帳號:guest(18.226.98.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江明璋
作者(外文):Chiang, Ming-Chang
論文名稱(中文):設計改良式表面聲波感測器應用於低濃度混合氣體量測
論文名稱(外文):Improved Surface Acoustic Wave Sensor for Low-concentration Gas Mixture Detection
指導教授(中文):饒達仁
指導教授(外文):Yao, Da-Jeng
口試委員(中文):林哲信
楊家銘
口試委員(外文):Lin, Che-Hsin
Yang, Chia-Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033504
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:114
中文關鍵詞:表面聲波混合氣體氨氣甲烷氣體感測器濕度
外文關鍵詞:Surface acoustic waveMixture gasesAmmoniaMethaneGas sensorHumidity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:759
  • 評分評分:*****
  • 下載下載:26
  • 收藏收藏:0
  本文利用表面聲波 (Surface Acoustic Wave, SAW)原理發展出高靈敏度的電子鼻感測系統,利用128°YX-LiNbO3壓電材料與黃光微影製程技術完成感測晶片,當薄膜吸附造成重量變化導致表面聲波傳遞速度改變,藉此觀察後端頻率變化量判定吸附氣體種類與濃度。
本研究以量測低濃度混合氣體為目標,並提升感測靈敏度與精密度。整體系統方面,藉由改進原先感測腔體模組及奈米感測薄膜來達到實驗目的,其中感測腔體由1 L四頸瓶改良為200 μl微型流道儲存槽,而奈米感測薄膜由PNVP/中孔洞片狀碳材改良為PNVP/中孔洞空心碳球。另外經過多次同一晶片的量測數據顯示,使用PNVP薄膜量測氨氣最低濃度達250 ppb。對於甲烷量測最低可達9ppm。綜合單一氣體的反應資料庫,在不同溫濕度狀況下進行氨氣/甲烷混合氣體的量測實驗。利用此感測器量測混合氣體的結果與單一氣體資料庫間具有疊加效應存在,且氨氣訊號相較於甲烷訊號較易受到濕度的影響,隨著濕度的提高而下降。此外,藉由定量混合氣體實驗所建構的資料庫與疊加效應的應用,可即時的預測各種不同濃度的氨氣/甲烷混合氣體訊號大小。期望此氣體感測可以更為廣泛地被大眾應用於工安環境檢測與日常生活中。
  The detection results for mixture gas (ammonia/methane) by polymer deposited on 128° YX-LiNbO3 surface acoustic wave (SAW) delay lines are studied in this work. The adsorption of mixture gas by sensitive coating material modulates the phase velocity of the acoustic wave due to the mass loading and acoustoelectric effect. Thus, the targeted mixture gas can be evaluated by recording the frequency shift of the SAW device.
In this research, we used the SAW sensor to detect chemical compounds such as ammonia, methane, and ammonia-methane mixture gases. To enhance the sensitivity and accuracy of the surface acoustic wave sensors, the sensing chamber and polymer films was improved. Miniature cover with fluidic channels (200 μl) has replaced 1L 4-neck bottle chamber as a sensing chamber of the system. PNVP with mesoporous carbon hollow nanosphere has replaced PNVP with platelet mesoporous carbon as a sensing film of the system. Very low concentration of ammonia (≈ 250 ppb) and methane (≈ 9 ppm) can be detected by our SAW devices. From the ammonia gas and methane gas database, we can find that the frequency shift of ammonia/methane mixtures equal to the sum of frequency shift of ammonia and methane. Besides, the signal loss of ammonia is much stronger than methane in high relative humidity conditions. By quantitative measurement results of ammonia/methane mixture gas, we can use synergistic effects of the gas mixture to predict the signal intensity of different concentrations. The SAW sensor can also be applied to other industrial and environmental detection, and hope the gas sensor can be widely used in the daily life.
摘要 I
Abstract II
致謝 III
圖目錄 VIII
表目錄 XI

第一章 簡介 1
1.1 前言 1
1.2 研究目標 3
第二章 文獻回顧 6
2.1 人類嗅覺簡介 6
2.2 人工嗅覺電子鼻系統 7
2.3 氣體感測器種類 8
2.3.1導電型感測器 8
2.3.2金氧半場效電晶體感測器 10
2.3.3光學型感測器 11
2.3.4離子機動性測譜儀 12
2.3.5石英晶體微量天平 13
2.3.6表面聲波感測器 13
2.3.7各種電子鼻之比較 14
2.4 表面聲波簡介 17
2.5 陣列式表面聲波感測器 19
第三章 表面聲波理論參數與混合氣體量測原理 21
3.1壓電理論 21
3.1.1壓電效應 21
3.1.2壓電材料種類 24
3.1.3機電耦合係數( Electromechanical coupling coefficient, K2 ) 24
3.1.4延遲溫度係數( Temperature coefficient of delay,TCD ) 26
3.1.5壓電基材的傳遞損失( Transmission Loss of substrate ) 26
3.2指叉式電極轉換器( Interdigital Transducers ) 27
3.3表面聲波元件的感測機制 30
3.4頻率飄移效應( Frequency Shift ) 31
3.5質量負載效應( SAW Mass Loading ) 34
3.6混合氣體 35
3.6.1目前市面上混合氣體量測原理 35
3.6.2應用表面聲波感測器於混合氣體的量測方法 38
第四章 表面聲波感測元件與系統設計 40
4.1表面聲波感測晶片 40
4.2塗佈高分子薄膜 46
4.2.1高分子薄膜選擇 46
4.2.2參雜碳載體(CMK)複合感測之高分子薄膜 48
4.3表面聲波震盪電路 49
4.4非連續式陣列化電路 51
4.4.1設計架構 51
4.4.2運作過程與遭遇困難 52
4.5連續式陣列化電路 53
4.5.1連續式與非連續式比較 53
4.5.2設計架構 54
4.6量測環境系統 56
4.6.1四頸瓶量測環境系統 56
4.6.2模組化微腔體量測環境系統 58
4.6.3整體量測系統環境 60
第五章 實驗結果 62
5.1高分子薄膜造成頻率飄移量 62
5.2穩定性測試 67
5.3重複性測試 68
5.4氨氣氣體量測結果 71
5.4.1低濃度氨氣氣體量測 72
5.4.2高濃度氨氣氣體量測 76
5.4.3氨氣氣體量測整合 81
5.5混合氣體(氨氣/甲烷)量測結果與分析 84
5.5.1甲烷氣體量測結果 85
5.5.2混合氣體量測結果 86
5.5.3 利用TGA進行量測結果 93
5.6溫濕度對於各氣體頻率響應影響 96
5.6.1 溫度對於頻率響應影響 97
5.6.2 濕度對於頻率響應影響 99
5.7混合氣體定量量測 103
第六章 結論 109
第七章 參考文獻 110
[1] E. L. Hines, E. Llobet, and J. W. Gardner, "Neural network based electronic nose for apple ripeness determination," Electronics Letters, vol. 35, pp. 821-823, 1999.
[2] N. Barié, M. Bücking, and M. Rapp, "A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring," Sensors and Actuators B: Chemical, vol. 114, pp. 482-488, 2006.
[3] H. Kim, B. Konnanath, P. Sattigeri, J. Wang, A. Mulchandani, N. Myung, et al., "Electronic-nose for detecting environmental pollutants: signal processing and analog front-end design," Analog Integrated Circuits and Signal Processing, vol. 70, pp. 15-32, Jan 2012.
[4] I. Horváth, Z. Lázár, N. Gyulai, M. Kollai, and G. Losonczy, "Exhaled biomarkers in lung cancer," European Respiratory Journal, vol. 34, pp. 261-275, Jul 2009.
[5] H. Wohltjen and R. Dessy, "Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description," Analytical Chemistry, vol. 51, pp. 1458-1464, 1979.
[6] D. Pestov, O. Guney-Altay, N. Levit, and G. Tepper, "Improving the stability of surface acoustic wave (SAW) chemical sensor coatings using photopolymerization," Sensors and Actuators B: Chemical, vol. 126, pp. 557-561, 2007.
[7] W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, "Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator," Sensors and Actuators B: Chemical, vol. 125, pp. 422-427, 2007.
[8] A. Bryant, D. L. Lee, and J. F. Vetelino, "A Surface Acoustic Wave Gas Detector," in 1981 Ultrasonics Symposium, pp.171-174, 1981.
[9] A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, "NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives," Sensors and Actuators B: Chemical, vol. 171–172, pp. 25-42, 2012.
[10] Z. Zhu, Y. Xu, and B. Jiang, "A One ppm NDIR Methane Gas Sensor with Single Frequency Filter Denoising Algorithm," Sensors, vol. 12, pp. 12729-12740, 2012.
[11] T. Perl, B. Bödeker, M. Jünger, J. Nolte, and W. Vautz, "Alignment of retention time obtained from multicapillary column gas chromatography used for VOC analysis with ion mobility spectrometry," Analytical & Bioanalytical Chemistry, vol. 397, pp. 2385-2394, 2010.
[12] Y. Haitao, X. Pengcheng, X. Xiaoyuan, L. Dong-Weon, and L. Xinxin, "Micro-/Nanocombined Gas Sensors With Functionalized Mesoporous Thin Film Self-Assembled in Batches Onto Resonant Cantilevers," Industrial Electronics, IEEE Transactions on, vol. 59, pp. 4881-4887, 2012.
[13] H. Aikata, H. Takaishi, Y. Kawakami, S. Takahashi, M. Kitamoto, T. Nakanishi, et al., "Telomere Reduction in Human Liver Tissues with Age and Chronic Inflammation," Experimental Cell Research, vol. 256, pp. 578-582, May 2000.
[14] P. H. Ku, C. Y. Hsiao, M. J. Chen, T. H. Lin, Y. T. Li, S. C. Liu, et al., "Polymer/Ordered Mesoporous Carbon Nanocomposite Platelets as Superior Sensing Materials for Gas Detection with Surface Acoustic Wave Devices," Langmuir, vol. 28, pp. 11639-11645, Aug 2012.
[15] A. Dall’Olio, G. Dascola, V. Varacca, and V. B. C. R. Se’ances, Acad. Sci. Paris Ser. C, vol. 267, pp. 433-435, 1968.
[16] G. Bidan, "Electroconducting conjugated polymers: new sensitive matrices to build up chemical or electrochemical sensors. A review," Sens. Actuators B, vol. 6, pp. 45-56, 1992.
[17] Lei Zhang, Fanli Meng, Yan Chen, Jinyun Liu, Yufeng Sun, Tao Luo, et al., "A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays," Sensors and Actuators B: Chemical, vol. 142, pp. 204-209, 2009.
[18] Peter Pacher, Alexandra Lex, Sabrina Eder, Gregor Trimmel, Christian Slugovc, Emil J.W. List, et al., "A novel concept for humidity compensated sub-ppm ammonia detection," Sensors and Actuators B: Chemical, vol. 145, pp. 181-184, 2010.
[19] S. Davies, P. Spanel, and D. Smith, "Quantitative analysis of ammonia on the breath of patients in end-stage renal failure," Kidney international, vol. 52, pp. 223-228, Jul 1997.
[20] K. S. Suslick and N. A. Rakow, "Colorimetric sensor arrays for molecular recognition," Tetrahedron, vol. 60, pp. 11133-11138, 2004.
[21] S. J. Pearton, F. Ren, Y. L. Wang, B. H. Chu, K. H. Chen, C. Y. Chang, et al., "Recent advances in wide bandgap semiconductor biological and gas sensors," Progress in Materials Science, vol. 55, pp. 1-59, 2010.
[22] Frank Ro¨ck, Nicolae Barsan, and U. Weimar, "Electronic Nose: Current Status and Future Trends," Chem. Rev., vol. 108, pp. 705-725, 2008.
[23] D. S. Ballantine, Ed., Acoustic wave sensors: theory, design, and physico- chemical applications, 1997.
[24] Oomman K. Varghese, Dawei Gong, William R. Dreschel, Keat G. Ong, and Craig A. Grimes, "Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors," Sensors and Actuators B: Chemical, vol. 94, pp. 27-35, 2003.
[25] Chi-Yen Shen, Chun-Pu Huang, and Wang-Tsung Huang, "Gas-detecting properties of surface acoustic wave ammonia sensors," Sensors and Actuators B: Chemical, vol. 101, pp. 1-7, 2004.
[26] Chi-Yen Shen and Shih-Yuan Liou, "Surface acoustic wave gas monitor for ppm ammonia detection," Sensors and Actuators B: Chemical, vol. 131, pp. 673-679, 2008.
[27] Y. F. T. Nomura, M. Kitora, Y. Matsuura, I. Aso, Sens Actuators, vol. 52, pp. 90–95, 1998.
[28] T. R. N. Miura, G. Lu, N. Yamazoe, Sens Actuators, B, vol. 47, pp. 84–91, 1998.
[29] T. K. M. Ando , M. Haruta, Sens Actuators, vol. 2425, pp. 851-853, 1995.
[30] N. F. d. R. P.D. van der Wal, M. Koudelka-Hep, Sens Actuators, vol. 35-36, pp. 119-123, 1996.
[31] A. H. J. Chena, R. Strzodaa , M. Fleischera and M. C. Amannb, Procedia Chemistry vol. 1, pp. 1383–1386, 2009.
[32] L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proc. London Math. Soc., vol. 17, p. 4, 1885.
[33] R. M. White, "Direct piezoelectric coupling to surface elastic waves," Appl. Phys. Lett., vol. 7, pp. 314-316, 1965.
[34] J. J. Campbell, "A method for estimation estimation optical crystal cuts and propagation directions for excitation of piezoelectric surface waves," IEEE Trans. Son. Ultrason, vol. 15, 1968.
[35] B. Drafts, "Acoustic wave technology sensors," IEEE TRANSACTIONS ON MiCROWAVE THEORY AND TECHNIQUES, vol. 49, pp. 795-802, 2001.
[36] T. Alizadeh and S. Zeynali, "Electronic nose based on the polymer coated SAW sensors array for the warfare agent simulants classification," Sensors and Actuators B: Chemical, vol. 129, pp. 412-423, 2008.
[37] M. Rapp, J. Reibel, A. Voigt, M. Balzer, and O. Bu¨low, "New miniaturized SAW-sensor array for organic gas detection driven by multiplexed oscillators," Sensors and Actuators B: Chemical, vol. 65, 2000.
[38] V. J. Garder, Microsensors MEMS and Smart Devices vol. 319-334: Wiley-VCH, 2001.
[39] 吳朗, 電子陶瓷/壓電: 全欣資訊, 1994.
[40] 邱碧秀, 電子陶瓷材料: 徐氏基金會, 1988.
[41] C. K. Campbell, Surface acoustic wave devices for mobile and wireless communications: Academic Press, 1998.
[42] J. W. Gardner, V. K. V., and O. O. Awadelkarim, "Microsensors MEMS and Smart Devices " Wiley-interscience, pp. 303-306, 1990.
[43] K. Y. Hashimoto, Surface Acoustic Wave Device in Telecommunications- Modeling and Simulation: Springer, 2000.
[44] 高國陞, 表面聲波元件之頻率及溫度特性之研究: 國立中山大學,博士論文, 2004.
[45] B. D. Stephen, Acoustic wave sensors:theory, design, and physico-chemical applications. , 1996.
[46] 趙哲新, "以表面聲波震盪電路為基礎之氣體感測系統," 清華大學,碩士論文, 2009.
[47] D.E.Field, Fluorinated Polyepoxy And Polyurethane Coatings vol. 48, 1976.
[48] 楊永瑞, 以表面聲波震盪電路為基礎之生化感測系統: 清華大學,碩士論文, 2005.
[49] Y. Da-Jeng, H. Hsu-Chao, C. Mei-Ching, and C. Je-Shin, "Gas sensor array based on surface acoustic wave devices for vapors detection and analysis," in Nano/Micro Engineered and Molecular Systems (NEMS), 2010 5th IEEE International Conference on, pp. 267-271, 2010.
[50] L. Yi-Tian, H. Hsu-Chao, C. Mei-Ching, L. Tai-Hsuan, K. Pei-Hsin, Y. Chia-Min, et al., "Polymer-coated surface acoustic wave sensor array for low concentration NH3 detection," in Nano/Micro Engineered and Molecular Systems (NEMS), 2011 IEEE International Conference on, pp. 333-337, 2011.
[51] K. Mosher, J. He, Y. Liu, E. Rupp, and J. Wilcox, "Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems," International Journal of Coal Geology, vol. 109–110, pp. 36-44, Apr 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *