|
[1] S. Chen, H. Chen, D. O. Martinez, and W. H. Matthaeus, “Lattice Boltzmann model for simulation of magnetohydrodynamics”, Physics Review Letters 67, 3776, (1991). [2] Y. H. Qian, D. d’Humi`eres, and P. Lallemand, “Lattice BGK model for Navier-Stokes equation”, Europhysics Letters 17, 479, (1992). [3] S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flow”, Annual Reviews of Fluid Mechanics 30 329, (1998). [4] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier-Stokes equation”, Physics Review Letters 56, 1505, (1986). [5] S. Wolfram, “Cellular automaton fluids 1: Basic theory”, Journal Statistic Physics 45, 471, (1986). [6] S. Succi, E. Foti and F. J. HIGUERA, “Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method”, Europhysics Letters 9, 345, (1989). [7] F. J. Higuera, and J. Jem´enez, “Boltzmann approach to lattice gas simulations”, Europhysics Letters 9, 663, (1989). [8] P. L. Bhatnagar, E. P. Gross, and M. Grook, “A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems”, Physics Reviews E 94, 511, (1954). [9] S. Harris, “An introduction to the throry of the Boltzmann equation”, Holt, Rinehart and Winston, New York, (1971). [10] Y. H. Qian, D. d’Humi´eres, and P. Lallemand, “Lattice BGK models for Navier- Stokes equation”, Europhysics Letters 17, 479, (1992). [11] H. Chen, S. Chen, and W. H. Matthaeus, “Recovery of the Navier-Stokes quations using a lattice gas Boltzmann method”, Physics Reviews A 45, R5339, (1992). [12] U. Frisch, D. d’Humi`eres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet. “Lattice gas hydrodynamics in two and three dimensions”, Complex System 1, 649, (1987). [13] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, “Comparison of spectral method and lattice Boltzmann simulations of twodimensional hydrodynamics”, Phys. Fluids 6, 1285, (1994). [14] P. Lallemand and L. S. Luo, “Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability“, Physics Review E 61, 6546, (2000). [15] S. Succi S, G. Amati, R. Benzi, “Challenges in lattice Boltzmann computing“, Journal of Statistical Physics 81, 5, (1995). [16] Y. H. Qian, S. Succi, S. A. Orszag, “Recent advances in lattice Boltzmann computing”, Annual Review of Computational Physics, vol. III, World Scientific: Singapore, 195, (1995). [17] D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Timonen, PMA. Sloot, “Lattice Boltzmann hydrodynamics on parallel systems“, Computer Physics Communications 111, 14, (1998). [18] A. Dieter, Wolf-Gladrow, “Lattice Gas Cellular Automata and Lattice Boltzmann Models“. Springer: Berlin, (2000). [19] S. Hou, “Lattice Boltzmann Method for Incompressible, Viscous Flow“, Ph.D. Thesis, Department of Mechanical Engineering, Kansas State University, (1995). [20] D. d’Humi`eres, “Generalized lattice Boltzmann equation“, In Rarefied Gas Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics, vol. 159, Shizgal BD, Weaver DP (eds).AIAA: Washington, DC, 45, (1992). [21] D. d’Humi`eres, I. Ginzburg, M. Krafczyk, P. Lallemand and L. S. Luo, “Multiple-relaxation-time lattice Boltzmann models in three dimensions“, The Royal Society, 360, 437, (2002). [22] X. He, Q. Zou, L.S. Luo, and M. Dembo, “Analytic solution of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model”, Journal Statistic Physics 87, 115, (1997). [23] P. A. Skordos, “Initial and boundary conditions for the lattice Boltzmann method”, Physics Reviews E 48, 4823, (1993). [24] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius, “A consistent hydrodynamic boundary condition for the lattice Boltzmann method”, Phys. Fluids 7, 203, (1995). [25] T. Inamuro, M. Yoshino, and F. Ogino, “A non-slip boundary condition for lattice Boltzmann simulation”, Phys. Fluids 7, 2928, (1995). [26] S. Chen, D. O. Martinez, and R. Mei, “On boundary conditions in lattice Boltzmann methods”, Phys. Fluids 8, 2527, (1996). [27] Q. Zou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Phys. Fluids 9, 1591, (1997). [28] C. F. Ho, C. Chang, K. H. Lin and C. A. Lin, “Consistent boundary conditions for 2D and 3D lattice Boltzmann simulations”, CMES, Vol. 44, no.2, 137, (2009). [29] M. Krafczyk, J. Tolke, L. S. Luo, “Large-eddy simulation with a multiplerelaxation-time LBE model“, Journal of Modern Physics B Vol. 17, 1, (2003). [30] J. Smagorinsky, “General circulation experiments with the primitive equations. I. The basic experiment“, Mon. Weather Rev. 91, 99, (1963). [31] J. W. Deardorff, “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers.“, Journal of Fluid Mechanics 41.2, 453, (1970). [32] S. Hou, J. Sterling, S. Chen and G. D. Doolen, “A lattice Boltzmann subgrid model for high Reynolds number flows.”, Pattern formation and lattice gas automata, vol.6, 151, (1996). [33] C. H. Liu, K. H. Lin, H. C. Mai, C. A. Lin, “Thermal boundary conditions for thermal lattice Boltzmann simulations.”, Computers and Mathematics with Applications 59.7, 2178, (2010). [34] H. Yu, S. S. Girimaji, and L. S. Luo, “DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method.”, Journal of Computational Physics 209.2, 599, (2005). [35] H. Yu, L. Luo, and S. S. Girimaji, “LES of turbulent square jet flow using an MRT lattice Boltzmann model.”, Computers and Fluids 35.8, 957, (2006). [36] H. Yu and S. S. Girimaji, “Near-field turbulent simulations of rectangular jets using lattice Boltzmann method.”, Phys. Fluids 17, 125106, (2005). [37] K. N. Premnath, M. J. Pattison, and S. Banerjee, “Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows.”, Physical Review E 79.2, 026703, (2009). [38] K. N. Premnath, M. J. Pattison, and S. Banerjee, “Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method.” Physica A: Statistical Mechanics and its Applications 388.13, 2640, (2009). [39] M. J. Pattison, K. N. Premnath, and S. Banerjee, “Computation of turbulent flow and secondary motions in a square duct using a forced generalized lattice Boltzmann equation.”, Physical Review E 79.2, 026704, (2009). [40] X. He, X. Shan, and G. D. Doolen, “Discrete Boltzmann equation model for nonideal gases.”, Physical Review E 57.1, R13, (1998). [41] L. S. Luo, “Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases.”, Physical Review E 62.4, 4982, (2000). [42] R. D. Moser, J. Kim, and N. N. Mansour, “Direct numerical simulation of turbulent channel flow up to Re = 590.“, Phys. Fluids 11, 943, (1999). [43] H. Abe, H. Kawamura, and Y. Matsuo, “Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence.“, J. Fluids Engineering- 123.2, 382, (2001). [44] S. Gavrilakis, “Numerical simulation of low-Reynolds-number turbulent flow through a straight square duet.“, Journal of Fluid Mechanics , Vol. 244, 101, (1992). [45] A. Huser and S. Biringen, “Direct numerical simulation of turbulent flow in.“, Journal of Fluid Mechanics 257, 65, (1993). [46] C. A. Lin and Y. C. Chen, “Parallel Implementations of Multi and Single Relaxation Time Lattice Boltzmann Methods.”, 22nd International Conference on Parallel Computational Fluid Dynamics, 17, (2010). [47] Tamas I. Gombosi, “Gas kinetic theorem”, Cambridge University Press, (1994). [48] X. He and L. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation”, Physics Reviews E 56, 6811, (1997). [49] A. Leonard, “Energy cascade in large-eddy simulations of turbulent fluid flows“, Advances in Geophysics 18, 237, (1975). [50] B. R. Munson, D. F. Young, and T. H. Okiishi, “Fundamentals of fluid mechanics“, 401,(1990). [51] H. W. Hsu. “Investigation of turbulent Couette-Poiseuille and Couette flows inside a square duct“, Ph.D. Thesis, Department of Mechanical Engineering, National Tsing Hua Unversity. (2012). [52] F. M. White, “Viscous Fluid Flow - 2nd ed.“, McGraw-Hill, (1991). |