帳號:guest(3.147.242.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鐘敏帆
作者(外文):Chung, Min-Fan
論文名稱(中文):發炎誘發藥物釋放之產氣式中空微球系統及其相關治療
論文名稱(外文):Controlled Release via Inflammation-Induced Gas-Generating Hollow-Microsphere Systems for the Treatment of Inflammatory Related Diseases
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing-Wen
口試委員(中文):黃效民
賈維焯
邱信程
陳三元
王麗芳
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032809
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:66
中文關鍵詞:發炎疾病刺激應答材料藥物釋放載體過氧化物一氧化氮抗藥性
外文關鍵詞:inflammatory diseasesstimuli-responsive materialsdrug deliveryreactive oxygen speciesnitric oxidemultidrug resistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:160
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
在現今骨髓炎的治療方面,如何讓藥物有效進入細菌生物膜是一個待克服的難題。盡管抗生素藥品不斷推陳出新,藥物穿透生物膜的效率仍比一般組織低,使得療程頻繁且漫長,並有較高的復發率。為發展更有效的治療方式,本研究是利用一具有「發炎控制」釋放效果之中空微球系統,以poly(lactic-co-glycolic acid) (PLGA) 為材料,利用微流道 (microfluidic device) 系統建立中空球殼 (core/shell) 結構,並於內部攜帶親水性藥物與產氣材料。當此中空微球處於發炎的微酸環境時,產氣材料會與氫離子或活性氧化物 (reactive oxygen species;ROS) 反應並產生氣體,進而脹破球殼,使球體內部的藥物能夠被釋放出來治療骨科相關疾病。本研究分為三部份來進行:第一部份是一具有「發炎控制」釋放效果之中空微球骨水泥系統。此中空微球內部攜帶親水性抗生素與NaHCO3,與骨水泥混合後注入骨髓炎患處,當此中空微球處於骨髓炎 (osteomyelitis) 的酸性環境時,NaHCO3會與氫離子反應而產生CO2氣體撐破球殼,達到藥物控制釋放效果。以兔子骨髓炎模型進行動物實驗,證明此藥物載體能達到良好的治療效果並減少復發機會。由於關節炎患部的酸性程度較骨髓炎輕微,第二部份我們利用此中空微球裝載乙醇、NaHCO3及類固醇藥物,來增加系統對發炎程度的敏感性。藉由患部發炎產生的活性氧化物將乙醇氧化成醋酸,並偕同患部中偏酸性的組織液,將中空微球內之NaHCO3反應分解產生二氧化碳氣體,以延伸應用於關節炎治療。第三部份,使產生的氣體除了能調控藥物釋放之外,亦能夠提昇藥物治療效果。我們把一氧化氮產氣材料(Diethylenetriamine NONOate) 及抗癌藥物CPT-11 共同包覆於中空微球內,藉由癌症部位偏酸性的組織液,與中空微球內之DETA-NONOate反應,使其分解產生一氧化氮氣體,反應後產生的一氧化氮氣體除了能撐破球殼並釋出CPT-11藥物之外,也能抑制P-glycoprotein(P-GP) 過度表現,來減少癌細胞抗藥性,使CPT-11能有效殺死抗藥性癌細胞。
Poly(D,L-lactic-co-glycolic acid) (PLGA) has been extensively utilized as a carrier material for drug delivery, but in the absence of a triggering mechanism, the rate of release of a drug from a PLGA-based carrier is typically slow, resulting in a sub-effective drug concentration. To address this issue, this work develops an injectable hollow microsphere (HM) system that carries the drug and the bubble-generating agent. Upon injection of this system into inflamed tissues, environmental protons (H+) or H2O2 infiltrate the shell of the HMs and react with their encapsulated bubble-generating agent to form bubbles that trigger localized drug release.
In study I, in the conventional treatment of osteomyelitis, the penetration of antibiotics into the infected bone is commonly poor. To ensure that the local antibiotic concentration is adequate, this work develops an injectable calcium phosphate (CP) cement in which is embedded pH-responsive HMs that can control the release of a drug according to the local pH. The HMs are fabricated using a microfluidic device, with a shell of PLGA and an aqueous core that contains vancomycin (Van) and sodium bicarbonate (SBC). At neutral pH, the CP/HM cement elutes a negligible concentration of the drug. In an acidic environment, the SBC that is encapsulated in the HMs reacts with the acid rapidly to generate CO2 bubbles, disrupting the PLGA shells and thereby releasing Van locally in excess of a therapeutic threshold. The feasibility of using this CP/HM cement to treat osteomyelitis is studied using a rabbit model. Analytical results reveal that the CP/HM cement provides highly effective local antibacterial activity. Histological examination further verifies the efficacy of the treatment by the CP/HM cement. The above findings suggest that the CP/HM cement is a highly efficient system for the local delivery of antibiotics in the treatment of osteomyelitis.
In study II, this work proposes an ultra-sensitive ROS-responsive HM carrier that contains an anti-inflammatory drug, an acid-precursor of ethanol and FeCl2, and a bubble-generating agent (SBC). In cases of osteoarthritis, in inflamed tissues H2O2 in low concentrations diffuses through the HMs to oxidize their encapsulated ethanol in the presence of Fe2+ by the Fenton reaction, to establish an acidic milieu. In acid, SBC decomposes to form CO2 bubbles, disrupting the shell wall of the HMs and releasing the anti-inflammatory drug to the problematic site, eventually protecting against joint destruction. These results reveal that the proposed HMs may uniquely exploit the biologically relevant concentrations of H2O2 and thus be used for the site-specific delivery of therapeutics in inflamed tissues.
In study III, Multidrug resistance (MDR) due to the overexpression of drug transporters such as P-glycoprotein (Pgp) increases the efflux of drugs and thereby limits the effectiveness of chemotherapy. To address this issue, this work develops an injectable HM system that carries an anticancer agent (CPT-11) and a nitric oxide (NO)-releasing donor (NONOate). Upon injection of this system into acidic tumor tissues, environmental protons (H+) infiltrate the shell of the HMs and react with their encapsulated NONOate to form NO bubbles that trigger localized drug release and serve as a Pgp-mediated MDR reversal agent. The site-specific drug release and the NO-reduced Pgp-mediated transport can cause the intracellular accumulation of the drug at a concentration that exceeds the cell killing threshold, eventually inducing its antitumor activity. These results reveal that this pH-responsive HM carrier system provides a potentially effective method for treating cancers that develop MDR.
TABLE OF CONTENT
ABSTRACT-----------------------------------------------------------------------I
TABLE OF CONTENT------------------------------------------------------V
LIST OF FIGURES---------------------------------------------------------VIII
LIST OF TABLES------------------------------------------------------------XII
































Chapter 1 Introduction--------------------------------------------------------1

Chapter 2 Inflammation-Induced Drug Release by Using a pH-Responsive Gas-Generating Hollow-Microsphere System for the Treatment of Osteomyelitis------------------6

2.1. Design of Experiments------------------------------------------------------------------7
2.2. Materials and Methods-----------------------------------------------------------------8
2.2.1. Materials----------------------------------------------------------------------------8
2.2.2. Fabrication of PLGA HMs--------------------------------------------------------8
2.2.3. In vitro drug release study--------------------------------------------------------9
2.2.4. In vitro antibacterial activity study----------------------------------------------9
2.2.5. In vivo efficacy--------------------------------------------------------------------10
2.2.6. Statistical analysis----------------------------------------------------------------11
2.3. Results and Discuss-------------------------------------------------------------------11
2.3.1. Preparation and characterization of PLGA HMs-----------------------------11
2.3.2. Preparation and characterization of test CP composite cements----------- 13
2.3.3. In vitro drug-release profiles----------------------------------------------------15
2.3.4. In vitro antibacterial activity of test cements against MRSA---------------17
2.3.5. In vivo efficacy study------------------------------------------------------------18
2.4. Conclusions----------------------------------------------------------------------------22


Chapter 3 Controlled Release Using an Ultra-Sensitive ROS-Responsive Gas-Generating Carrier for Localized Inflammation Inhibition---------------------------------------23

3.1. Design of Experiments---------------------------------------------------------------24
3.2. Materials and Methods-------------------------------------------------------------25
3.2.1. Materials---------------------------------------------------------------------------25
3.2.2. Fabrication and characterization of PLGA HMs-----------------------------25
3.2.3. In vitro drug release study-------------------------------------------------------26
3.2.4. Inhibition of ROS formation in LPS-activated macrophages---------------26
3.2.5. Cell viability---------------------------------------------------------------------- 27
3.2.6. Animal model---------------------------------------------------------------------27
3.2.7. In vivo ROS-responsive drug release from test HMs------------------------27
3.2.8. In vivo efficacy of test HMs-----------------------------------------------------28
3.2.9. Statistical analysis----------------------------------------------------------------28
3.3. Results and Discuss-----------------------------------------------------------------29
3.3.1. Characteristics of test HMs----------------------------------------------------- 29
3.3.2. ROS-responsiveness of test HMs---------------------------------------------- 31
3.3.3. In vitro drug release profiles----------------------------------------------------32
3.3.4. Inhibition of ROS production in LPS-activated macrophages------------- 33
3.3.5. In vivo ROS-responsive drug release from test HMs------------------------36
3.3.6. In vivo efficacy of test HMs-----------------------------------------------------38
3.4. Conclusions---------------------------------------------------------------------------41

Chapter 4 A pH-Responsive Carrier System that Generates NO Bubbles to Trigger Drug Release and Reverse P-Glycoprotein-Mediated Multidrug Resistance-----------42

4.1. Design of Experiments-------------------------------------------------------------43
4.2. Materials and Methods------------------------------------------------------------44
4.2.1. Materials---------------------------------------------------------------------------44
4.2.2. Fabrication of PLGA HMs------------------------------------------------------44
4.2.3. In vitro drug release study-------------------------------------------------------45
4.2.4. Expression of Pgp----------------------------------------------------------------45
4.2.5. Cell viability-----------------------------------------------------------------------46
4.2.6. Intracellular CPT-11 accumulation---------------------------------------------46
4.2.7. Animal model---------------------------------------------------------------------47
4.2.8. Antitumor efficacy---------------------------------------------------------------47
4.2.9. Statistical analysis----------------------------------------------------------------48
4.3. Results and Discuss-----------------------------------------------------------------48
4.3.1. Preparation and characterization of PLGA HMs-----------------------------48
4.3.2. In vitro drug-release profiles----------------------------------------------------50
4.3.3. Fractions of carboxylate and lactone forms of CPT-11----------------------50
4.3.4. Therapeutic concentrations of DETA NONOate and CPT-11--------------51
4.3.5. In vitro antitumor activity of test HMs----------------------------------------53
4.3.6. In vivo drug-release profiles----------------------------------------------------55
4.3.7. In vivo efficacy study------------------------------------------------------------57
4.4. Conclusions--------------------------------------------------------------------------60


References------------------------------------------------------------------61












LIST OF FIGURES
Figure 2-1. Schematic illustrations showing the composition and structure of injectable CP/HM composite cement developed in the study and its mechanism in treatment of osteomyelitis.------------------------------------7
Figure 2-2. Schematic illustration of the microfluidic device system used in the study to fabricate the PLGA HMs.--------------------------------------------9
Figure 2-3. (a) Fluorescence image of PLGA droplets, showing their PLGA shells and Cy5-labeled Van (green color). (b) Fluorescence and (c) SEM micrographs of PLGA HMs following evaporation. SEM micrographs of test cements: (d) CP, (e) CP/1.0% Van, (f) CP/2.5% Van, (g) CP/5.0% Van and (h) CP/20% HM; area outlined by a square is magnified further in (i). -----------------------------------------------------------------------------12
Figure 2-4. (a) In vitro release profiles of Van from test cements that were incubated in PBS with a pH of 5.5 or 7.4 at 37 °C. SEM micrographs of CP/HM composite cements that had been incubated in PBS at pH 5.5 at 37 °C for (b) one week and (c) eight weeks. Yellow arrows indicate the pores that were formed in embedded HMs. ----------------------------------------16
Figure 2-5. (a) Photograph and (b) diameters of ZOIs of test cements that had been presoaked in PBS buffer with pH 7.4 or 5.5, showing antibacterial activity, which was evaluated by Kirby-Bauer assay. A commercially available Sensi-Disc standard was used as a control. *Statistical significance at P < 0.05. ------------------------------------------------------18
Figure 2-6. (a) Photographs of rabbit tibia that had been treated with CP, CP/Van, or CP/HM cement, taken three weeks post-treatment. (b) Changes in body weight, WBC count, and CRP level of test rabbits that had been treated with various test cements. MRSA: time when osteomyelitis was created; Treatment: time when test cement was implanted. ------------------------20
Figure 2-7. Histological photomicrographs of decalcified bone sections of infected rabbits before treatment and at three weeks following treatment with various test cements. Healthy bone tissue served as a control. All sections were stained with H&E. --------------------------------------------21
Figure 3-1. Composition/structure of ultra-sensitive ROS-responsive gas-generating HM developed herein and its working mechanism in the treatment of OA. -------------------------------------------------------------------------------24
Figure 3-2. a) Fluorescence micrograph of as-prepared HMs. Characteristics of test HMs that were immersed in PBS at 37 °C in normal (0 μM H2O2/pH 7.4) and inflamed (50 μM H2O2/pH 6.8) joint environments: b) ultrasound images of generation of CO2 bubbles; c) release profiles of DEX-P; d) SEM micrographs of morphologies of test HMs following experiment.----------------------------------------------------------------------30
Figure 3-3. Effects of free DEX-P at various concentrations on inhibition of ROS production by RAW264.7 macrophages upon LPS activation: a) CLSM images of intracellular CellROX™ Deep Red fluorescence; b) fluorescent intensities of intracellular CellROX™ Deep Red and extracellular Amplex Red; quantitative results concerning cell viability following treatment with c) free DEX-P at various concentrations and d) test HMs, obtained using MTT assay. N.S.: not significant; *: statistically significant (P < 0.05). -------------------------------------------34
Figure 3-4. Effects of test HMs on inhibition of ROS production by RAW264.7 macrophages upon LPS activation: a) confocal laser scanning microscopy images of intracellular CellROX™ Deep Red fluorescence; b) fluorescent intensities of intracellular CellROX™ Deep Red and extracellular Amplex Red. N.S.: not significant; *: statistically significant (P < 0.05). ---------------------------------------------------------36
Figure 3-5. IVIS images of in vivo drug release behavior of each type of test HM that was locally injected into normal or inflamed knees. -----------------37
Figure 3-6. Anti-inflammatory effects of free DEX-P and test HMs in mice with experimentally created OA in their left knees: IVIS images and relative fluorescent intensities, revealing extent of inflammation in each studied group following treatment. N.S.: not significant; *: statistically significant (P < 0.05). ---------------------------------------------------------39
Figure 3-7. Efficacy of free DEX-P and test HMs in treating OA: a) expression levels of IL-1β, TNF-α, PGE-2, and MMP-2 in cartilage samples following various treatments. N.S.: not significant; *: statistically significant (P < 0.05); b) cartilage sections stained by H&E or safranin O and their corresponding immunofluorescence staining sections, revealing intensities of aggrecan and collagen type X. -------------------------------40
Figure 4-1. Schematic structure/composition of HMs developed herein and their mechanism in the treatment of MDR tumors. ------------------------------43
Figure 4-2. a) Photomicrographs of test HMs and a representative frozen cross-section. Characteristics of HMs that were immersed in PBS with various pH values at 37 °C: b) ultrasound images of generation of NO bubbles; c) release profiles of NO; d) SEM micrographs of morphology of test HMs following the experiment; and e) release profiles of CPT-11.- ------------------------------------------------------------------------49
Figure 4-3. Reversal by DETA NONOate at various concentrations of the Pgp-mediated MDR in MCF-7/ADR cells at pH 6.6: a) confocal images of Pgp expression; b) relative fluorescence intensities of cells analyzed by flow cytometry; and c) cell viability obtained using MTT assay. d) Viability of cells that were treated with CPT-11 at various concentrations with or without NONOate (1.0 mM) at pH 6.6. *Statistical significance at P < 0.05. ----------------------------------------53
Figure 4-4. Reversal of Pgp-mediated MDR in MCF-7/ADR cells by test HMs at different pH environments: a) confocal images of Pgp expression levels and b) quantitative results of flow cytometric analysis; c) intracellular accumulations of CPT-11 obtained by HPLC analysis; d) fluorescence images of viability of the treated cells and e) quantitative results obtained by MTT assay. *Statistical significance at P < 0.05. ----------55
Figure 4-5. In vivo drug release behaviors of HMs that were intratumorally injected into normal and tumor tissues: a) Cy5 fluorescence signals detected by IVIS and (b) their relative fluorescence intensities. *Statistical significance at P < 0.05. ------------------------------------------------------57
Figure 4-6. a) Changes in relative tumor volume and body weight of mice with MCF-7/ADR tumors in response to various treatments. b) Results of antitumor efficacy of each treatment modality on MDR tumors: PET images, Pgp expression levels, H&E staining, and TUNEL staining.---59




LIST OF TABLES
Table 2-1. Compression strengths of test cements (n = 6). ----------------------------14
Table 4-1. Proportions of carboxylate and lactone forms of CPT-11: free-form CPT-11 and that released from HMs following exposure to environments at various pH values (n = 6). -------------------------------------------------51
[1] N. Emanuel, Y. Rosenfeld, O. Cohen, Y. H. Applbaum, D. Segal, Y. Barenholz, J. Controlled Release 2012, 160, 353.
[2] K. T. Peng, C. F. Chen, I. Chu, Y. M. Li, W. H. Hsu, R. W. W. Hsu, P. J. Chang, Biomaterials 2010, 31, 5227.
[3] P. Wu, D. W. Grainger, Biomaterials 2006, 27, 2450.
[4] M. G. Scott, E. Dullaghan, N. Mookherjee, N. Glavas, M. Waldbrook, A. Thompson, A. Wang, K. Lee, S. Doria, P. Hamill, Nat. Biotechnol. 2007, 25, 465.
[5] J. Chou, T. Ito, M. Otsuka, B. Ben‐Nissan, B. Milthorpe, Adv. Healthc. Mater. 2013, 2, 678.
[6] M. Ginebra, T. Traykova, J. Planell, J.Controlled Release 2006, 113, 102.
[7] J. Schnieders, U. Gbureck, O. Germershaus, M. Kratz, D. B. Jones, T. Kissel, Adv. Healthc. Mater. 2013, 2, 1361.
[8] B. S. Zolnik, D. J. Burgess, J. Controlled Release 2007, 122, 338.
[9] N. G. Durmus, T. J. Webster, Adv. Healthc. Mater. 2013, 2, 165.
[10] A. H. Broderick, D. M. Stacy, Y. Tal‐Gan, M. J. Kratochvil, H. E. Blackwell, D. M. Lynn, Adv. Healthc. Mater 2014, 3, 97.
[11] J. R. Casey, S. Grinstein, J. Orlowski, Nat. Rev. Mol. Cell Biol. 2010, 11, 50.
[12] U. Styrkarsdottir, G. Thorleifsson, H. T. Helgadottir, N. Bomer, S. Metrustry, S. B. Zeinstra, A. M. Strijbosch, E. Evangelou, D. Hart, M. Beekman, Nat. Genet. 2014, 46, 498.
[13] B. J. Crielaard, C. J. Rijcken, L. Quan, S. Wal, I. Altintas, M. Pot, J. A. Kruijtzer, R. M. Liskamp, R. M. Schiffelers, C. F. Nostrum, Angew. Chem. Int. Ed. 2012, 51, 7254.
[14] I. Levinger, P. Levinger, M. K. Trenerry, J. A. Feller, J. R. Bartlett, N. Bergman, M. J. McKenna, D. C. Smith, Arthritis Rheumatol. 2011, 63, 1343.
[15] A. Petit, M. Sandker, B. Müller, R. Meyboom, P. Midwoud, P. Bruin, E. M. Redout, M. V. Helder, C. H. Lest, S. J. Buwalda, Biomaterials 2014, 35, 7919.
[16] P. Mohassel, P. Rosen, L. C. Rosen, K. Pak, A. L. Mammen, Arthritis Rheumatol. 2015, 67, 266.
[17] I. E. Gross, Y. Glucksam, I. E. Biton, R. Margalit, J. Control Release. 2009, 135, 65.
[18] C. J. Ke, T. Y. Su, H. L. Chen, H. L. Liu, W. L. Chiang, P. C. Chu, Y. Xia, H. W. Sung, Angew. Chem. Int. Ed. 2011, 123, 8236.
[19] A. P. N. Lotito, M. N. Muscará, M. H. B. Kiss, S. A. Teixeira, G. S. Novaes, I. M. M. Laurindo, C. A. Silva, S. B. V. Mello, J. Rheumatol. 2004, 31, 992.
[20] M. Wang, S. Sun, C. I. Neufeld, B. P. Ramirez, Q. Xu, Angew. Chem. Int. Ed. 2014, 126, 13662.
[21] C. G. Lux, S. J. Barr, T. Nguyen, E. Mahmoud, E. Schopf, N. Fomina, A. Almutairi, J. Am. Chem. Soc. 2012, 134, 15758.
[22] C. Walling, S. Kato, J. Am. Chem. Soc. 1971, 93, 4275.
[23] M. F. Chung, W. T. Chia, H. Y. Liu, C. W. Hsiao, H. C. Hsiao, C. M. Yang, H. W. Sung, Adv. Healthc. Mater. 2014, 3, 1854.
[24] C. J. Ke, W. L. Chiang, Z. X. Liao, H. L. Chen, P. S. Lai, J. S. Sun, H. W. Sung, Biomaterials 2013, 34, 1.
[25] Z. Wang, Z. Wang, D. Liu, X. Yan, F. Wang, G. Niu, M. Yang, X. Chen, Angew. Chem. Int. Ed. 2014, 126, 2028.
[26] a) C. Riganti, E. Miraglia, D. Viarisio, C. Costamagna, G. Pescarmona, D. Ghigo, A. Bosia, Cancer Res. 2005, 65, 516; b) D. L. Anastasia, M. Noemi, S. Annalucia, P. Alessandra, P. Anna, Z. P. Jens, P. Raffaele, G. F. Maria, P. Pasquale, M. Gabriella, Biochem. J. 2011, 440, 175.
[27] L. J. Ignarro, C. Napoli, J. Loscalzo, Circ. Res. 2002, 90, 21.
[28] a) K. Takasuna, T. Hagiwara, M. Hirohashi, M. Kato, M. Nomura, E. Nagai, T. Yokoi, T. Kamataki, Cancer Res. 1996, 56, 3752; b) J. W. Yoo, E. S. Choe, S. M. Ahn, C. H. Lee, Biomaterials 2010, 31, 552.
[29] V. Estrella, T. Chen, M. Lloyd, J. Wojtkowiak, H. H. Cornnell, A. I. Hashim, K. Bailey, Y. Balagurunathan, J. M. Rothberg, B. F. Sloane, Cancer Res. 2013, 73, 1524.
[30] K. Zhou, F. Zelder, Angew. Chem. Int. Ed. 2010, 49, 5178.
[31] Y. Takashima, J. Hashimoto, Y. Kitamura, S. Shimma, Y. Fujiwara, F. Koizumi, K. Tamura, A. Hamada, Cancer Res. 2014, 74, 1678.
[32] L. M. Grover, A. J. Wright, U. Gbureck, A. Bolarinwa, J. Song, Y. Liu, D. F. Farrar, G. Howling, J. Rose, J. E. Barralet, Biomaterials 2013, 34, 6631.
[33] U. Joosten, A. Joist, G. Gosheger, U. Liljenqvist, B. Brandt, C. von Eiff, Biomaterials 2005, 26, 5251.
[34] M. Ramstedt, B. Ekstrand-Hammarström, A. V. Shchukarev, A. Bucht, L. Österlund, M. Welch, W. T. Huck, Biomaterials 2009, 30, 1524.
[35] Y. H. Kim, L. Zhang, T. Yu, M. Jin, D. Qin, Y. Xia, Small 2013, 9, 3462.
[36] E. Khor, L. Y. Lim, Biomaterials 2003, 24, 2339.
[37] H. R. Ramay, M. Zhang, Biomaterials 2004, 25, 5171.
[38] D. P. Link, J. Van den Dolder, W. J. Jurgens, J. G. Wolke, J. A. Jansen, Biomaterials 2006, 27, 4941.
[39] A. Ratier, I. Gibson, S. Best, M. Freche, J. Lacout, F. Rodriguez, Biomaterials 2001, 22, 897.
[40] L. E. Carey, H. H. Xu, C. G. Simon Jr, S. Takagi, L. C. Chow, Biomaterials 2005, 26, 5002.
[41] M. Stigter, J. Bezemer, K. De Groot, P. Layrolle, J. Controlled Release 2004, 99, 127.
[42] M. P. Ginebra, C. Canal, M. Espanol, D. Pastorino, E. B. Montufar, Adv. Drug Deliv. Rev. 2012, 64, 1090.
[43] a) S. Mariotto, A. C. de Prati, E. Cavalieri, E. Amelio, E. Marlinghaus, H. Suzuki, Curr. Med. Che. 2009, 16, 2366; b) K. H. Steen, A. E. Steen, P. W. Reeh, J. Neurosci. 1995, 15 ,3982; c) H. L. Pu, W. L. Chiang, B. Maiti, Z. X. Liao, Y. C. Ho, M. S. Shim, E. Y. Chuang, Y. Xia, H. W. Sung, ACS nano 2014, 8, 1213.
[44] Q. Xu, Y. Tanaka, J. T. Czernuszka, Biomaterials 2007, 28, 2687.
[45] S. Radin, G. El-Bassyouni, E. J. Vresilovic, E. Schepers, P. Ducheyne, Biomaterials 2005, 26, 1043.
[46] a) C. J. Ke, T. Y. Su, H. L. Chen, H. L. Liu, W. L. Chiang, P. C. Chu, Y. Xia, H. W. Sung, Angew. Chem. Int. Ed. Engl. 2011, 123, 8236; b) C. J. Ke, W. L. Chiang, Z. X. Liao, H. L. Chen, P. S. Lai, J. S. Sun, H. W. Sung, Biomaterials 2013, 34, 1.
[47] H. Li, T. Hamza, J. E. Tidwell, N. Clovis, B. Li, Adv. Healthc. Mater. 2013, 2, 1277.
[48] J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, P. T. Hammond, Biomaterials 2010, 31, 6019.
[49] E. M. Pritchard, T. Valentin, B. Panilaitis, F. Omenetto, D. L. Kaplan, Adv. Funct. Mater. 2013, 23, 854.
[50] P. E. Szmitko, C. H. Wang, R. D. Weisel, J. R. de Almeida, T. J. Anderson, S. Verma, Circulation 2003, 108, 1917.
[51] a) V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D. S. Weiss, Y. Weinrauch, A. Zychlinsky, Science 2004, 303, 1532; b) Y. L. Chiu, S. C. Chen, C. J. Su, C. W. Hsiao, Y. M. Chen, H. L. Chen, H. W. Sung, Biomaterials 2009, 30, 4877.
[52] A. Tzur-Balter, Z. Shatsberg, M. Beckerman, E. Segal, N. Artzi, Nat. Commun. 2015, 6, 6208.
[53] R. Santucci, D. Levêque, R. Herbrecht, Br. J. Clin. Pharmacol. 2010, 70, 762.
[54] A. Schaffner, J. Clin. Invest. 1985, 76, 1755.
[55] H. Wang, H. Xie, J. Wu, X. Wei, L. Zhou, X. Xu, S. Zheng, Angew. Chem. Int. Ed. 2014, 126, 11716.
[56] A. G. Bajpayee, C. R. Wong, M. G. Bawendi, E. H. Frank, A. J. Grodzinsky, Biomaterials 2014, 35, 538
[57] Z. S. Chen, T. Furukawa, T. Sumizawa, K. Ono, K. Ueda, K. Seto, S. I. Akiyama, Mol. Pharm. 1999, 55, 921.
[58] R. W. Ahn, F. Chen, H. Chen, S. T. Stern, J. D. Clogston, A. K. Patri, M. R. Raja, E. P. Swindell, V. Parimi, V. L. Cryns, Clin. Cancer Res. 2010, 16, 3607.
[59] J. W. Yoo, E. S. Choe, S. M. Ahn, C. H. Lee, Biomaterials 2010, 31, 552.
[60] J. H. Shin, M. H. Schoenfisch, Chem. Mater. 2007, 20, 239.
[61] C. Riganti, B. Rolando, J. Kopecka, I. Campia, K. Chegaev, L. Lazzarato, A. Federico, R. Fruttero, D. Ghigo, Mol. Pharm. 2012, 10, 161.
[62] S. P. Sanders, E. S. Siekierski, J. D. Porter, S. M. Richards, D. Proud, J. Virol. 1998, 72, 934.
[63] K. J. Chen, E. Y. Chaung, S. P. Wey, K. J. Lin, F. Cheng, C. C. Lin, H. L. Liu, H. W. Tseng, C. P. Liu, M. C. Wei, ACS Nano 2014, 8, 5105.
[64] W. L. Chiang, Y. C. Hu, H. Y. Liu, C. W. Hsiao, R. Sureshbabu, C. M. Yang, M. F. Chung, W. T. Chia, H. W. Sung, Small 2014, 10, 4100.
[65] a) W. J. Shi, J. Barber, Y. Zhao, J. Phys. Chem. B 2013, 117, 3976; b) B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Fréchet, M. K. Nazeeruddin, M. Grätzel, M. D. McGehee, Nat. Photonics. 2009, 3, 406; c) C. J. Mu, D. A. Lavan, R. S. Langer, B. R. Zetter, ACS Nano 2010, 4, 1511.
[66] S. Maschauer, J. Einsiedel, R. Haubner, C. Hocke, M. Ocker, H. Hübner, T. Kuwert, P. Gmeiner, O. Prante, Angew. Chem. Int. Ed. 2010, 49, 976.















(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *