帳號:guest(13.58.236.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李協昱
作者(外文):Li, Hsieh Yu
論文名稱(中文):高分子靜電紡絲纖維之製備及作為 燃料電池/鋰離子電池元件之應用
論文名稱(外文):Preparation of Polymeric Electrospun Fibers and Their Applications for Fuel Cells and Lithium-Ion Batteries
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying Ling
口試委員(中文):賴君義
孫一明
許聯崇
呂幸江
鄭如忠
蔡敬誠
口試委員(外文):Lai, Juin Yih
Sun, Yi Ming
Hsu. Steve Lien-Chung
Lue, Shingjiang Jessie
Jeng, Ru Jong
Tasi, Jing Cherng
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032802
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:207
中文關鍵詞:聚苯并咪唑聚苯并環己烷電紡纖維聚電解質膜燃料電池鋰離子電池隔離膜
外文關鍵詞:polybenzoxazinepolybenzimidazoleelectrospun nanofibersproton exchange membranesfuel cellsseparators
相關次數:
  • 推薦推薦:0
  • 點閱點閱:522
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
本研究以靜電紡絲高分子纖維作為研究主軸,並探討其應用於燃料電池之質子交換膜和鋰離子電池的隔離膜的性質和潛力。燃料電池聚電解質膜材開發係製備靜電紡絲高分子纖維,將之與高分子電解質成形複合薄膜分為二方向,其一為聚苯并咪唑與聚苯并環己烷摻混聚電解質纖維應用於高溫燃料電池中(磷酸燃料電池),其二係以聚偏二氟乙烯( Poly(vinylidene fluoride), PVDF)電紡纖維以全氟磺酸樹脂(Nafion)高分子鏈或是聚磺酸苯乙烯高分子鏈(PSSA)反應接枝形成仿聚電解質纖維應用於低溫燃料電池中。新穎鋰離子電池隔離膜開發方面係以聚苯并環己烷( Polybenzoxazine, PBz)靜電紡絲纖維技術製備與膜材表面性質並應用於鋰離子電池效能探討。
第一部分的研究包括兩個方向,其一為高溫燃料電池中的聚電解質薄膜,以聚苯并環己烷(PBz)與聚苯并咪唑( Polybenzimidazole, PBI)兩者摻混共紡製備電紡高分子纖維,其中聚苯并環己烷作為高分子交聯劑而交聯固定纖維結構,再將之含浸聚苯并咪唑形成複合纖維膜。聚苯并咪唑與聚苯并環己烷摻混電紡纖維(PBI-PBz NF)能有效存在於聚苯并咪唑膜材中,提升複合膜材楊氏係數3倍與最大應力值1.35倍,提高複合膜材的質子導通率( 0.17 S cm-1於160 oC)與尺寸變化量可降至20 %以下,並提升對應的電池性能以及操作持久性。
其二,由全氟磺酸樹脂作為聚電解質膜基材部分,與聚電解質改質的電紡絲纖維形成複合膜。利用不同化學反應步驟,分別將全氟磺酸樹脂高分子鏈或是聚磺酸苯乙烯(PSSA)高分子鏈反應接枝於聚偏二氟乙烯的電紡絲纖維表面,形成類似聚電解質電紡絲纖維纖維。以全氟磺酸樹脂纖維表面改質研究方面( Nafion-functionalized poly(vinylidene fluoride) electrospun nanofibers, PVDFNF-Nafion),全氟磺酸樹脂與聚偏二氟乙烯電紡纖維以臭氧改質方式與官能基置換交替使用方式,形成聚偏二氟乙烯電紡纖維表面修飾全氟磺酸樹脂,再將此改質電紡纖維與全氟磺酸樹脂形成複合膜(Nafion-CM1)。其氫氧燃料電池(PEMFC)性能顯示Nafion-CM1膜材最高功率密度可達700 mW cm-2,並且具有優異的甲醇阻抗能力與尺寸安定性,因此於直接甲醇燃料電池(DMFC)性能上,於高甲醇濃度時(5M),電池最高功率密度可達122 mW cm-2。
以聚磺酸苯乙烯纖維表面改質研究方面( Poly(styrenesulfonic acid)-graft-poly(vinylidene fluoride) electrospun nanofibers, PSSA-g-PVDFNF),透過苯乙烯磺酸鈉(4-Styrenesulfonic acid sodium, Nass)以自由基轉移聚合(ATRP)的聚合方式修聚偏二氟乙烯電紡纖維表面,使聚偏二氟乙烯電紡纖維表面帶有具柔軟可移動式磺酸根基團的聚磺酸苯乙烯高分子,並與全氟磺酸樹脂形成複合膜(Nafion-CM),其質子導通率可達106 mS cm-1,氫氧燃料電池性能最高功率密度高達770 mW cm-2。比較同樣以全氟磺酸樹脂為基材的聚電解質纖維膜,Nafion-CM1與Nafion-CM的質子導通率皆高於全氟磺酸重鑄膜(Nafion-RC)及商業膜全氟磺酸膜Nafion 212,且有效降低質子導通活化能至3.0 kJ mol-1。
本研究第二部份係以可交聯的聚苯并環己烷高分子製備靜電紡絲纖維(CR-PBz-FbM),探討其基本性質以及於鋰離子電池隔離膜之應用。使用二氨基二苯醚(4,4’-diaminodiphenyl ether)、雙酚A(Bisphenol-A)與聚甲醛(Paraformaldehyde)所製備而成的聚苯并環己烷高分子(PBz-oda)作為電紡纖維材料的選擇,在電紡過程以不同參數調控纖維型態及熱處理對材料極性影響,且疏水特性因聚苯并環己烷電紡纖維膜形成纖維結構及熱處理方式不同而有所差異(於107o - 147o之間)。在生物沾黏部分,由於聚苯并環己烷材料低表面能特性,能有效阻止血液以及抗蛋白質吸附現象。
另一方面,經由交聯過後聚苯并環己烷高分子表面帶有許多羥基(-OH),使聚苯并環己烷電紡纖維膜(CR-PBz-FbM)具備水釘扎(water-pinning)能力與水分傳遞運輸特性。且聚苯并環己烷高分子為熱固性材料,具備良好熱穩定性及化學穩定性。經由物理與化學損害測試,呈現耐磨、對不同溶劑與酸鹼忍受度高、高撓曲性及高機械強度等特性。
鋰離子電池隔離膜應用上,證實聚苯并環己烷電紡纖維膜確實有良好的離子導通率(2.92 mS cm-1)、高形狀維持能力及含浸電解液過後具備自熄行為及阻燃能力,能夠有效避免熱失控現象。在電池充放電性能上。電紡纖維結構具相當高的孔隙率(77 %)以及較大的孔洞尺寸(孔洞大小約為4.0 μm),高速充放電(2C)數據顯示,聚苯并環己烷電紡纖維膜在鋰離子電池性能上具有優異的高速充放電能力(118 mAh g-1)外,同時也具備充放電穩定性。
This research focuses on the preparation and surface modification of electrospun nanofibers and their application in the proton exchange membranes for fuel cells and the porous separators for lithium-ion batteries.
In the first part, polybenzimidazole (PBI) is electrospun into nanofiber mats with a polybenzoxazine as a crosslinking agent. The thermally crosslinked PBI electrospun nanofiber mats (CR-PBI-NF) are impregnated with PBI solutions to result in CR-PBI-NF reinforced PBI composite membranes. Based on the crosslinked structures, the nanofiber morphology could be maintained in the PBI composite membranes, so as to enhance their mechanical strength with a Young’s modulus of about 2200 MPa and stress strength of 85 MPa, which is 3.0-fold and 1.35-fold of the values recorded with the neat PBI membrane. The composite membranes also exhibit good dimensional stability upon acid-doping with dimensional changes less than 20%. The nanofibers also provide as proton-conducting pathways in the composite membranes so as to increase their proton conductivity from 0.85 to 0.17 S cm-1 at160 oC. As a result, the single cell employing the composite membranes shows better cell performance than the results observed with the pristine PBI membrane.
The nanofiber-reinforcement approach is further applied to Nafion-based membranes with surface-modified poly(vinylidene fluoride) electrospun nanofibers (PVDFNF) as the reinforcements. Both Nafion and poly(styrene sulfonic acid) chains are chemically incorporated to the PVDFNF surfaces to improve the interfacial compatibility between the nanofiobers and Nafion matrix and to induce proton-conducting channels along the nanofiber surfaces in the composite membranes. With the formation of proton-conducting pathways, the Nafion composite membranes exhibit low activation energy of proton conduction (about 2.4-3.0 kJ mol-1), high proton conductivity (about 106 mS cm-1), and depressed methanol permeability compared to the neat Nafion membrane. Consequently, the Nafion composite membrane based H2/O2 single cells show a maximum power density of 770 mW cm-2, which is 1.5-fold of the value recorded with the commercial Nafion 212 membrane. Meanwhile, the low methanol permeability of Nafion-based composite membranes makes it be suitable for direct methanol fuel cells (DMFCs). With a 5 M methanol solution as a feeding fuel, the single cell shows a maximum power density of 122 mW cm-2 and a current density at 0.2 V of 610 mA cm-2.
The other part of this work involves the preparation of electrospun nanofiber mats of a mainchain polybenzoxazine (PBz, number averaged molecular weight: about 6,700 g mol-1) prepared with 4,4’-diaminodophenyl ether, bisphenol-A, and paraformaldehyde. The thermally crosslinked electrospun PBz nanofiber mats (CR-PBz-FbM) show some attractive properties, including hydrophobic surface with a water contact angle of about 147o, water-pinning durability, blood and protein repellency, shape-reforming ability, and robust mechanical and chemical resistance. The CR-PBz-FbM (thickness of about 80 μm, porosity of 76 %, and mean pore size of 4.0 μm) has been evaluated as a separator for lithium-ion batteries. They exhibit an very high electrolyte uptake (about 825 %), high ionic conductivity (2.92 mS cm-1), and a near-zero thermal shrinkage at 150 oC for 0.5 h. As a result, the performance of the half-cell tests on the CR-PBz-FbM-based lithium-ion battery demonstrate a high energy density of 118 mAh g-1 at 2.0 C is and good cycling stability after 50 charge-discharge cycles at 0.2 C.
目錄

中文摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 X
表目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2 能源需求與展望 2
1-3 燃料電池與聚電解質傳導膜 4
1-4 鋰離子電池與隔離膜 7
1-5 靜電紡絲纖維技術與設備 14
1-5.1 靜電紡絲技術發展與應用 14
1-5.2 靜電紡絲原理、設備及參數影響 17
第二章 研究背景 21
2-1 燃料電池質子交換膜發展與研究方向 21
2-2 新穎質子交換膜開發 23
2-2.1 磺酸化碳氫高分子質子交換膜 23
2-2.2 含氟質子交換膜 27
2-2.3 磷酸型質子交換膜(高溫燃料電池) 31
2-3 有機-無機奈米複合質子交換膜 33
2-3.1 高分子摻混製備複合膜材 33
2-3.2 無機奈米粒子摻混製備複合膜材 36
2-3.3 碳奈米管摻混製備複合膜材 37
2-3.4 靜電紡絲纖維製備纖維複合膜材 39
2-4 鋰離子電池隔離膜研究近況 44
2-4.1 多孔性高分子膜 45
2-4.2 不織布纖維膜 50
2-4.3 無機複合膜 56
2-5 高分子電紡纖維研究發展 58
第三章 電紡纖維膜於燃料電池應用 66
3-1 燃料電池研究方向簡介 66
3-2 實驗藥品與儀器設備 70
3-2.1 實驗藥品與溶劑: 70
3-2.2 儀器設備: 74
3-3 聚苯并咪唑-聚苯并環己烷電紡纖維膜系統背景簡介 79
3-4 聚苯并咪唑-聚苯并環己烷電紡纖維膜電紡纖維膜研究流程 80
3-4.1 聚苯并咪唑合成 80
3-4.2 聚苯并環己烷合成 80
3-4.3 製備聚苯并咪唑與聚苯并環己烷摻混電紡纖維 81
3-4.4 製備交聯聚苯并咪唑-聚苯并環己烷摻混電紡複合纖維 82
3-4.5 製備聚苯并咪唑-聚苯并環己烷摻混電紡纖維複合膜 82
3-4.6 製備聚苯并咪唑與聚苯并環己烷摻混電紡纖維複合膜之膜電極組 82
3-5 聚苯并咪唑-聚苯并環己烷電紡纖維膜電紡纖維膜結果分析與性質討論 83
3-5.1 聚苯并咪唑與聚苯并環己烷材料鑑定 83
3-5.2 聚苯并咪唑與聚苯并環己烷電紡複合纖維 84
3-5.3 聚苯并咪唑與聚苯并環己烷電紡纖維膜與其電池性能 88
3-6 聚偏二氟乙烯纖維表面修飾全氟磺酸樹酯纖維膜系統背景簡介 92
3-7 聚偏二氟乙烯纖維表面修飾全氟磺酸樹酯纖維膜研究流程 93
3-7.1 製備聚偏二氟乙烯電紡纖維 93
3-7.2 製備聚偏二氟乙烯纖維表面修飾聚甲基丙烯酸缩水甘油酯纖維 93
3-7.3 製備聚偏二氟乙烯纖維表面修飾N-(4-羧基苯基)馬來醯亞胺纖維 94
3-7.4 製備聚偏二氟乙烯纖維表面修飾全氟磺酸樹脂纖維 95
3-7.5 製備聚偏二氟乙烯纖維表面修飾全氟磺酸樹脂複合纖維膜 95
3-7.6 製備聚偏二氟乙烯纖維表面修飾全氟磺酸樹脂複合纖維膜之膜電極組 96
3-8 聚偏二氟乙烯纖維表面修飾全氟磺酸樹酯纖維膜結果分析與性質討論 97
3-8.1 聚偏二氟乙烯纖維表面修飾各步驟鑑定 97
3-8.2 聚偏二氟乙烯纖維表面修飾全氟磺酸樹脂複合纖維膜 102
3-8.3 聚偏二氟乙烯纖維表面修飾全氟磺酸樹脂複合纖維膜於燃料電池性能 107
3-9 聚偏二氟乙烯纖維表面修飾聚磺酸苯乙烯纖維膜系統背景簡介 109
3-10 聚偏二氟乙烯纖維表面修飾聚磺酸苯乙烯纖維膜研究流程 110
3-10.1 製備聚偏二氟乙烯纖維表面修飾聚磺酸苯乙烯纖維 110
3-10.2 製備聚偏二氟乙烯纖維表面修飾聚磺酸苯乙烯纖維 110
3-11 聚偏二氟乙烯纖維表面修飾聚磺酸苯乙烯纖維膜結果分析與性質討論 111
3-11.1 聚偏二氟乙烯纖維表面修飾聚磺酸苯乙烯合成鑑定 111
3-11.2 聚偏二氟乙烯纖維表面修飾聚磺酸苯乙烯複合纖維膜製備鑑定 114
3-11.3 聚偏二氟乙烯纖維表面修飾聚磺酸苯乙烯複合纖維膜其電池性能 117
3-12 聚電解質纖維於燃料電池應用結論 119
第四章 電紡纖維膜於鋰離子電池隔離膜應用 120
4-1 新穎聚苯并環己烷電紡纖維與電紡纖維隔離膜目前發展與研究 120
4-1.1 電紡纖維應用於鋰離子電池隔離膜背景簡介 120
4-1.2 聚苯并環己烷電紡纖維發展與應用於鋰離子電池研究方向 121
4-2 藥品與儀器設備 123
4-2.1 實驗藥品 123
4-2.2 儀器設備 125
4-3 聚苯并環己烷電紡纖維特性與鋰離子隔離膜研究流程 131
4-3.1 聚苯并環己烷合成 131
4-3.2 聚苯并環己烷與交聯聚苯并環己烷纖維膜製備 131
4-4 聚苯并環己烷電紡纖維結果分析與性質討論 134
4-4.1 聚苯并環己烷材料鑑定 134
4-4.2 交聯聚苯并環己烷電紡纖維鑑定 137
4-4.3 交聯聚苯并環己烷纖維材料特性 141
4-5 交聯聚苯并環己烷纖維隔離膜結果分析與性質討論 146
4-5.1 交聯聚苯并環己烷纖維隔離膜特性 146
4-5.2 交聯聚苯并環己烷纖維隔離膜電池性能 152
4-6 交聯聚苯并環己烷纖維隔離膜特性與應用於鋰離子電池結論 154
第五章 總結 155
第六章 參考文獻 156
1. BP Statistical Review of World Energy 2014
<http://www.bp.com/en/global/corporate/about-bp/energy-economics.html>
2. Zhang, H.; Shen, P. K.; “Recent development of polymer electrolyte membranes for fuel cells.” Chemical reviews, 2012, 112, 2780-2832.
3. Zhang, L.; Chae, S. R.; Hendren, Z.; Park, J. S.; Wiesner, M. R.; ”Recent advances in proton exchange membranes for fuel cell applications.” Chemical Engineering Journal, 2012, 204, 87-97.
4. Chen, C. S.; Pan, F. M.; “Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2 supports toward methanol oxidation.” Applied Catalysis B: Environmental, 2009, 91, 663-669.
5. 黃可龍; 王兆翔; 劉素琴編著 鋰離子電池原理與技術; 五南出版社: 台北, 2010.
6. Pikul, J. H.; Zhang, H. G.; Cho, J.; Braun, P. V.; King, W. P.; “High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes.” Nature communications, 2013, 4, 1732(5 pp).
7. Armand, M.; Tarascon, J. M.; “Building better batteries.” Nature, 2008,451, 652-657.
8. Johnson, B. A.; White, R. E.; “Characterization of commercially available lithium-ion batteries.” Journal of Power Sources, 1998, 70, 48-54.
9. Zhang, X.; Ji, L.; Toprakci, O.; Liang, Y.; Alcoutlabi, M.; “Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries.” Polymer Reviews, 2011, 51, 239-264.
10. Arora, P.; Zhang, Z.; “Battery separators.” Chemical Reviews, 2004, 104, 4419-4462.
11. Matsumoto, H.; Tanioka, A.; “Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation.” Membranes, 2011, 1, 249-264.
12. Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S.; “A review on polymer nanofibers by electrospinning and their applications in nanocomposites.” Composites Science and Technology, 2003, 63, 2223-2253.
13. Goh, Y. F.; Shakir, I.; Hussain, R.; “Electrospun fibers for tissue engineering, drug delivery, and wound dressing.” Journal of Materials Science, 2013, 48, 3027-3054.
14. Formo, E.; Lee, E.; Campbell, D.; Xia, Y.; “Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications.” Nano Letters, 2008, 8, 668-672.
15. Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F.; “Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process.” Macromolecules, 2004, 37, 573-578.
16. Nezarati, R. M.; Eifert, M. B.; Cosgriff-Hernandez, E.; “Effects of humidity and solution viscosity on electrospun fiber morphology.” Tissue Engineering Part C: Methods, 2013, 19, 810-819.
17. Kalluri, S.; Seng, K. H.; Guo, Z.; Liu, H. K.; Dou, S. X.; “Electrospun lithium metal oxide cathode materials for lithium-ion batteries.” RSC Advances, 2013, 3, 25576-25601.
18. Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D.; “Industrial upscaling of electrospinning and applications of polymer nanofibers: a review.” Macromolecular Materials and Engineering, 2013, 298, 504-520.
19. Niu, H.; Lin, T.; “Fiber generators in needleless electrospinning.” Journal of Nanomaterials, 2012, 2012, 12(13pp).
20. Sahay, R.; Kumar, P. S.; Sridhar, R.; Sundaramurthy, J.; Venugopal, J.; Mhaisalkar, S. G.; Ramakrishna, S.; “Electrospun composite nanofibers and their multifaceted applications.” Journal of Materials Chemistry, 2012, 22, 12953-12971.
21. Tijing, L. D.; Choi, J. S.; Lee, S.; Kim, S. H.; Shon, H. K.; “Recent progress of membrane distillation using electrospun nanofibrous membrane.” Journal of Membrane Science, 2014, 453, 435-462.
22. Mauritz, K. A.; Moore, R. B.; “State of understanding of Nafion.” Chemical Reviews, 2004, 104, 4535-4586.
23. Diat, O.; Gebel, G.; “Fuel cells: Proton channels.” Nature materials, 2008, 7, 13-14.
24. Darling, R. M.; Meyers, J. P.; “Mathematical model of platinum movement in PEM fuel cells.” Journal of the Electrochemical Society, 2005, 152, A242-A247.
25. Bauer, F.; Denneler, S.; Willert‐Porada, M.; “Influence of temperature and humidity on the mechanical properties of Nafion® 117 polymer electrolyte membrane.” Journal of Polymer Science Part B: Polymer Physics, 2005, 43, 786-795.
26. Savadogo, O.; “Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems.” Journal of New Materials Electrochemical Systems , 1998, 1, 47-66.
27. Fuller, T.; Hartnig, C.; Ramani, V.; Uchida, H.; Gasteiger, H. A.; Proton Exchange Membrane Fuel Cells 9 : ECS Transactions; Electrochemical Society: New Jersey(USA), 2009.
28. Merlo, L.; Ghielmi, A.; Cirillo, L.; Gebert, M.; Arcella, V.; “Membrane electrode assemblies based on HYFLON® ion for an evolving fuel cell technology.” Separation Science and Technology, 2007,42, 2891-2908.
29. Miyatake, K.; Oyaizu, K.; Tsuchida, E.; Hay, A. S.; “Synthesis and properties of novel sulfonated arylene ether/fluorinated alkane copolymers.” Macromolecules, 2001, 34, 2065-2071.
30. Serpico, J. M.; Ehrenberg, S. G.; Fontanella, J. J.; Jiao, X.; Perahia, D.; McGrady, K. A.; Sanders, E. H.; Kellogg, G. E.;Wnek, G. E.; “Transport and structural studies of sulfonated styrene-ethylene copolymer membranes.” Macromolecules, 2002, 35, 5916-5921.
31. Chuy, C.; Ding, J.; Swanson, E.; Holdcroft, S.; Horsfall, J.; Lovell, K. V. “Conductivity and electrochemical ORR mass transport properties of solid polymer electrolytes containing poly (styrene sulfonic acid) graft chains.” Journal of the Electrochemical Society, 2003, 150, E271-E279.
32. Mikhailenko, S. D.; Zaidi, S. M. J.; Kaliaguine, S.; “Sulfonated polyether ether ketone based composite polymer electrolyte membranes.” Catalysis Today, 2001, 67, 225-236.
33. Zaidi, S. J.; Mikhailenko, S. D.; Robertson, G. P.; Guiver, M. D.; Kaliaguine, S.; “Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications.” Journal of Membrane Science, 2000, 173, 17-34.
34. Li, L.; Zhang, J.; Wang, Y.; “Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell.” Journal of Membrane Science, 2003, 226, 159-167.
35. Meyer, G.; Gebel, G.; Gonon, L.; Capron, P.; Marscaq, D.; Marestin, C.; Mercier, R.; “Degradation of sulfonated polyimide membranes in fuel cell conditions.” Journal of Power Sources, 2006, 157, 293-301.
36. Bloom, P. D.; Jones, C. A.; Sheares, V. V.; “Novel poly (p-phenylene) s via nucleophilic aromatic substitution of poly (4'-fluoro-2, 5-benzophenone).” Macromolecules, 2005, 38, 2159-2166.
37. S. M. Javaid Zaidi; Polymer Electrolyte Membranes for PEMFC. : Chapter 2 Research Trends in Polymer Electrolyte membranes for PEMFC.; Springer: New York, 2009.
38. Liu, B.; Robertson, G. P.; Kim, D. S.; Guiver, M. D.; Hu, W.; Jiang, Z.; “Aromatic poly (ether ketone) s with pendant sulfonic acid phenyl groups prepared by a mild sulfonation method for proton exchange membranes.” Macromolecules, 2007, 40, 1934-1944.
39. Matsumura, S.; Hlil, A. R.; Al‐Souz, M. A.; Gaudet, J.; Guay, D.; Hay, A. S.; “Ionomers for proton exchange membrane fuel cells by sulfonation of novel dendritic multiblock copoly (ether‐sulfone) s.” Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47, 5461-5473.
40. Lafitte, B.; Puchner, M.; Jannasch, P.; “Proton conducting polysulfone ionomers carrying sulfoaryloxybenzoyl side chains.” Macromolecular Rapid Communications, 2005, 26, 1464-1468.
41. Fujimoto, C. H.; Hickner, M. A.; Cornelius, C. J.; Loy, D. A.; “Ionomeric poly (phenylene) prepared by diels-alder polymerization: Synthesis and physical properties of a novel polyelectrolyte.” Macromolecules, 2005, 38, 5010-5016.
42. Bae, B.; Miyatake, K.; Watanabe, M.; “Sulfonated poly (arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications.” Journal of Membrane Science, 2008, 310, 110-118.
43. Bae, B.; Yoda, T.; Miyatake, K.; Uchida, H.; Watanabe, M.; “Proton‐conductive aromatic ionomers containing highly sulfonated blocks for high‐temperature‐operable fuel cells.” Angewandte Chemie, 2010, 122, 327-330.
44. Bae, B.; Miyatake, K.; Watanabe, M.; “Sulfonated poly (arylene ether sulfone ketone) multiblock copolymers with highly sulfonated block. Synthesis and properties.” Macromolecules, 2010, 43, 2684-2691.
45. Seesukphronrarak, S.; Ohira, A.; “Novel highly proton conductive sulfonated poly (p-phenylene) from 2, 5-dichloro-4-(phenoxypropyl) benzophenone as proton exchange membranes for fuel cell applications.” Chemical Communications, 2009, 31, 4744-4746.
46. Seesukphronrarak, S.; Ohira, K.; Kidena, K.; Takimoto, N.; Kuroda, C. S.; Ohira, A.; “Synthesis and properties of sulfonated copoly (p-phenylene) s containing aliphatic alkyl pendant for fuel cell applications.” Polymer, 2010, 51, 623-631.
47. Kim, D. S.; Shin, K. H.; Park, H. B.; Chung, Y. S.; Nam, S. Y.; Lee, Y. M.; “Synthesis and characterization of sulfonated poly (arylene ether sulfone) copolymers containing carboxyl groups for direct methanol fuel cells.” Journal of Membrane Science, 2006, 278, 428-436.
48. Schuster, M.; Kreuer, K. D.; Andersen, H. T.; Maier, J.; “Sulfonated poly (phenylene sulfone) polymers as hydrolytically and thermooxidatively stable proton conducting ionomers.” Macromolecules, 2007, 40, 598-607.
49. Schuster, M.; de Araujo, C. C.; Atanasov, V.; Andersen, H. T.; Kreuer, K. D.; Maier, J.; “Highly sulfonated poly (phenylene sulfone): preparation and stability issues.” Macromolecules, 2009, 42, 3129-3137.
50. Shin, D. W.; Lee, S. Y.; Kang, N. R.; Lee, K. H.; Guiver, M. D.; Lee, Y. M.; “Durable sulfonated poly (arylene sulfide sulfone nitrile) s containing naphthalene units for direct methanol fuel cells (DMFCs).” Macromolecules, 2013, 46, 3452-3460.
51. Chen, N. H.; Li, H. Y.; Lai, J. Y.; Liu, Y. L.; “Synthesis and characterization of benzoxazine-containing, crosslinkable, and sulfonated polymer through Diels–Alder reaction for direct methanol fuel cells.” Polymer, 2013, 54, 2096-2104.
52. Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers,D.; Wilson, M.; Garzon, F.; Wood, D.; Zelenay, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.; McGrath, E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.; Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.; Yasuda, K.; Kimijima, K. I.; Iwashita, N. “Scientific aspects of polymer electrolyte fuel cell durability and degradation.” Chemical Reviews, 2007, 107, 3904-3951.
53. Li, N.; Shin, D. W.; Hwang, D. S.; Lee, Y. M.; Guiver, M. D.; “Polymer Electrolyte Membranes Derived from New Sulfone Monomers with Pendent Sulfonic Acid Groups.” Macromolecules, 2010, 43, 9810-9820.
54. Kim, Y. S.; Einsla, B.; Sankir, M.; Harrison, W.; Pivovar, B. S.; “Structure–property–performance relationships of sulfonated poly (arylene ether sulfone) s as a polymer electrolyte for fuel cell applications.” Polymer, 2006, 47, 4026-4035.
55. Ghassemi, H.; McGrath, J. E.; Zawodzinski, T. A.; “Multiblock sulfonated–fluorinated poly (arylene ether) s for a proton exchange membrane fuel cell.” Polymer, 2006, 47, 4132-4139.
56. Lee, H. S.; Roy, A.; Lane, O.; Dunn, S.; McGrath, J. E.; “Hydrophilic–hydrophobic multiblock copolymers based on poly (arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells.” Polymer, 2008, 49, 715-723.
57. Matsumura, S.; Hlil, A. R.; Hay, A. S.; “Synthesis, properties, and sulfonation of novel dendritic multiblock copoly (ether‐sulfone).” Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46, 6365-6375.
58. Roy, A.; Yu, X.; Dunn, S.; McGrath, J. E.; “Influence of microstructure and chemical composition on proton exchange membrane properties of sulfonated–fluorinated, hydrophilic–hydrophobic multiblock copolymers.” Journal of Membrane Science, 2009, 327, 118-124.
59. Roy, A.; Lee, H. S.; McGrath, J. E.; “Hydrophilic–hydrophobic multiblock copolymers based on poly (arylene ether sulfone) s as novel proton exchange membranes–Part B.” Polymer, 2008, 49, 5037-5044.
60. Wang, C.; Li, N.; Shin, D. W.; Lee, S. Y.; Kang, N. R.; Lee, Y. M.; Guiver, M. D.; “Fluorene-based poly (arylene ether sulfone) s containing clustered flexible pendant sulfonic acids as proton exchange membranes.” Macromolecules, 2011, 44, 7296-7306.
61. Li, N.; Wang, C.; Lee, S. Y.; Park, C. H.; Lee, Y. M.; Guiver, M. D.; “Enhancement of proton transport by nanochannels in comb-shaped copoly (arylene ether sulfone) s.” Angewandte Chemie, 2011, 123, 9324-9327.
62. Li, N.; Lee, S. Y.; Liu, Y. L.; Lee, Y. M.; Guiver, M. D.; “A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers.” Energy & Environmental Science, 2012, 5, 5346-5355.
63. Lee, S. Y.; Kang, N. R.; Shin, D. W.; Lee, C. H.; Lee, K. S.; Guiver, M. D.; Li, N.; Lee, Y. M.; “Morphological transformation during cross-linking of a highly sulfonated poly (phenylene sulfide nitrile) random copolymer.” Energy & Environmental Science, 2012, 5, 9795-9802.
64. Zhao, N.; Edwards, D.; Lei, C.; Wang, K.; Li, J.; Zhang, Y.; Holdcroft, S.; Shi, Z.; “ The importance of water transport on short-side chain perfluorosulfonic acid membrane fuel cells operating under low relative humidity.” Journal of Power Sources, 2013, 242, 877-883.
65. Mader, J. A.; Benicewicz, B. C.; “Sulfonated polybenzimidazoles for high temperature PEM fuel cells.” Macromolecules, 2010, 43, 6706-6715.
66. Guo, Q.; Pintauro, P. N.; Tang, H.; O'Connor, S.; “Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes.” Journal of Membrane Science, 1999, 154, 175-181.
67. Genies, C.; Mercier, R.; Sillion, B.; Cornet, N.; Gebel, G.; Pineri, M.; “Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes”. Polymer, 2001, 42, 359-373.
68. Einsla, B. R.; Kim, Y. S.; Hickner, M. A.; Hong, Y. T.; Hill, M. L.; Pivovar, B. S.; McGrath, J. E.; “Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells: II. Membrane properties and fuel cell performance.” Journal of Membrane Science, 2005, 255, 141-148.
69. Wang, J. T.; Savinell, R. F.; Wainright, J.; Litt, M.; Yu, H.; “A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte.” Electrochimica Acta, 1996, 41, 193-197.
70. Ma, Y. L.; Wainright, J. S.; Litt, M. H.; Savinell, R. F.; “Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells.” Journal of The Electrochemical Society, 2004, 151, A8-A16.
71. Kim, D. S.; Liu, B.; Guiver, M. D.; “Influence of silica content in sulfonated poly (arylene ether ether ketone ketone)(SPAEEKK) hybrid membranes on properties for fuel cell application.” Polymer, 2006, 47, 7871-7880.
72. Li, Y.; Li, Z.; Lu, X.; Zhang, C.; Wang, Z.; Kong, L.; Wang, C.; Liu, X.; “Composite membranes based on sulfonated poly (aryl ether ketone) s containing the hexafluoroisopropylidene diphenyl moiety and poly (amic acid) for proton exchange membrane fuel cell application.” International Journal of Hydrogen Energy, 2011, 36, 14622-14631.
73. Kim, H. J.; An, S. J.; Kim, J. Y.; Moon, J. K.; Cho, S. Y.; Eun, Y. C.; Yoon, H. K.; Park, Y.; Kweon, H. J.; Shin, E. M.; “Polybenzimidazoles for high temperature fuel cell applications.” Macromolecular Rapid Communications, 2004, 25, 1410-1413.
74. Xiao, L.; Zhang, H.; Jana, T.; Scanlon, E.; Chen, R.; Choe, E. W.; Ramanathan, L. S.; Yu, S.; Benicewicz, B. C.; “Synthesis and Characterization of Pyridine‐Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications.” Fuel Cells, 2005, 5, 287-295.
75. Carollo, A.; Quartarone, E.; Tomasi, C.; Mustarelli, P.; Belotti, F.; Magistris, A.; Maestroni, F.; Parachini, M.; Garlaschell, L.; Righetti, P. P.; “Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications.” Journal of power sources, 2006,160, 175-180.
76. Bai, Z.; Price, G. E.; Yoonessi, M.; Juhl, S. B.; Durstock, M. F.; Dang, T. D.; “Proton exchange membranes based on sulfonated polyarylenethioethersulfone and sulfonated polybenzimidazole for fuel cell applications.” Journal of Membrane Science, 2007, 305, 69-76.
77. Bai, H.; Ho, W. W.; “New carbon dioxide-selective membranes based on sulfonated polybenzimidazole (SPBI) copolymer matrix for fuel cell applications.” Industrial & Engineering Chemistry Research, 2008, 48, 2344-2354.
78. Xu, N.; Guo, X.; Fang, J.; Xu, H.; Yin, J.; “Synthesis of novel polybenzimidazoles with pendant amino groups and the formation of their crosslinked membranes for medium temperature fuel cell applications.” Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47, 6992-7002.
79. Kim, S. K.; Ko, T.; Choi, S. W.; Park, J. O.; Kim, K. H.; Pak, C.;Chang, H.; Lee, J. C.; “Durable cross-linked copolymer membranes based on poly (benzoxazine) and poly (2, 5-benzimidazole) for use in fuel cells at elevated temperatures.” Journal of Materials Chemistry, 2012, 22, 7194-7205.
80. Wang, S.; Zhao, C.; Ma, W.; Zhang, G.; Liu, Z.; Ni, J.; Li, M.; Zhang, N.; Na, H.; “Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells.” Journal of Membrane Science, 2012, 411, 54-63.
81. Li, J.; Li, X.; Zhao, Y.; Lu, W.; Shao, Z.; Yi, B.; “High‐Temperature Proton‐Exchange‐Membrane Fuel Cells Using an Ether‐Containing Polybenzimidazole Membrane as Electrolyte.” ChemSusChem, 2012, 5, 896-900.
82. Lin, H. L.; Yu, T. L.; Huang, L. N.; Chen, L. C.; Shen, K. S.; Jung, G. B.; “Nafion/PTFE composite membranes for direct methanol fuel cell applications.” Journal of Power Sources, 2005, 150, 11-19.
83. Li, Q.; Pan, C.; Jensen, J. O.; Noyé, P.; Bjerrum, N. J.; “Cross-linked polybenzimidazole membranes for fuel cells.” Chemistry of Materials, 2007, 19, 350-352.
84. Wang, K. Y.; Xiao, Y.; Chung, T. S.; “Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin.” Chemical Engineering Science, 2006, 61, 5807-5817.
85. Ye, Y. S.; Yen, Y. C.; Cheng, C. C.; Chen, W. Y.; Tsai, L. T.; Chang, F. C.; “Sulfonated poly (ether ether ketone) membranes crosslinked with sulfonic acid containing benzoxazine monomer as proton exchange membranes.” Polymer, 2009, 50, 3196-3203.
86. Guan, Y.; Pu, H.; Pan, H.; Chang, Z.; Jin, M.; “Proton conducting membranes based on semi-interpenetrating polymer network of Nafion® and polybenzimidazole.” Polymer, 2010, 51, 5473-5481.
87. Li, W.; Manthiram, A.; Guiver, M. D.; “Acid–base blend membranes consisting of sulfonated poly (ether ether ketone) and 5-amino-benzotriazole tethered polysulfone for DMFC.” Journal of Membrane Science, 2010, 362, 289-297.
88. Su, J.; Pu, H.; Chang, Z.; Wan, D.; “A facile crosslinking method of polybenzimidazole with sulfonyl azide groups for proton conducting membranes.” Polymer, 2012, 53, 3587-3593.
89. Nakabayashi, K.; Higashihara, T.; Ueda, M.; “Polymer electrolyte membranes based on cross-linked highly sulfonated multiblock copoly (ether sulfone) s.” Macromolecules, 2010, 43, 5756-5761.
90. Han, M.; Zhang, G.; Liu, Z.; Wang, S.; Li, M.; Zhu, J.; Li, H.; Zhang, Y.; Lew, C. M.; Na, H.; “Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells.” Journal of Materials Chemistry, 2011, 21, 2187-2193.
91. Aili, D.; Li, Q.; Christensen, E.; Jensen, J. O.; Bjerrum, N. J.; “Crosslinking of polybenzimidazole membranes by divinylsulfone post‐treatment for high‐temperature proton exchange membrane fuel cell applications.” Polymer International, 2011, 60, 1201-1207.
92. Shen, C. H.; Jheng, L. C.; Hsu, S. L. C.; Wang, J. T. W.; “Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells.” Journal of Materials Chemistry, 2011, 21, 15660-15665.
93. Han, M.; Zhang, G.; Li, M.; Wang, S.; Zhang, Y.; Li, H.; Lew, C. M.; Na, H.; “Considerations of the morphology in the design of proton exchange membranes: cross-linked sulfonated poly (ether ether ketone) s using a new carboxyl-terminated benzimidazole as the cross-linker for PEMFCs.” International Journal of Hydrogen Energy, 2011, 36, 2197-2206.
94. Diao, H.; Yan, F.; Qiu, L.; Lu, J.; Lu, X.; Lin, B.; Li, Q.; Shang, S.; Liu, W.; Liu, J.; “High performance cross-linked poly (2-acrylamido-2-methylpropanesulfonic acid)-based proton exchange membranes for fuel cells.” Macromolecules, 2010, 43, 6398-6405.
95. Adjemian, K. T.; Lee, S. J.; Srinivasan, S.; Benziger, J.; Bocarsly, A. B.; “Silicon oxide nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140oC.” Journal of the Electrochemical Society, 2002, 149, A256-A261.
96. Adjemian, K. T.; Srinivasan, S.; Benziger, J.; Bocarsly, A. B.; “Investigation of PEMFC operation above 100 oC employing perfluorosulfonic acid silicon oxide composite membranes.” Journal of Power Sources, 2002, 109, 356-364.
97. Bi, C.; Zhang, H.; Zhang, Y.; Zhu, X.; Ma, Y.; Dai, H.; Xiao, S.; “Fabrication and investigation of SiO2 supported sulfated zirconia/Nafion® self-humidifying membrane for proton exchange membrane fuel cell applications.” Journal of Power Sources, 2008, 184, 197-203.
98. Su, Y. H.; Liu, Y. L.; Sun, Y. M.; Lai, J. Y.; Wang, D. M.; Gao, Y.; Liu, B.; Guiver, M. D.: “Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells.” Journal of Membrane Science, 2007, 296, 21-28.
99. Tang, H. L.; Pan, M.; “Synthesis and characterization of a self-assembled nafion/silica nanocomposite membrane for polymer electrolyte membrane fuel cells.” The Journal of Physical Chemistry C, 2008, 112, 11556-11568.
100. Pu, H.; Liu, L.; Chang, Z.; Yuan, J.; “Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO¬2.” Electrochimica acta, 2009, 54, 7536-7541.
101. Dou, Z.; Zhong, S.; Zhao, C.; Li, X.; Fu, T.; Na, H.; “Synthesis and characterization of a series of SPEEK/TiO¬2 hybrid membranes for direct methanol fuel cell.” Journal of Applied Polymer Science, 2008, 109, 1057-1062.
102. Arimura, T.; Ostrovskii, D.; Okada, T.; Xie, G.; “The effect of additives on the ionic conductivity performances of perfluoroalkyl sulfonated ionomer membranes.” Solid State Ionics, 1999, 118, 1-10.
103. Zhang, X.; Yang, M.; Zhao, Y.; Zhang, S.; Dong, X.; Liu, X.; Wang, D.; Xu, D. “Polypropylene/montmorillonite composites and their application in hybrid fiber preparation by melt‐spinning.” Journal of Applied Polymer Science, 2004, 92, 552-558.
104. Rhee, C. H.; Kim, H. K.; Chang, H.; Lee, J. S.; “Nafion/sulfonated montmorillonite composite: a new concept electrolyte membrane for direct methanol fuel cells.” Chemistry of Materials, 2005, 17, 1691-1697.
105. Bébin, P.; Caravanier, M.; Galiano, H.; “Nafion®/clay-SO3H membrane for proton exchange membrane fuel cell application. Journal of Membrane Science, 2006, 278, 35-42.
106. Silva, R. F.; Passerini, S.; Pozio, A.; “Solution-cast Nafion®/montmorillonite composite membrane with low methanol permeability.” Electrochimica Acta, 2005, 50, 2639-2645.
107. Hartmann‐Thompson, C.; Merrington, A.; Carver, P. I.; Keeley, D. L.; Rousseau, J. L.; Hucul, D.; Bruza, K. J.; Thomas, L. S.; Keinath, S. E.; Nowak, R. M.; Katona, D. M.; Santurri, P. R.; “Proton‐conducting polyhedral oligosilsesquioxane nanoadditives for sulfonated polyphenylsulfone hydrogen fuel cell proton exchange membranes.” Journal of Applied Polymer Science, 2008, 110, 958-974.
108. Kuo, S. W.; Chang, F. C.; “POSS related polymer nanocomposites.” Progress in Polymer Science, 2011, 36, 1649-1696.
109. Subianto, S.; Mistry, M. K.; Choudhury, N. R.; Dutta, N. K.; Knott, R.; “Composite polymer electrolyte containing ionic liquid and functionalized polyhedral oligomeric silsesquioxanes for anhydrous PEM applications.” ACS Applied Materials & Interfaces, 2009, 1, 1173-1182.
110. Miyake, N.; Wainright, J. S.; Savinell, R. F.; “Evaluation of a sol-gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications: II. Methanol uptake and methanol permeability.” Journal of The Electrochemical Society, 2001, 148, A905-A909.
111. Liu, Y. L.; “Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes.” Journal of Membrane Science, 2009, 332, 121-128.
112. Lee, C. H.; Lee, S. Y.; Lee, Y. M.; Lee, S. Y.; Rhim, J. W.; Lane, O.; McGrath, J. E.; “Surface-fluorinated proton-exchange membrane with high electrochemical durability for direct methanol fuel cells.” ACS Applied Materials & Interfaces, 2009, 1, 1113-1121.
113. Jung, J. H.; Jeon, J. H.; Sridhar, V.; Oh, I. K.; “Electro-active graphene–Nafion actuators.” Carbon, 2011, 49, 1279-1289.
114. Chang, Y. N.; Lai, J. Y.; Liu, Y. L.; “Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells.” Journal of Membrane Science, 2012, 403, 1-7.
115. Shin, D. W.; Kang, N. R.; Lee, K. H.; Cho, D. H.; Kim, J. H.; Lee, W. H.; Lee, Y. M.; “Proton conducting, composite sulfonated polymer membrane for medium temperature and low relative humidity fuel cells.” Journal of Power Sources, 2014, 262, 162-168.
116. Liu, Y. H.; Yi, B.; Shao, Z. G.; Xing, D.; Zhang, H.; “Carbon nanotubes reinforced Nafion composite membrane for fuel cell applications.” Electrochemical and solid-state letters, 2006, 9, A356-A359.
117. Wang, Y.; Iqbal, Z.; Mitra, S.; “Rapidly functionalized, water-dispersed carbon nanotubes at high concentration.” Journal of the American Chemical Society, 2006, 128, 95-99.
118. Thomassin, J. M.; Kollar, J.; Caldarella, G.; Germain, A.; Jérôme, R.; Detrembleur, C.; “Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications.” Journal of Membrane Science, 2007, 303, 252-257.
119. Kannan, R.; Kakade, B. A.; Pillai, V. K.; “Polymer Electrolyte Fuel Cells Using Nafion‐Based Composite Membranes with Functionalized Carbon Nanotubes.” Angewandte Chemie International Edition, 2008, 47, 2653-2656.
120. Chen, W. F.; Wu, J. S.; Kuo, P. L.; “Poly (oxyalkylene) diamine-functionalized carbon nanotube/perfluorosulfonated polymer composites: synthesis, water state, and conductivity.” Chemistry of Materials, 2008, 20, 5756-5767.
121. Liu, Y. L.; Su, Y. H.; Chang, C. M.; Wang, D. M.; Lai, J. Y.; “Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells.” Journal of Materials Chemistry, 2010, 20, 4409-4416.
122. Chang, C. M.; Liu, Y. L.; Lee, Y. M.; “Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells.” Journal of Materials Chemistry, 2011, 21, 7480-7486.
123. Choi, J.; Lee, K. M.; Wycisk, R.; Pintauro, P. N.; Mather, P. T.; “Nanofiber composite membranes with low equivalent weight perfluorosulfonic acid polymers.” Journal of Materials Chemistry, 2010, 20, 6282-6290.
124. Takemori, R.; Kawakami, H.; “Electrospun nanofibrous blend membranes for fuel cell electrolytes.” Journal of Power Sources, 2010, 195, 5957-5961.
125. Mollá, S.; Compañ, V.; “Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications.” Journal of Membrane Science, 2011, 372, 191-200.
126. Mollá, S.; Compañ, V.; “Performance of composite Nafion/PVA membranes for direct methanol fuel cells.” Journal of Power Sources, 2011, 196, 2699-2708.
127. Choi, S. W.; Fu, Y. Z.; Ahn, Y. R.; Jo, S. M.; Manthiram, A.; “Nafion-impregnated electrospun polyvinylidene fluoride composite membranes for direct methanol fuel cells.” Journal of Power Sources, 2008, 180, 167-171.
128. Choi, J.; Lee, K. M.; Wycisk, R.; Pintauro, P. N.; Mather, P. T.; “Nanofiber network ion-exchange membranes.” Macromolecules, 2008, 41, 4569-4572.
129. Choi, J.; Lee; K. M.; Wycisk, R.; Pintauro; P. N.; Mather, P. T.; “Sulfonated polysulfone/POSS nanofiber composite membranes for PEM fuel cells.” Journal of The Electrochemical Society, 2010, 157, B914-B919.
130. Dong, B.; Gwee, L.; Salas-de La Cruz, D.; Winey, K. I.; Elabd, Y. A.; “Super proton conductive high-purity Nafion nanofibers.” Nano letters, 2010, 10, 3785-3790.
131. Pan, C.; Wu, H.; Wang, C.; Wang, B.; Zhang, L.; Cheng, Z.; Ying, X.; Zhu, J.; “Nanowire‐Based High‐Performance “Micro Fuel Cells”: One Nanowire, One Fuel Cell.” Advanced Materials, 2008, 20, 1644-1648.
132. Tamura, T.; Kawakami, H.; “Aligned electrospun nanofiber composite membranes for fuel cell electrolytes.” Nano Letters, 2010, 10, 1324-1328.
133. Yao, Y.; Guo, B.; Ji, L.; Jung, K. H.; Lin, Z.; Alcoutlabi, M.; Hamouda, H.; Zhang, X.; “Highly proton conductive electrolyte membranes: fiber-induced long-range ionic channels.” Electrochemistry Communications, 2011, 13, 1005-1008.
134. Lee, K. M.; Choi, J.; Wycisk, R.; Pintauro, P. N.; Mather, P.; “Nafion nanofiber membranes.” ECS Transactions, 2009, 25, 1451-1458.
135. Tamura, T.; Takemori, R.; Kawakami, H.; “Proton conductive properties of composite membranes containing uniaxially aligned ultrafine electrospun polyimide nanofiber.” Journal of Power Sources, 2012, 217, 135-141.
136. Lee, J. R.; Kim, N. Y.; Lee, M. S.; Lee, S. Y.; “SiO2-coated polyimide nonwoven/Nafion composite membranes for proton exchange membrane fuel cells.” Journal of Membrane Science, 2011,367, 265-272.
137. Seol, J. H.; Won, J. H.; Lee, M. S.; Yoon, K. S.; Hong, Y. T.; Lee, S. Y.; “A proton conductive silicate-nanoencapsulated polyimide nonwoven as a novel porous substrate for a reinforced sulfonated poly (arylene ether sulfone) composite membrane.” Journal of Materials Chemistry, 2012, 22, 1634-1642.
138. Shabani, I.; Hasani-Sadrabadi, M. M.; Haddadi-Asl, V.; Soleimani, M.; “Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications.” Journal of Membrane Science, 2011, 368, 233-240.
139. Yun, S. H.; Woo, J. J.; Seo, S. J.; Wu, L.; Wu, D.; Xu, T.; Moon, S. H.; “Sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide)(SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells.” Journal of Membrane Science, 2011, 367, 296-305.
140. Yao, Y.; Ji, L.; Lin, Z.; Li, Y.; Alcoutlabi, M.; Hamouda, H.; Zhang, X.; “Sulfonated polystyrene fiber network-induced hybrid proton exchange membranes. ACS Applied Materials & Interfaces, 2011, 3, 3732-3737.
141. Yao, Y.; Lin, Z.; Li, Y.; Alcoutlabi, M.; Hamouda, H.; Zhang, X.; “Superacidic Electrospun Fiber‐Nafion Hybrid Proton Exchange Membranes.” Advanced Energy Materials, 2011, 1, 1133-1140.
142. Liu, W.; Wang, S.; Xiao, M.; Han, D.; Meng, Y.; “A proton exchange membrane fabricated from a chemically heterogeneous nonwoven with sandwich structure by the program-controlled co-electrospinning process.” Chemical Communications, 2012, 48, 3415-3417.
143. Ballengee, J. B.; Pintauro, P. N.; “Preparation of nanofiber composite proton-exchange membranes from dual fiber electrospun mats.” Journal of Membrane Science, 2013, 442, 187-195.
144. Nah, C.; Jeong, K. U.; Lee, Y. S.; Lee, S. H.; Kader, M. M. A.; Lee, H. K.; Ahn, J. H.; “Polymer electrolyte membranes composed of an electrospun poly (vinylidene fluoride) fibrous mat in a poly (4‐vinylpyridine) matrix.” Polymer International, 2013, 62, 375-381.
145. Lin, H. L.; Wang, S. H.; Chiu, C. K.; Yu, T. L.; Chen, L. C.; Huang, C. C.; Cheng, T. H.; Lin, J. M.; “Preparation of Nafion/poly (vinyl alcohol) electro-spun fiber composite membranes for direct methanol fuel cells.” Journal of Membrane Science, 2010, 365, 114-122.
146. Zhang, S. S.; “A review on the separators of liquid electrolyte Li-ion batteries.” Journal of Power Sources, 2007, 164, 351-364.
147. Venugopal, G.; Moore, J.; Howard, J.; Pendalwar, S.; “Characterization of microporous separators for lithium-ion batteries.” Journal of Power Sources, 1999, 77, 34-41.
148. Meyer, W. H. “Polymer electrolytes for lithium‐ion batteries.” Advanced Materials, 1998, 10, 439-448.
149. Ihm, D.; Noh, J.; Kim, J.; “Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery.” Journal of Power Sources, 2002, 109, 388-393.
150. Choi, S. H.; Park, S. Y.; Nho, Y. C.; “Electrochemical properties of polyethylene membrane modified with carboxylic acid group.” Radiation Physics and Chemistry, 2000, 57, 179-186.
151. Kim, D. W.; Noh, K. A.; Chun, J. H.; Kim, S. H.; Ko, J. M.; “Highly conductive polymer electrolytes supported by microporous membrane.” Solid State Ionics, 2001, 144, 329-337.
152. Ko, J. M.; Min, B. G.; Kim, D. W.; Ryu, K. S.; Kim, K. M.; Lee, Y. G.; Chang, S. H.; “Thin-film type Li-ion battery, using a polyethylene separator grafted with glycidyl methacrylate.” Electrochimica Acta, 2004, 50, 367-370.
153. Kim, S. S.; Lloyd, D. R.; “Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes.” Journal of Membrane Science, 1991, 64, 13-29.
154. Weighall, M. J.; “Recent advances in polyethylene separator technology.” Journal of Power Sources, 1991, 34, 257-268.
155. Kim, J. Y.; Lim, D. Y.; “Surface-modified membrane as a separator for lithium-ion polymer battery.” Energies, 2010, 3, 866-885.
156. Oh, J. S.; Kang, Y.; Kim, D. W.; “Lithium polymer batteries using the highly porous membrane filled with solvent-free polymer electrolyte.” Electrochimica Acta, 2006, 52, 1567-1570.
157. Gao, K.; Hu, X.; Yi, T.; Dai, C.; “PE-g-MMA polymer electrolyte membrane for lithium polymer battery.” Electrochimica Acta, 2006, 52, 443-449.
158. Švorčík, V.; Kolářová, K.; Slepička, P.; Macková, A.; Novotná, M.; Hnatowicz, V.; “Modification of surface properties of high and low density polyethylene by Ar plasma discharge.” Polymer Degradation and Stability, 2006, 91, 1219-1225.
159. Ciszewski, A.; Gancarz, I.; Kunicki, J.; Bryjak, M.; “Plasma-modified polypropylene membranes as separators in high-power alkaline batteries.” Surface and Coatings Technology, 2006, 201, 3676-3684.
160. Ciszewski, A.; Kunicki, J.; Gancarz, I.; “Usefulness of microporous hydrophobic polypropylene membranes after plasma-induced graft polymerization of acrylic acid for high-power nickel–cadmium batteries.” Electrochimica Acta, 2007, 52, 5207-5212.
161. Novák, I.; Elyashevich, G. K.; Chodák, I.; Olifirenko, A. S.; Števiar, M.; Špírková, M.; Saprykina, N.; Vlasova, E.;Kleinová, A.; “Polymer matrix of polyethylene porous films functionalized by electrical discharge plasma.” European Polymer Journal, 2008, 44, 2702-2707.
162. Kim, J. Y.; Lee, Y.; Lim, D. Y.; “Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery.” Electrochimica Acta, 2009, 54, 3714-3719.
163. Ryou, M. H.; Lee, Y. M.; Park, J. K.; Choi, J. W.; “Mussel‐inspired polydopamine‐treated polyethylene separators for high‐power Li‐ion batteries.” Advanced Materials, 2011, 23, 3066-3070.
164. Ji, G. L.; Zhu, B. K.; Cui, Z. Y.; Zhang, C. F.; Xu, Y. Y.; “PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery.” Polymer, 2007, 48, 6415-6425.
165. Min, H. S.; Ko, J. M.; Kim, D. W.; “Preparation and characterization of porous polyacrylonitrile membranes for lithium-ion polymer batteries.” Journal of Power Sources, 2003, 119, 469-472.
166. Jung, B.; Yoon, J. K.; Kim, B.; Rhee, H. W.; “Effect of crystallization and annealing on polyacrylonitrile membranes for ultrafiltration.” Journal of Membrane Science, 2005, 246, 67-76.
167. Jung, B.; “Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration.” Journal of Membrane Science, 2004, 229, 129-136.
168. Lee, M. H.; Kim, H. J.; Kim, E.; Rhee; S. B.; Moon, M. J.; “Effect of phase separation on ionic conductivity of poly (methyl methacrylate)-based solid polymer electrolyte.” Solid State Ionics, 1996, 85, 91-98.
169. Morehouse, J. A.; Worrel, L. S.; Taylor, D. L.; Lloyd, D. R.; Freeman, B. D.; Lawler, D. F.; “The effect of uni-axial orientation on macroporous membrane structure.” Journal of Porous Materials, 2006, 13, 61-72.
170. Magistris, A.; Mustarelli, P.; Parazzoli, F.; Quartarone, E.; Piaggio, P.; Bottino, A.; “Structure, porosity and conductivity of PVdF films for polymer electrolytes.” Journal of Power Sources, 2001, 97, 657-660.
171. Stephan, A. M.; Nahm, K. S.; “Review on composite polymer electrolytes for lithium batteries.” Polymer, 2006, 47, 5952-5964.
172. Yang, M.; Hou, J.; “Membranes in lithium ion batteries.” Membranes, 2012, 2, 367-383.
173. Magistris, A.; Quartarone, E.; Mustarelli, P.; Saito, Y.; Kataoka, H.; “PVDF-based porous polymer electrolytes for lithium batteries.” Solid State Ionics, 2002, 152, 347-354.
174. Shi, Q.; Yu, M.; Zhou, X.; Yan, Y.; Wan, C.; “Structure and performance of porous polymer electrolytes based on P (VDF-HFP) for lithium ion batteries.” Journal of power Sources, 2002,103, 286-292.
175. Zhang, S. S.; Xu, K.; Foster, D. L.; Ervin, M. H.; Jow, T. R.; “Microporous gel electrolyte Li-ion battery.” Journal of Power Sources, 2004, 125, 114-118.
176. Wu, G.; Yang, H. Y.; Chen, H. Z.; Yuan, F.; Yang, L. G.; Wang, M.; Fu, R. J.; “Novel porous polymer electrolyte based on polyacrylonitrile.” Materials Chemistry and Physics, 2007, 104, 284-287.
177. Aran, B.; Sankır, M.; Vargün, E.; Sankır, N. D.; Usanmaz, A.; “Tailoring the swelling and glass‐transition temperature of acrylonitrile/hydroxyethyl acrylate copolymers.” Journal of Applied Polymer Science, 2010, 116, 628-635.
178. Liao, Y. H.; Zhou, D. Y.; Rao, M. M.; Li, W. S.; Cai, Z. P.; Liang, Y.; Tan, C. L.; “Self-supported poly (methyl methacrylate–acrylonitrile–vinyl acetate)-based gel electrolyte for lithium ion battery.” Journal of Power Sources, 2009, 189, 139-144.
179. Zhou, D. Y.; Wang, G. Z.; Li, W. S.; Li, G. L.; Tan, C. L.; Rao, M. M.; Liao, Y. H.; “Preparation and performances of porous polyacrylonitrile–methyl methacrylate membrane for lithium-ion batteries.” Journal of Power Sources, 2008, 184, 477-480.
180. Idris, N. H.; Rahman, M. M.; Wang, J. Z.; Liu, H. K.; “Microporous gel polymer electrolytes for lithium rechargeable battery application.” Journal of Power Sources, 2012, 201, 294-300.
181. Yu, S.; Chen, L.; Chen, Y.; Tong, Y.; “Microporous gel electrolytes based on amphiphilic poly (vinylidene fluoride-co-hexafluoropropylene) for lithium batteries.” Applied Surface Science, 2012, 258, 4983-4989.
182. Nunes‐Pereira, J.; Lopes, A. C.; Costa, C. M.; Leones, R.; Silva, M. M.; Lanceros‐Méndez, S.; “Porous Membranes of Montmorillonite/Poly (vinylidene fluoride‐trifluorethylene) for Li‐Ion Battery Separators.” Electroanalysis, 2012, 24, 2147-2156.
183. Subramania, A.; Sundaram, N. K.; Kumar, G. V.; “Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications.” Journal of Power Sources, 2006, 153, 177-182.
184. Nicotera, I.; Coppola, L.; Oliviero, C.; Castriota, M.; Cazzanelli, E.; “Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes.” Solid State Ionics, 2006, 177, 581-588.
185. Lin, D. J.; Chang, C. L.; Lee, C. K.; Cheng, L. P.; “Preparation and characterization of microporous PVDF/PMMA composite membranes by phase inversion in water/DMSO solutions.” European Polymer Journal, 2006, 42, 2407-2418.
186. Ma, T.; Cui, Z.; Wu, Y.; Qin, S.; Wang, H.; Yan, F.; Han, N.; Li, J.; “Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation: I. Effect of PMMA on the membrane formation process and the properties.” Journal of Membrane Science, 2013, 444, 213-222.
187. Wang, Z. L.; Tang, Z. Y.; “A novel polymer electrolyte based on PMAML/PVDF-HFP blend.” Electrochimica Acta, 2004, 49, 1063-1068.
188. Jeon, J. D.; Cho, B. W.; Kwak, S. Y.; “Solvent-free polymer electrolytes based on thermally annealed porous P (VdF-HFP)/P (EO-EC) membranes.” Journal of Power Sources, 2005, 143, 219-226.
189. Li, H.; Lin, C. E.; Shi, J. L.; Ma, X. T.; Zhu, B. K.; Zhu, L. P.; “Preparation and characterization of safety PVDF/P(MMA-co-PEGMA) active separators by studying the liquid electrolyte distribution in this kind of membrane.” Electrochimica Acta, 2014, 115, 317-325.
190. Li, H.; Zhang, H.; Liang, Z. Y.; Chen, Y. M.; Zhu, B. K.; Zhu, L. P.; “Preparation and Properties of Poly (vinylidene fluoride)/poly (dimethylsiloxane) graft (poly (propylene oxide)-block-poly (ethylene oxide)) blend porous separators and corresponding electrolytes.” Electrochimica Acta, 2014, 116, 413-420.
191. Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, Y. R.; “An electrospun poly (vinylidene fluoride) nanofibrous membrane and its battery applications.” Advanced Materials, 2003,15, 2027-2032.
192. Kim, J. R.; Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, B. C.; “Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries.” Electrochimica Acta, 2004, 50, 69-75.
193. Kim, J. R.; Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, B. C.; “Characterization and properties of P(VdF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning.” Journal of the Electrochemical Society, 2005, 152, A295-A300.
194. Cheruvally, G.; Kim, J. K.; Choi, J. W.; Ahn, J. H.; Shin, Y. J.; Manuel, J.; Raghavan, P.; Kim, K. W.; Ahn, H. J.; Choi, D. S.; Song, C. E.; “Electrospun polymer membrane activated with room temperature ionic liquid: novel polymer electrolytes for lithium batteries.” Journal of Power Sources, 2007, 172, 863-869.
195. Bansal, D.; Meyer, B.; Salomon, M.; “Gelled membranes for Li and Li-ion batteries prepared by electrospinning.” Journal of Power Sources, 2008, 178, 848-851.
196. Raghavan, P.; Zhao, X.; Shin, C.; Baek, D. H.; Choi, J. W.; Manuel, J.; Heo, M. Y.; Ahn, J. H.; Nah, C.; “Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly (vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries.” Journal of Power Sources, 2010, 195, 6088-6094.
197. Raghavan, P.; Zhao, X.; Manuel, J.; Shin, C.; Heo, M. Y.; Ahn, J. H.; Ryu, H. S.;Ahn, H. J.;Noh, J. P.; Cho, G. B.; “Electrochemical studies on polymer electrolytes based on poly (vinylidene fluoride-co-hexafluoropropylene) membranes prepared by electrospinning and phase inversion—A comparative study.” Materials Research Bulletin, 2010, 45, 362-366.
198. Li, X.; Cao, Q.; Wang, X.; Jiang, S.; Deng, H.; Wu, N.; “Preparation of poly (vinylidene fluoride)/poly (methyl methacrylate) membranes by novel electrospinning system for lithium ion batteries.” Journal of Applied Polymer Science, 2011,122, 2616-2620.
199. Croce, F.; Focarete, M. L.; Hassoun, J.; Meschini, I.; Scrosati, B.; “A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning.” Energy & Environmental Science, 2011, 4, 921-927.
200. Miao, Y. E.; Zhu, G. N.; Hou, H.; Xia, Y. Y.; Liu, T.; “Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries.” Journal of Power Sources, 2013, 226, 82-86.
201. Qi, W.; Lu, C.; Chen, P.; Han, L.; Yu, Q.; Xu, R.; “Electrochemical performances and thermal properties of electrospun Poly (phthalazinone ether sulfone ketone) membrane for lithium-ion battery.” Materials Letters, 2012, 66, 239-241.
202. Hao, J.; Lei, G.; Li, Z.; Wu, L.; Xiao, Q.; Wang, L.; “A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery.” Journal of Membrane Science, 2013, 428, 11-16.
203. Cho, T. H.; Tanaka, M.; Onishi, H.; Kondo, Y.; Nakamura, T.; Yamazaki, H.;Tanase, S.; Sakai, T.; “Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery.” Journal of Power Sources, 2008, 181, 155-160.
204. Ding, J.; Kong, Y.; Li, P.; Yang, J.; “Polyimide/poly (ethylene terephthalate) composite membrane by electrospinning for nonwoven separator for lithium-ion battery.” Journal of The Electrochemical Society, 2012, 159, A1474-A1480.
205. Chun, S. J.; Choi, E. S.; Lee, E. H.; Kim, J. H.; Lee, S. Y.; Lee, S. Y.; “Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries.” Journal of Materials Chemistry, 2012, 22, 16618-16626.
206. Cao, C.; Tan, L.; Liu, W.; Ma, J.; Li, L.; “Polydopamine coated electrospun poly (vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries.” Journal of Power Sources, 2014, 248, 224-229.
207. Kritzer, P. “Nonwoven support material for improved separators in Li–polymer batteries.” Journal of Power Sources, 2006, 161, 1335-1340.
208. Yang, C. M.; Kim, H. S.; Na, B. K.; Kum, K. S.; Cho, B. W.; “Gel-type polymer electrolytes with different types of ceramic fillers and lithium salts for lithium-ion polymer batteries.” Journal of Power Sources, 2006, 156, 574-580.
209. Li, Z.; Su, G.; Wang, X.; Gao, D.; “Micro-porous P(VDF-HFP)-based polymer electrolyte filled with Al2O3 nanoparticles.” Solid State Ionics, 2005, 176, 1903-1908.
210. He, X.; Shi, Q.; Zhou, X.; Wan, C.; Jiang, C.; “In situ composite of nano SiO2–P(VDF-HFP) porous polymer electrolytes for Li-ion batteries.” Electrochimica Acta, 2005, 51, 1069-1075.
211. Yang, C.; Jia, Z.; Guan, Z.; Wang, L.; “Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries.” Journal of Power Sources, 2009, 189, 716-720.
212. Liang, Y.; Ji, L.; Guo, B.; Lin, Z.; Yao, Y.; Li, Y.; Alcoutlabi, M.; Qiu, Y.; Zhang, X.; “Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators.” Journal of Power Sources, 2011, 196, 436-441.
213. Raghavan, P.; Choi, J. W.; Ahn, J. H.; Cheruvally, G.; Chauhan, G. S.; Ahn, H. J.; Nah, C.; “Novel electrospun poly (vinylidene fluoride-co-hexafluoropropylene)–in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries.” Journal of Power Sources, 2008, 184, 437-443.
214. Raghavan, P.; Zhao, X.; Kim; J. K.; Manuel, J.; Chauhan, G. S.; Ahn, J. H.; Nah, C.; “Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly (vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers.” Electrochimica Acta, 2008, 54, 228-234.
215. Kim, Y. J.; Ahn, C. H.; Lee, M. B.; Choi, M. S.; “Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte.” Materials Chemistry and Physics, 2011, 127, 137-142.
216. Kim, J. K.; Cheruvally, G.; Li, X.; Ahn, J. H.; Kim, K. W.; Ahn, H. J.; “Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries.” Journal of Power Sources, 2008, 178, 815-820.
217. Choi, E. S.; Lee, S. Y.; “Particle size-dependent, tunable porous structure of a SiO2/poly (vinylidene fluoride-hexafluoropropylene)-coated poly (ethylene terephthalate) nonwoven composite separator for a lithium-ion battery.” Journal of Materials Chemistry, 2011, 21, 14747-14754.
218. Cho, J. H.; Park, J. H.; Kim, J. H.; Lee, S. Y.; “Facile fabrication of nanoporous composite separator membranes for lithium-ion batteries: poly (methyl methacrylate) colloidal particles-embedded nonwoven poly (ethylene terephthalate).” Journal of Materials Chemistry, 2011, 21, 8192-8198.
219. Zhang, J.; Yue, L.; Kong, Q.; Liu, Z.; Zhou, X.; Zhang, C.; Pang, S.; Wang, X.; Cui, G.; “A heat-resistant silica nanoparticle enhanced polysulfonamide nonwoven separator for high-performance lithium ion battery.” Journal of The Electrochemical Society, 2013, 160, A769-A774.
220. Huang, X.; Bahroloomi, D.; Xiao, X.; “A multilayer composite separator consisting of non-woven mats and ceramic particles for use in lithium ion batteries.” Journal of Solid State Electrochemistry, 2014, 18, 133-139.
221. Prosini, P. P.; Villano, P.; Carewska, M.; “A novel intrinsically porous separator for self-standing lithium-ion batteries.” Electrochimica Acta, 2002, 48, 227-233.
222. Zhang, S. S.; Xu, K.; Jow, T. R.; “Alkaline composite film as a separator for rechargeable lithium batteries.” Journal of Solid State Electrochemistry, 2003, 7, 492-496.
223. Zhang, S. S.; Xu, K.; Jow, T. R.; “An inorganic composite membrane as the separator of Li-ion batteries.” Journal of Power Sources, 2005, 140, 361-364.
224. An, M. Y.; Kim, H. T.; Chang, D. R.; “Multilayered separator based on porous polyethylene layer, Al2O3 layer, and electro-spun PVdF nanofiber layer for lithium batteries.” Journal of Solid State Electrochemistry, 2014, 18, 1807-1814.
225. Takemura, D.; Aihara, S.; Hamano, K.; Kise, M.; Nishimura, T.; Urushibata, H.; Yoshiyasu, H.; “A powder particle size effect on ceramic powder based separator for lithium rechargeable battery.” Journal of Power Sources, 2005, 146, 779-783.
226. Ahn, Y. K.; Park, J.; Shin, D.; Cho, S.; Park, S. Y.; Kim, H.; Piao, Y.; Yoo, J.; Kim, Y. S.; “Enhanced electrochemical capabilities of lithium ion batteries by structurally ideal AAO separator.” Journal of Materials Chemistry A, 2015, 3, 10715-10719.
227. Reneker, D. H.; Yarin, A. L.; “Electrospinning jets and polymer nanofibers.” Polymer, 2008, 49, 2387-2425.
228. Mathew, G.; Hong, J. P.; Rhee, J. M.; Leo, D. J.; Nah, C.; “Preparation and anisotropic mechanical behavior of highly‐oriented electrospun poly (butylene terephthalate) fibers.” Journal of Applied Polymer Science, 2006, 101, 2017-2021.
229. Zhang, D.; Chang, J.; “Patterning of electrospun fibers using electroconductive templates.” Advanced Materials, 2007, 19, 3664-3667.
230. Wang, X.; Ding, B.; Yu, J.; Wang, M.; Pan, F.; “A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance.” Nanotechnology, 2010, 21, 055502(6 pp).
231. Koombhongse, S.; Liu, W.; Reneker, D. H.; “Flat polymer ribbons and other shapes by electrospinning.” Journal of Polymer Science Part B: Polymer Physics, 2001, 39, 2598-2606.
232. Kessick, R.; Tepper, G.; “Microscale polymeric helical structures produced by electrospinning.” Applied Physics Letters, 2004, 84, 4807-4809.
233. Jin, Y.; Yang, D.; Kang, D.; Jiang, X.; “Fabrication of necklace-like structures via electrospinning.” Langmuir, 2009, 26, 1186-1190.
234. Chang, Z.; ““Firecracker-shaped” ZnO/polyimide hybrid nanofibers via electrospinning and hydrothermal process.” Chemical Communications, 2011, 47, 4427-4429.
235. Shengyuan, Y.; Peining, Z.; Nair, A. S.; Ramakrishna, S.; “Rice grain-shaped TiO2 mesostructures—synthesis, characterization and applications in dye-sensitized solar cells and photocatalysis.” Journal of Materials Chemistry, 2011, 21, 6541-6548.
236. Sun, Z.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A.; “Compound core-shell polymer nanofibers by co-electrospinning.” Advanced materials, 2003, 15, 1929-1932.
237. Zhao, Y.; Cao, X.; Jiang, L.; “Bio-mimic multichannel microtubes by a facile method.” Journal of the American Chemical Society, 2007, 129, 764-765.
238. Kokubo, H.; Ding, B.; Naka, T.; Tsuchihira, H.; Shiratori, S.; “Multi-core cable-like TiO2 nanofibrous membranes for dye-sensitized solar cells.” Nanotechnology, 2007, 18, 165604(6 pp).
239. Mou, F.; Guan, J. G.; Shi, W.; Sun, Z.; Wang, S.; “Oriented contraction: a facile nonequilibrium heat-treatment approach for fabrication of maghemite fiber-in-tube and tube-in-tube nanostructures.” Langmuir, 2010, 26, 15580-15585.
240. Chen, H.; Wang, N.; Di, J.; Zhao, Y.; Song, Y.; Jiang, L.; “Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning.” Langmuir, 2010, 26, 11291-11296.
241. Zussman, E.; Yarin, A. L.; Bazilevsky, A. V.; Avrahami, R.; Feldman, M.; “Electrospun polyacrylonitrile/poly (methyl methacrylate)-derived turbostratic carbon micro-/nanotubes.” Advanced Materials, 2006, 18, 348-353.
242. Wang, X.; Ding, B.; Yu, J.; Wang, M.; “Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials.” Nano Today, 2011, 6, 510-530.
243. Zhu, T.; Xu, D.; Wu, Y.; Li, J.; Zhou, M.; Tian, T.; Jiang, Y.; Li, F.; Li, G.; “Surface molecularly imprinted electrospun affinity membranes with multimodal pore structures for efficient separation of proteins.” Journal of Materials Chemistry B, 2013, 1, 6449-6458.
244. Lim, H. S.; Park, S. H.; Koo, S. H.; Kwark, Y. J.; Thomas, E. L.; Jeong, Y.; Cho, J. H.; “Superamphiphilic janus fabric.” Langmuir, 2010, 26, 19159-19162.
245. Su, C. I.; Shih, J. H.; Huang, M. S.; Wang, C. M.; Shih, W. C.; Liu, Y. S.; “A study of hydrophobic electrospun membrane applied in seawater desalination by membrane distillation.” Fibers and Polymers, 2012, 13, 698-702.
246. Ertas, Y.; Uyar, T.; “Main-chain polybenzoxazine nanofibers via electrospinning.” Polymer, 2014, 55, 556-564.
247. Fu, G. D.; Xu, L. Q.; Yao, F.; Zhang, K.; Wang, X. F.; Zhu, M. F.; Nie, S. Z.; “Smart nanofibers from combined living radical polymerization,“click chemistry”, and electrospinning.” ACS Applied Materials & Interfaces, 2009, 1, 239-243.
248. Yano, T.; Yah, W. O., Yamaguchi, H.; Terayama, Y.; Nishihara, M.; Kobayashi, M.; Takahara, A.; “Preparation and surface characterization of surface-modified electrospun poly (methyl methacrylate) copolymer nanofibers.” Chemistry Letters, 2010, 39, 1110-1111.
249. Jia, W.; Wu, Y.; Huang, J.; An, Q.; Xu, D.; Wu, Y.; Li, F.; Li, G.; “Poly (ionic liquid) brush coated electrospun membrane: a useful platform for the development of functionalized membrane systems.” Journal of Materials Chemistry, 2010, 20, 8617-8623.
250. Brandl, C.; Greiner, A.; Agarwal, S.; “Quick polymerization from electrospun macroinitiators for making thermoresponsive nanofibers.” Macromolecular Materials and Engineering, 2011, 296, 858-864.
251. Yoshikawa, C.; Zhang, K.; Zawadzak, E.; Kobayashi, H.; “A novel shortened electrospun nanofiber modified with a'concentrated'polymer brush.” Science and Technology of Advanced Materials, 2011, 12, 015003(7 pp).
252. Lin, J.; Tian, F.; Ding, B.; Yu, J.; Wang, J.; Raza, A.; “Facile synthesis of robust amphiphobic nanofibrous membranes.” Applied Surface Science, 2013, 276, 750-755.
253. Kayaci, F.; Aytac, Z.; Uyar, T.; “Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution.” Journal of Hazardous Materials, 2013, 261, 286-294.
254. Graberg, T. V.; Thomas, A.; Greiner, A.; Antonietti, M.; Weber, J.; “Electrospun Silica—Polybenzimidazole Nanocomposite Fibers.” Macromolecular Materials and Engineering, 2008, 293, 815-819.
255. Gu, S. Y.; Wang, Z. M.; Ren, J.; Zhang, C. Y.; “Electrospinning of gelatin and gelatin/poly (l-lactide) blend and its characteristics for wound dressing.” Materials Science and Engineering: C, 2009, 29, 1822-1828.
256. Liu, Y. L.; Li, Y.; Xu, J. T.; Fan, Z. Q.; “Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly (vinylidene fluoride).” ACS Applied Materials & Interfaces, 2010, 2, 1759-1768.
257. Prince, J. A.; Singh, G.; Rana, D.; Matsuura, T.; Anbharasi, V.; Shanmugasundaram, T. S.; “Preparation and characterization of highly hydrophobic poly (vinylidene fluoride)–clay nanocomposite nanofiber membranes (PVDF–clay NNMs) for desalination using direct contact membrane distillation.” Journal of Membrane Science, 2012, 397, 80-86.
258. Guo, H. F.; Li, Z. S.; Dong, S. W.; Chen, W. J.; Deng, L.; Wang, Y. F.; Ying, D. J. “Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications.” Colloids and Surfaces B: Biointerfaces, 2012, 96, 29-36.
259. Kumar, P. S.; Sundaramurthy, J.; Sundarrajan, S.; Babu, V. J.; Singh, G.; Allakhverdiev, S. I.; Ramakrishna, S.; “Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation.” Energy & Environmental Science, 2014, 7, 3192-3222.
260. Liu, Y. L.; “Developments of highly proton-conductive sulfonated polymers for proton exchange membrane fuel cells.” Polymer Chemistry, 2012, 3, 1373-1383.
261. Chang, C. M.; Li, H. Y.; Lai, J. Y.; Liu, Y. L.; “Nanocomposite membranes of Nafion and Fe3O4-anchored and Nafion-functionalized multiwalled carbon nanotubes exhibiting high proton conductivity and low methanol permeability for direct methanol fuel cells.” RSC Advances, 2013, 3, 12895-12904.
262. Wu, L.; Zhang, Z.; Ran, J.; Zhou, D.; Li, C.; Xu, T.; “Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs).” Physical Chemistry Chemical Physics, 2013, 15, 4870-4887.
263. Takamuku, S.; Jannasch, P.; “Fully aromatic block copolymers for fuel cell membranes with densely sulfonated nanophase domains.” Macromolecular Rapid Communications, 2011, 32, 474-480.
264. Li, N., Hwang; D. S.; Lee, S. Y.; Liu, Y. L.; Lee, Y. M.; Guiver, M. D.; “Densely sulfophenylated segmented copoly (arylene ether sulfone) proton exchange membranes.” Macromolecules, 2011, 44, 4901-4910.
265. Elabd, Y. A.; Napadensky, E.; Walker, C. W.; Winey, K. I.; “Transport properties of sulfonated poly (styrene-b-isobutylene-b-styrene) triblock copolymers at high ion-exchange capacities.” Macromolecules, 2006, 39, 399-407.
266. Chou, C. I.; Liu, Y. L.; “High performance thermosets from a curable Diels–Alder polymer possessing benzoxazine groups in the main chain.” Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46, 6509-6517.
267. Liu, Y. L.; Chou, C. I.; “High performance benzoxazine monomers and polymers containing furan groups.” Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43, 5267-5282.
268. Liu, Y. L.; Hsieh, C. Y.; “Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds.” Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44, 905-913.
269. Bose, S.; Kuila, T.; Nguyen, T. X. H.; Kim, N. H.; Lau, K. T.; Lee, J. H.; “Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges.” Progress in Polymer Science, 2011, 36, 813-843.
270. He, R.; Li, Q.; Bach, A.; Jensen, J. O.; Bjerrum, N. J.; “Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells.” Journal of Membrane Science, 2006, 277, 38-45.
271. Asensio, J. A.; Sánchez, E. M.; Gómez-Romero, P.; “Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest.” Chemical Society Reviews, 2010, 39, 3210-3239.
272. Çelik, S. Ü.; Bozkurt, A.; Hosseini, S. S.; “Alternatives toward proton conductive anhydrous membranes for fuel cells: Heterocyclic protogenic solvents comprising polymer electrolytes.” Progress in Polymer Science, 2012, 37, 1265-1291.
273. Kim, S. K.; Choi, S. W.; Jeon, W. S.; Park, J. O.; Ko, T.; Chang, H.; Lee, J. C.; “Cross-linked benzoxazine–benzimidazole copolymer electrolyte membranes for fuel cells at elevated temperature.” Macromolecules, 2012, 45, 1438-1446.
274. Ballengee, J. B.; Pintauro, P. N.; “Composite fuel cell membranes from dual-nanofiber electrospun mats.” Macromolecules, 2011, 44, 7307-7314.
275. Choi, J.; Wycisk, R.; Zhang, W.; Pintauro, P. N.; Lee, K. M.; Mather, P. T.; “High Conductivity Perfluorosulfonic Acid Nanofiber Composite Fuel‐Cell Membranes.” ChemSusChem, 2010, 3, 1245-1248.
276. Bajon, R.;Bala, S.; Guo, S. M.; “Electrospun Nafion nanofiber for proton exchange membrane fuelcell application” Journal of Fuel Cell Science and Technology, 2009, 6, 031004(6 pp).
277. Mollá, S.; Compañ, V.; Gimenez, E.; Blazquez, A.; Urdanpilleta, I.; “Novel ultrathin composite membranes of Nafion/PVA for PEMFCs.” International Journal of Hydrogen Energy, 2011, 36, 9886-9895.
278. Yu, D. M.; Yoon, K.; Yoon, Y. J.; Kim, T. H.; Lee, J. Y.; Hong, Y. T.; “Fabrication and Properties of Reinforced Membranes Based on Sulfonated Poly (arylene ether sulfone) Copolymers for Proton‐Exchange Membrane Fuel Cells.” Macromolecular Chemistry and Physics, 2012, 213, 839-846.
279. Lin, Y.; Zhou, B.; Shiral Fernando, K. A.; Liu, P.; Allard, L. F.; Sun, Y. P.; “Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer.” Macromolecules, 2003, 36, 7199-7204.
280. Xie, L.; Xu, F.; Qiu, F.; Lu, H.; Yang, Y.; “Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites.” Macromolecules, 2007, 40, 3296-3305.
281. Liu, Y. L.; Chang, Y. H.; Liang, M.; “Poly (2, 6-dimethyl-1, 4-phenylene oxide)(PPO) multi-bonded carbon nanotube (CNT): Preparation and formation of PPO/CNT nanocomposites.” Polymer, 2008, 49, 5405-5409.
282. Chang, C. M.; Liu, Y. L.; “Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites.” Carbon, 2010, 48, 1289-1297.
283. Wang, Y. H.; Chang, C. M.; Liu, Y. L.; “Benzoxazine-functionalized multi-walled carbon nanotubes for preparation of electrically-conductive polybenzoxazines.” Polymer, 2012, 53, 106-112.
284. Lobato, J.; Canizares, P.; Rodrigo, M. A.; Linares, J. J.; Manjavacas, G.; “Synthesis and characterisation of poly[2, 2-(m-phenylene)-5, 5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs.” Journal of Membrane Science, 2006, 280, 351-362.
285. Liu, Y. L.; Hsieh, C. Y.; Chen, Y. W.; “Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels–Alder reaction.” Polymer, 2006, 47, 2581-2586.
286. Hasani-Sadrabadi, M. M.; Shabani, I.; Soleimani, M.; Moaddel, H.; “Novel nanofiber-based triple-layer proton exchange membranes for fuel cell applications.” Journal of Power Sources, 2011, 196, 4599-4603.
287. He, R.; Li, Q.; Xiao, G.; Bjerrum, N. J.; “Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors.” Journal of Membrane Science, 2003, 226, 169-184.
288. Xu, C.; Wu, X.; Wang, X.; Mamlouk, M.; Scott, K.; “Composite membranes of polybenzimidazole and caesium-salts-of-heteropolyacids for intermediate temperature fuel cells.” Journal of Materials Chemistry, 2011, 21, 6014-6019.
289. Ding, B.; Yu, J.; Electrospun Nanofibers for Energy and Environmental Applications.; Springer. 2014.(page 52)
290. Su, Y. H.; Liu, Y. L.; Wang, D. M.; Lai, J. Y.; Sun, Y. M.; Chyou, S. D.; Lee, W. T.; “The effect of side chain architectures on the properties and proton conductivities of poly (styrene sulfonic acid) graft poly (vinylidene fluoride) copolymer membranes for direct methanol fuel cells.” Journal of Membrane Science, 2010, 349, 244-250.
291. Sakamoto, T.; Watanabe, K.; Shichibu, Y.; Konishi, K.; Sato, S. I.; Nakano, T.; “A photo‐degradable helix: Synthesis, structure, and photolysis of optically active poly [2, 7‐bis (4‐t‐butylphenyl)‐9‐methylfluoren‐9‐yl acrylate].” Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49, 945-956.
292. Kannan, R.; Parthasarathy, M.; Maraveedu, S. U.; Kurungot, S.; Pillai, V. K.; “Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cell performance.” Langmuir, 2009, 25, 8299-8305.
293. Laforgue, A.; Robitaille, L.; Mokrini, A.; Ajji, A.; “Fabrication and characterization of ionic conducting nanofibers.” Macromolecular Materials and Engineering, 2007, 292, 1229-1236.
294. Liu, D. S.; Ashcraft, J. N.; Mannarino, M. M.; Silberstein, M. N.; Argun, A. A.; Rutledge, G. C.; Boyce, M. C.; Hammond, P. T.; “Spray Layer‐by‐Layer Electrospun Composite Proton Exchange Membranes.” Advanced Functional Materials, 2013, 23, 3087-3095.
295. Chai, Z.; Wang, C.; Zhang, H.; Doherty, C. M.; Ladewig, B. P.; Hill, A. J.; Wang, H.; “Nafion–Carbon Nanocomposite Membranes Prepared Using Hydrothermal Carbonization for Proton‐Exchange‐Membrane Fuel Cells.” Advanced Functional Materials, 2010, 20, 4394-4399.
296. Yu, D. M.; Yoon, S.; Kim, T. H.; Lee, J. Y.; Lee, J.; Hong, Y. T.; “Properties of sulfonated poly (arylene ether sulfone)/electrospun nonwoven polyacrylonitrile composite membrane for proton exchange membrane fuel cells.” Journal of Membrane Science, 2013, 446, 212-219.
297. Chandan, A.; Hattenberger, M.; El-Kharouf, A.; Du, S.; Dhir, A.; Self, V.; Pollet, B. G.; Ingram, A.; Bujalski, W.; “High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)–A review.” Journal of Power Sources, 2013, 231, 264-278.
298. Tsao, C. S.: Chang, H. L.: Jeng, U. S.; Lin, J. M.; Lin, T. L.; “SAXS characterization of the Nafion membrane nanostructure modified by radiation cross-linkage.” Polymer, 2005, 46, 8430-8437.
299. Shim, J.; Ha, H. Y.; Hong, S. A.; Oh, I. H.; “Characteristics of the Nafion ionomer-impregnated composite membrane for polymer electrolyte fuel cells.” Journal of Power Sources, 2002, 109, 412-417.
300. Bultel, Y.; Wiezell, K.; Jaouen, F.; Ozil, P.; Lindbergh, G.; “Investigation of mass transport in gas diffusion layer at the air cathode of a PEMFC.” Electrochimica Acta, 2005, 51, 474-488.
301. Hester, J. F.; Banerjee, P.; Won, Y. Y.; Akthakul, A.; Acar, M. H.; Mayes, A. M.; “ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives.” Macromolecules, 2002, 35, 7652-7661.
302. Liu, Y. L.; Han, C. C.; Wei, T. C.; Chang, Y.; “Surface‐initiated atom transfer radical polymerization from porous poly (tetrafluoroethylene) membranes using the C F groups as initiators.” Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48, 2076-2083.
303. Roh, D. K.; Choi, J. K.; Koh, J. K.; Shul, Y. G.; Kim, J. H.; “Nanocomposite proton conducting membranes based on amphiphilic PVDF graft copolymer.” Macromolecular Research, 2010, 18, 271-278.
304. Liang, Y.; Lin, Z.; Qiu, Y.; Zhang, X.; “Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators.” Electrochimica Acta, 2011, 56, 6474-6480.
305. Aravindan, V.; Sundaramurthy, J.; Kumar, P. S.; Shubha, N.; Ling, W. C.; Ramakrishna, S.; Madhavi, S.; “A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators.” Nanoscale, 2013, 5, 10636-10645.
306. Jiang, W.; Liu, Z.; Kong, Q.; Yao, J.; Zhang, C.; Han, P.; Cui, G.; “A high temperature operating nanofibrous polyimide separator in Li-ion battery.” Solid State Ionics, 2013, 232, 44-48.
307. Gao, K.; Hu, X.; Dai, C.; Yi, T.; “Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells.” Materials Science and Engineering: B, 2006, 131, 100-105.
308. Huai, Y.; Gao, J.; Deng, Z.; Suo, J.; “Preparation and characterization of a special structural poly (acrylonitrile)-based microporous membrane for lithium-ion batteries.” Ionics, 2010, 16, 603-611.
309. Lee, Y.; Ryou, M. H.; Seo, M.; Choi, J. W.; Lee, Y. M.; “Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li-ion batteries.” Electrochimica Acta, 2013, 113, 433-438.
310. Ryou, M. H.; Lee, D. J.; Lee, J. N.; Lee, Y. M.; Park, J. K.; Choi, J. W.; “Excellent Cycle Life of Lithium‐Metal Anodes in Lithium‐Ion Batteries with Mussel‐Inspired Polydopamine‐Coated Separators.” Advanced Energy Materials, 2012, 2, 645-650.
311. Fang, L. F.; Shi, J. L.; Zhu, B. K.; Zhu, L. P.; “Facile introduction of polyether chains onto polypropylene separators and its application in lithium ion batteries.” Journal of Membrane Science, 2013, 448, 143-150.
312. Kang, S. M.; Ryou, M. H.; Choi, J. W.; Lee, H.; “Mussel-and diatom-inspired silica coating on separators yields improved power and safety in Li-ion batteries.” Chemistry of Materials, 2012, 24, 3481-3485.
313. Choi, J. A.; Kim, S. H.; Kim, D. W.; “Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators.” Journal of Power Sources, 2010, 195, 6192-6196.
314. Fu, D.; Luan, B.; Argue, S.; Bureau, M. N.; Davidson, I. J.; “Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries.” Journal of Power Sources, 2012, 206, 325-333.
315. Shin, W. K.; Kim, D. W.; “High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries.” Journal of Power Sources, 2013, 226, 54-60.
316. Lin, C. H.; Chang, S. L.; Shen, T. Y.; Shih, Y. S.; Lin, H. T.; Wang, C. F.; “Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies.” Polymer Chemistry, 2012, 3, 935-945.
317. Ning, X.; Ishida, H.; “Phenolic materials via ring‐opening polymerization: Synthesis and characterization of bisphenol‐A based benzoxazines and their polymers.” Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32, 1121-1129.
318. Chernykh, A.; Agag, T.; Ishida, H.; “Synthesis of linear polymers containing benzoxazine moieties in the main chain with high molecular design versatility via click reaction.” Polymer, 2009, 50, 382-390.
319. Liu, J.; Agag, T.; Ishida, H.; “Main-chain benzoxazine oligomers: A new approach for resin transfer moldable neat benzoxazines for high performance applications.” Polymer, 2010, 51, 5688-5694.
320. Agag, T.; Geiger, S.; Alhassan, S. M.; Qutubuddin, S.; Ishida, H.; “Low-viscosity polyether-based main-chain benzoxazine polymers: precursors for flexible thermosetting polymers.” Macromolecules, 2010, 43, 7122-7127.
321. Yang, L.; Raza, A.; Si, Y.; Mao, X.; Shang, Y.; Ding, B.; Yu, J.; Al-Deyab, S. S.; “Synthesis of superhydrophobic silica nanofibrous membranes with robust thermal stability and flexibility via in situ polymerization.” Nanoscale, 2012, 4, 6581-6587.
322. Ren, T.; Si, Y.; Yang, J.; Ding, B.; Yang, X.; Hong, F.; Yu, J.; “Polyacrylonitrile/polybenzoxazine-based Fe3O4 @ carbon nanofibers: hierarchical porous structure and magnetic adsorption property.” Journal of Materials Chemistry, 2012, 22, 15919-15927.
323. Kao, T. H.; Chen, J. K.; Cheng, C. C.; Su, C. I.; Chang, F. C.; “Low-surface-free-energy polybenzoxazine/polyacrylonitrile fibers for biononfouling membrane.” Polymer, 2013, 54, 258-268.
324. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D.; “Challenges in the development of advanced Li-ion batteries: a review.” Energy & Environmental Science, 2011, 4, 3243-3262.
325. Liu, Y. L.; Yu, J. M.; Chou, C. I.; “Preparation and properties of novel benzoxazine and polybenzoxazine with maleimide groups.” Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42, 5954-5963.
326. Kim, H. D.; Ishida, H.; “A study on hydrogen-bonded network structure of polybenzoxazines.” The Journal of Physical Chemistry A, 2002, 106, 3271-3280.
327. Selvi, M.; Vengatesan, M. R.; Devaraju, S.; Kumar, M.; Alagar, M.; “In situ sol–gel synthesis of silica reinforced polybenzoxazine hybrid materials with low surface free energy.” RSC Advances, 2014, 4, 8446-8452.
328. Liu, J.; Lu, X.; Xin, Z.; Zhou, C.; “Synthesis and surface properties of low surface free energy silane-functional polybenzoxazine films.” Langmuir, 2012, 29, 411-416.
329. Alcoutlabi, M.; Lee, H.; Watson, J. V.; Zhang, X.; “Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning.” Journal of Materials Science, 2013, 48, 2690-2700.
330. Liu, Z.; Jiang, W.; Kong, Q.; Zhang, C.; Han, P.; Wang, X.; Yao, J.; Cui, G.; “A Core@ sheath nanofibrous separator for lithium ion batteries obtained by coaxial electrospinning.” Macromolecular Materials and Engineering, 2013, 298, 806-813.
331. Li, H. Y.; Chang, C. M.; Hsu, K. Y.; Liu, Y. L.; “Poly (lactide)-functionalized and Fe3O4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly (lactide) films and electrospun nanofibers.” Journal of Materials Chemistry, 2012, 22, 4855-4860.
332. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B.; “Mussel-inspired surface chemistry for multifunctional coatings.” Science, 2007, 318, 426-430.
333. Wang, H.; Zhou, H.; Gestos, A.; Fang, J.; Lin, T.; “Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages.” ACS Applied Materials & Interfaces, 2013, 5, 10221-10226.
334. Yi, L.; Meng, X.; Tian, X.; Zhou, W.; Chen, R.; “Wettability of Electrospun Films of Microphase-Separated Block Copolymers with 3, 3, 3-Trifluoropropyl Substituted Siloxane Segments.” The Journal of Physical Chemistry C, 2014, 118, 26671-26682.
335. Nguyen, D. D.; Tai, N. H.; Lee, S. B.; Kuo, W. S.; “Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method.” Energy & Environmental Science, 2012, 5, 7908-7912.
336. Law, J. B. K.; Ng, A. M. H.; He, A. Y.; Low, H. Y.; “Bioinspired ultrahigh water pinning nanostructures.” Langmuir, 2014, 30, 325-331.
337. Ting, W. H.; Chen, C. C.; Dai, S. A.; Suen, S. Y.; Yang, I. K.; Liu, Y. L.; Chen, F. M. C.; Jeng, R. J.; “Superhydrophobic waxy-dendron-grafted polymer films via nanostructure manipulation.” Journal of Materials Chemistry, 2009, 19, 4819-4828.
338. Lin, H. C.; Wang, C. F.; Kuo, S. W.; Tung, P. H.; Huang, C. F.; Lin, C. H.; Chang, F. C.; “Effect of intermolecular hydrogen bonding on low-surface-energy material of poly (vinylphenol).” The Journal of Physical Chemistry B, 2007, 111, 3404-3410.
339. Wang, C. F.; Su, Y. C.; Kuo, S. W.; Huang, C. F.; Sheen, Y. C.; Chang, F. C.; “Low‐Surface‐Free‐Energy Materials Based on Polybenzoxazines.” Angewandte Chemie International Edition, 2006, 45, 2248-2251.
340. Shang, Y.; Si, Y.; Raza, A.; Yang, L.; Mao, X.; Ding, B.; Yu, J.; “An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil–water separation.” Nanoscale, 2012, 4, 7847-7854.
341. Wang, C. F.; Chen, H. Y.; Kuo, S. W.; Lai, Y. S.; Yang, P. F.; “Rapid, low temperature microwave synthesis of durable, superhydrophobic carbon nanotube–polybenzoxazine nanocomposites.” RSC Advances, 2013, 3, 9764-9769.
342. Wong, T. S.; Kang, S. H.; Tang, S. K.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J.; “Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.” Nature, 2011, 477, 443-447.
343. Wei, Q.; Schlaich, C.; Prévost, S.; Schulz, A.; Böttcher, C.; Gradzielski, M.; Qi, Z.; Haag, R.; Schalley, C. A.; “Supramolecular Polymers as Surface Coatings: Rapid Fabrication of Healable Superhydrophobic and Slippery Surfaces.” Advanced Materials, 2014, 26, 7358-7364.
344. Öner, D.; McCarthy, T. J.; “Ultrahydrophobic surfaces. Effects of topography length scales on wettability.” Langmuir, 2000, 16, 7777-7782.
345. McLauchlin, M. L.; Yang, D.; Aella, P.; Garcia, A. A.; Picraux, S. T.; Hayes, M. A.; “Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces.” Langmuir, 2007, 23, 4871-4877.
346. Lai, Y.; Gao, X.; Zhuang, H.; Huang, J.; Lin, C.; Jiang, L.; “Designing superhydrophobic porous nanostructures with tunable water adhesion.” Advanced Materials, 2009, 21, 3799-3803.
347. Latthe, S. S.; Dhere, S. L.; Kappenstein, C.; Imai, H.; Ganesan, V.; Rao, A. V.; Wagh, P. B.; Gupta, S. C.; “Sliding behavior of water drops on sol–gel derived hydrophobic silica films.” Applied Surface Science, 2010, 256, 3259-3264.
348. Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L.; “Superhydrophobic aligned polystyrene nanotube films with high adhesive force.” Advanced Materials, 2005, 17, 1977-1981.
349. Hong, X.; Gao, X.; Jiang, L.; “Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet.” Journal of the American Chemical Society, 2007,129, 1478-1479.
350. Liao, C. S.; Wang, C. F.; Lin, H. C.; Chou, H. Y.; Chang, F. C.; “Fabrication of patterned superhydrophobic polybenzoxazine hybrid surfaces.” Langmuir, 2009, 25, 3359-3362.
351. Djian, D.; Alloin, F.; Martinet, S.; Lignier, H.; Sanchez, J. Y.; “Lithium-ion batteries with high charge rate capacity: Influence of the porous separator.” Journal of Power Sources, 2007, 172, 416-421.
352. Jung, H. R.; Ju, D. H.; Lee, W. J.; Zhang, X.; Kotek, R.; “Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes.” Electrochimica Acta, 2009, 54, 3630-3637.
353. Nestler, T.; Schmid, R.; Münchgesang, W.; Bazhenov, V.; Schilm, J.; Leisegang, T.; Meyer, D. C.; “Separators-Technology review: Ceramic based separators for secondary batteries.” AIP Conference Proceedings, 2014, 1597, 155-184.
354. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; & Zhang, X.; “A review of recent developments in membrane separators for rechargeable lithium-ion batteries.” Energy & Environmental Science, 2014, 7, 3857-3886.
355. Lee, M. J.; Kim, J. H.; Lim, H. S.; Lee, S. Y.; Yu, H. K.; Kim, J. H.; Lee, J. S.;Sun, Y. K.; Guiver, M. D.; Shu, K. D.; Lee, Y. M.; “Highly lithium-ion conductive battery separators from thermally rearranged polybenzoxazole.” Chemical Communications, 2015, 51, 2068-2071.
356. Weber, C. J.; Geiger, S.; Falusi, S.; Roth, M.; “Material review of li ion battery separators” AIP Conference Proceedings, 2014, 1597, 66-81.
357. Yanilmaz, M.; Dirican, M.; Zhang, X.; “Evaluation of electrospun SiO2/nylon 6, 6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries.” Electrochimica Acta, 2014, 133, 501-508
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *