帳號:guest(18.189.182.233)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):紀亞
作者(外文):Ji Ya
論文名稱(中文):具有和不具有真空之液-汽兩相往復式熱虹吸管之熱性能比較實驗研究
論文名稱(外文):An experimental study of comparative thermal performances between reciprocating liquid-vapor two-phase thermosyphons with and without vaccum
指導教授(中文):劉通敏
張始偉
指導教授(外文):Liou, Tong-Miin
Chang, Shyy-Woei
口試委員(中文):傅武雄
許文震
口試委員(外文):Fu, Wu-Shung
Sheu, Wen-Jenn
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033466
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:兩相流往復運動熱虹吸管
外文關鍵詞:two phase flowreciprocatingthermosyphon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:481
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究⽐比較研究具有(不具有)真空,體積填充率(FR)為50%的氣液兩相往復式反重⼒力閉合熱虹吸管的熱傳性能。在不同往復頻率(f)條件下,收集一系列流動快照以顯示往復熱虹吸管(RT)中的流場結構隨時間的變化情況。在臨界往復頻率(𝑓cr)處,熱虹吸管中的液池開始搖動然後向上湧到頂壁,於頂壁處匯合後之熱流向下注入冷卻液池,藉以促進熱交換。由於搖動液體中浸入式氣泡漂移產生阻力,以及非真空往復熱虹吸管蒸發器中不可冷凝空氣產生的空氣/蒸汽分壓共同作用,真空往復熱虹吸管之𝒇𝒄𝒓值低於非真空往復熱虹吸管之𝒇𝒄𝒓值。隨著往復頻率之增加,液體流的動量增加,上升流體與從液池重複彈回的向下飛濺流體相互抵消或匯流。在f=1.67,1.83,1.92 和2Hz條件下,本研究同步量測沿著蒸發器/冷凝器中心線的時間平均局部以及區域平均紐塞數(Nu),於每組往復頻率,各測試十六組不同加熱/冷卻功率。 往復熱虹吸管的熱傳性能主要受往復數(𝑹𝒆𝒄𝒊)控制,並隨加熱/冷卻功率變化而改變。與未抽真空的往復熱虹吸管比較,真空往復熱虹吸管中之相變活動提升了熱傳效應;⽽而區域平均Nu數隨往復數(𝑹𝒆𝒄𝒊)、沸騰數(𝑩𝒐)和冷凝器無量綱熱阻(𝑹𝒕𝒉,𝒄𝒐𝒏)增加而提升。另外本實驗研究亦量測各種𝑹𝒆𝒄𝒊,𝑩𝒐和𝑹𝒕𝒉,𝒄𝒐𝒏測試條件下,具有(不具有)真空往復熱虹吸管之熱阻性能。研究結果推導之傳熱係數及熱阻關聯式可用以計算、評估真空往復熱虹吸管蒸發器之平均Nu數。
Thermal performances of two-phase reciprocating anti-gravity closed thermosyphons of 50% volumetric filling ratio (FR) with/without vacuum are comparatively examined. With different reciprocating frequencies (f) tested; a series of flow snapshots are collected to illustrate the f-dependent temporal variations of flow structures in the reciprocating thermosyphons (RT). At the critical f (fcr ), the liquid pool in each thermosyphon sways and then starts surging upward to the top-wall under which the confluent hot stream injects downward into the cool liquid pool to facilitate heat exchanges. Acting together by the additional drags in the
shaking liquid due to drifts of immersed air bubbles and the increased air/vapor partial pressures attributing from the heated non-condensable air in evaporator of the RT without vacuum, the fcr is raised from the vacuumed RT counterpart. Further f increases to enrich the momentum
of liquid streams; the surges of up-lash streams are advanced to counteract/merge with the down-splashing stream that bounce off the liquid pool repetitively. The responsive time-mean local and averaged Nusselt numbers (Nu) along the evaporator/condenser centerlines are measured at f = 1.67, 1.83, 1.92 and 2 Hz with sixteen sets of 4 heating/cooling duties at each f tested. Thermal performances in the RT are dominated by reciprocation number (Reci) and subject to the
interdependent impacts by the heating/cooling duties. With the vacuumed RT, the phase change activities elevate Nu from the non-vacuumed counterparts; whereas the Nu levels are increased by increasing Reci, boiling number (Bo) and dimensionless thermal resistance of condenser
(Rth,con). Thermal resistance properties for present RTs with/without vacuum are examined at various Reci, Bo and Rth,con with the heat transfer correlations devised to evaluate the averaged Nu over the evaporator section of present vacuumed RT.
中文摘要 1
Abstract 3
誌謝 5
目錄 I
圖表目錄 III
符號說明 1
第一章
前言 3
1-­1 工業應用背景 3
1-­2 文獻回顧 8
1-­2-­1 沸騰熱傳 8
1-­2-­2 傳統管道沸騰熱傳 12
1-2-­3 往復流熱傳 19
1-­3 研究動機與目的 24
第二章
實驗系統及方法 27
2-­1 實驗機台和測試模組 27
2-­2 數據處理 34
2­‐3 測試條件和實驗過程 37
第三章
結果與討論 42
3-­1 汽液二相流場結構 42
3-­2 熱傳實驗結果 51
3-­3 Nueva實驗式 58
3-­4 熱阻性能 63
第四章
結論與建議 68
4-1 結論 68
4-2 建議 70
1.Chang, S.W., Heat transfer in a smooth-walled reciprocating anti-gravity open thermosyphon. International Journal of Thermal Sciences, 2003. 42(12): p. 1089-1103.
2.Chang, S.W. and A.W. Lees, Heat transfer of tilted reciprocating thermosyphon with jet entry flow. International Journal of Heat and Mass Transfer, 2010. 53(7–8): p. 1380-1391.
3.Steiner, D. and J. Taborek, Flow boiling heat-transfer in vertical tubes correlated by an asymptotic model. Heat Transfer Engineering, 1992. 13(2): p. 43-69.
4.Cioncolini, A. and J.R. Thome, Algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow. International Journal of Heat and Fluid Flow, 2011. 32(4): p. 805-817.
5.Chen, J.C., Correlation for boiling heat transfer to saturated fluids in convetive flow. Industrial & Engineering Chemistry Process Design and Development, 1966. 5(3): p. 322-&.
6.Forster, H.K. and N. Zuber, Dynamics of vapor bubbles and boiling heat transfer. AIChE Journal, 1955. 1(4): p. 531-535.
7.Shah, M.M., A new correlation for heat transfer during boiling flow through pipes. ASHRAE Trans, 1976. 82(2): p. 66-86.
8.Gungor, K.E. and R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer, 1986. 29(3): p. 351-358.
9.Liu, Z. and R.H.S. Winterton, A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. International Journal of Heat and Mass Transfer, 1991. 34(11): p. 2759-2766.
10.Kandlikar, S.G., A general correlation for saturated 2-phase flow boiling heat transfer inside horizontal and vertical tubes. Journal of Heat Transfer-Transactions of the Asme, 1990. 112(1): p. 219-228.
11.Singh, A.P., A. Singh, and H.S. Ramaswamy, Modification of a static steam retort for evaluating heat transfer under reciprocation agitation thermal processing. Journal of Food Engineering, 2015. 153: p. 63-72.
12.Chang, S.W., Forced heat convection in a reciprocating duct fitted with 45 degree crossed ribs. International Journal of Thermal Sciences, 2002. 41(3): p. 229-240.
13.Fu, W.-S., S.-H. Lian, and L.-Y. Hao, An investigation of heat transfer of a reciprocating piston. International Journal of Heat and Mass Transfer, 2006. 49(23–24): p. 4360-4371.
14.Fu, W.-S., Experimental investigation for effects of a reciprocating motion on mixed convection of a curved vertical cooling channel with a heat top surface. International Journal of Heat and Mass Transfer, 2011. 54(23–24): p. 5109-5115.
15.Hishida, M., Heat transportation by oscillatory flow in a new type of heat transportation pipe. International Journal of Heat and Mass Transfer, 2009. 52(23–24): p. 5634-5642.
16.Wu, H.-W. and C.-T. Lau, Unsteady turbulent heat transfer of mixed convection in a reciprocating circular ribbed channel. International Journal of Heat and Mass Transfer, 2005. 48(13): p. 2708-2721.
17.Pereira, J.C.F. and J.M.M. Sousa, Experimental and Numerical Investigation of Flow Oscillations in a Rectangular Cavity. Journal of Fluids Engineering, 1995. 117(1): p. 68-74.
18.Mataoui, A., R. Schiestel, and A. Salem, Study of the oscillatory regime of a turbulent plane jet impinging in a rectangular cavity. Applied Mathematical Modelling, 2003. 27(2): p. 89-114.
19.Cao, Y. and Q. Wang, Reciprocating Heat Pipes and Their Applications. Journal of Heat Transfer, 1995. 117(4): p. 1094-1096.
20.Ling, J., Y. Cao, and Q. Wang, Critical working frequency of reciprocating heat-transfer devices in axially reciprocating mechanisms. International Journal of Heat and Mass Transfer, 1998. 41(1): p. 73-80.
21.Zhao, T.S. and P. Cheng, The friction coefficient of a fully developed laminar reciprocating flow in a circular pipe. International Journal of Heat and Fluid Flow, 1996. 17(2): p. 167-172.
22.Chang, S.W., K.F. Chiang, and T.H. Lee, Thermal performance of thin loop-type vapor chamber. Experimental Thermal and Fluid Science, 2015. 61: p. 130-143.
23.Kim, J.H., T.W. Simon, and R. Viskanta, Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results. Journal of Heat Transfer, 1993. 115(1): p. 5-6.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *