmann Models“. Springer: Berlin, (2000).
[19] S. Hou, “Lattice Boltzmann Method for Incompressible, Viscous Flow“, Ph.D. Thesis, Department of Mechanical Engineering, Kansas State University, (1995).
[20] D. d’Humi`eres, “Generalized lattice Boltzmann equation“, In Rarefied Gas Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics, vol. 159, Shizgal BD, Weaver DP (eds).AIAA: Washington, DC, 45, (1992).
[21] D. d’Humi`eres, I. Ginzburg, M. Krafczyk, P. Lallemand and L. S. Luo, “Multiple-relaxation-time lattice Boltzmann models in three dimensions“, The Royal Society, 360, 437, (2002).
[22] X. He, Q. Zou, L.S. Luo, and M. Dembo, “Analytic solution of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model”, Journal Statistic Physics 87, 115, (1997).
[23] P. A. Skordos, “Initial and boundary conditions for the lattice Boltzmann method”, Physics Reviews E 48, 4823, (1993).
[24] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius, “A consistent hydrodynamic boundary condition for the lattice Boltzmann method”, Phys. Fluids 7, 203, (1995).
[25] T. Inamuro, M. Yoshino, and F. Ogino, “A non-slip boundary condition for lattice Boltzmann simulation”, Phys. Fluids 7, 2928, (1995).
[26] S. Chen, D. O. Martinez, and R. Mei, “On boundary conditions in lattice Boltzmann methods”, Phys. Fluids 8, 2527, (1996).
[27] Q. Zou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Phys. Fluids 9, 1591, (1997).
[28] C. F. Ho, C. Chang, K. H. Lin and C. A. Lin, “Consistent boundary conditions for 2D and 3D lattice Boltzmann simulations”, CMES, Vol. 44, no.2, 137, (2009).
[29] M. Krafczyk, J. Tolke, L. S. Luo, “Large-eddy simulation with a multiplerelaxation-time LBE model“, Journal of Modern Physics B Vol. 17, 1, (2003).
[30] J. Smagorinsky, “General circulation experiments with the primitive equations. I. The basic experiment“, Mon. Weather Rev. 91, 99, (1963).
[31] J. W. Deardorff, “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers.“, Journal of Fluid Mechanics 41.2, 453, (1970).
[32] S. Hou, J. Sterling, S. Chen and G. D. Doolen, “A lattice Boltzmann subgrid model for high Reynolds number flows.”, Pattern formation and lattice gas automata, vol.6, 151, (1996).
[33] C. H. Liu, K. H. Lin, H. C. Mai, C. A. Lin, “Thermal boundary conditions for thermal lattice Boltzmann simulations.”, Computers and Mathematics with Applications 59.7, 2178, (2010).
[34] H. Yu, S. S. Girimaji, and L. S. Luo, “DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method.”, Journal of Computational Physics 209.2, 599, (2005).
[35] H. Yu, L. Luo, and S. S. Girimaji, “LES of turbulent square jet flow using an MRT lattice Boltzmann model.”, Computers and Fluids 35.8, 957, (2006).
[36] H. Yu and S. S. Girimaji, “Near-field turbulent simulations of rectangular jets using lattice Boltzmann method.”, Phys. Fluids 17, 125106, (2005).
[37] K. N. Premnath, M. J. Pattison, and S. Banerjee, “Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows.”, Physical Review E 79.2, 026703, (2009).
[38] K. N. Premnath, M. J. Pattison, and S. Banerjee, “Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method.” Physica A: Statistical Mechanics and its Applications 388.13, 2640, (2009).
[39] M. J. Pattison, K. N. Premnath, and S. Banerjee, “Computation of turbulent flow and secondary motions in a square duct using a forced generalized lattice Boltzmann equation.”, Physical Review E 79.2, 026704, (2009).
[40] X. He, X. Shan, and G. D. Doolen, “Discrete Boltzmann equation model for nonideal gases.”, Physical Review E 57.1, R13, (1998).
[41] L. S. Luo, “Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases.”, Physical Review E 62.4, 4982, (2000).
[42] R. D. Moser, J. Kim, and N. N. Mansour, “Direct numerical simulation of turbulent channel flow up to Re = 590.“, Phys. Fluids 11, 943, (1999).
[43] H. Abe, H. Kawamura, and Y. Matsuo, “Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence.“, J. Fluids Engineering- 123.2, 382, (2001).
[44] S. Gavrilakis, “Numerical simulation of low-Reynolds-number turbulent flow through a straight square duet.“, Journal of Fluid Mechanics , Vol. 244, 101, (1992).
[45] A. Huser and S. Biringen, “Direct numerical simulation of turbulent flow in.“, Journal of Fluid Mechanics 257, 65, (1993).
[46] C. A. Lin and Y. C. Chen, “Parallel Implementations of Multi and Single Relaxation Time Lattice Boltzmann Methods.”, 22nd International Conference on Parallel Computational Fluid Dynamics, 17, (2010).
[47] Tamas I. Gombosi, “Gas kinetic theorem”, Cambridge University Press, (1994).
[48] X. He and L. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation”, Physics Reviews E 56, 6811, (1997).
[49] A. Leonard, “Energy cascade in large-eddy simulations of turbulent fluid flows“, Advances in Geophysics 18, 237, (1975).
[50] B. R. Munson, D. F. Young, and T. H. Okiishi, “Fundamentals of fluid mechanics“, 401,(1990).
[51] H. W. Hsu. “Investigation of turbulent Couette-Poiseuille and Couette flows inside a square duct“, Ph.D. Thesis, Department of Mechanical Engineering, National Tsing Hua Unversity. (2012).
[52] F. M. White, “Viscous Fluid Flow - 2nd ed.“, McGraw-Hill, (1991).
(此全文限內部瀏覽)
電子全文檔
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *