帳號:guest(18.223.170.63)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林宥鑫
作者(外文):Lin, You-Sin
論文名稱(中文):高分子太陽能電池之電荷傳遞機構的研究
論文名稱(外文):Studies on charge transport mechanism in polymer solar cell
指導教授(中文):陳壽安
指導教授(外文):Chen, Show-An
口試委員(中文):陳壽安
郭欽湊
任慈浩
口試委員(外文):Chen, Show-An
Kuo, Chin-Tsou
Jen, Tzu-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032550
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:115
中文關鍵詞:高分子太陽能電池導電度鬆弛電荷動速率交流電阻抗
外文關鍵詞:PolymerSolar cellConductivity relaxationMobilityImpedance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:482
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今由於導電高分子元件製作容易、並且具有可繞曲性,因此已被廣泛的應用在太陽能電池上,同時近年來普遍使用予體(donor)及受體(acceptor)混摻的系統,來製作高分子太陽能電池(PSC)元件,近期更有文獻報導其元件之效率(PCE)高達10.6 %,因此更可以顯示出這個領域未來的應用潛力。
本文以交流電阻抗量測分析儀(impedance analyzer)得到電性膜數(electric modulus),來探討與分析最基本的P3HT混摻碳球的高分子太陽能電池元件,觀察載子在太陽光模擬光源下真實的傳遞的機制,以及予體與受體之間的介面載子行為;另外把導電度鬆弛峰進行de-convolution,來分析載子於高分子太陽能電池實際的操作狀況下時,電子與電洞同時在移動時的移動速率,發現到在低電場下(<0.9x105 (V/cm))電子的移動速率比電洞來的慢,同時熱退火後會提升電洞的移動速率,而電子的移動速率反而會變慢,其原因與P3HT與PCBM的形態(morphology)有關,並且認為太陽能高分子電池的元件效率若要更進一步的提升,必須要在提升P3HT結晶性的同時讓PCBM聚集得程度不可太大;最後,以交流電阻抗量測的結果會發現,與文獻上傳統的量測方式(TOF、SCLC)有所不同,原因是本方法量測的範圍是在短路電流(Jsc)附近進行,而且同時會有兩種載子移動(電子、電洞),而其他方法都只能在Voc附近以上進行測量,因此並非PSC真正的操作範圍。
Recently, because of conjugated polymers are easy to fabricate, promising flexibility, it is largely applied to solar cells. Donor and acceptor systems are used to fabricate polymer solar cell (PSC) devices in recent years and the device power conversion efficiency (PCE) reach 10.6 %. Therefore, this field shows its potential to application in the future.
Our thesis focus on the basic P3HT and acceptor system, and we used impedance analyzer to measure the conductivity relaxation of the system. In this technique, not only charge transport mechanism under solar radiation can be simulated but also the behavior between donor and acceptor interface can be investigated. On the other hand, in order to analysis electron and hole transport behavior under real operating condition at the same time, we used Gaussian function to de-convolution. The results showing that electron mobility was slower than hole mobility at low electric field (< 0.9x105 V/cm). Hole mobility increased after thermal annealing but electron mobility decreased. These results were ascribed to the morphology of active layer. Consequently, if we want to further increase the PCE of polymer solar cell, P3HT crystallization should be increased and the degree of PCBM aggregation should be suppressed. Finally, our results were different from conventional technique (TOF, SCLC). We thought that the reasons could be ascribed to the different measuring range. Our method was under Jsc condition which is real operating condition for PSC and there were two charges (electron, hole) transporting at the same time. However, others (TOF, SCLC) were near or above Voc. Consequently, these ranges were not real PSC operating situation.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
第一章、 緒論 1
1-1 前言 1
1-2 共軛導電高分子定義及其應用 2
1-3 共軛導電高分子電子狀態理論 4
1-4 能量轉移理論 10
1-5 高分子太陽能電池 13
1-5-1 太陽能光譜 13
1-5-2高分子太陽能電池的原理 16
1-6交流電阻抗原理(impedance spectroscopy) 21
第二章、 文獻回顧 24
2-1 熱退火對高分子太陽能電池的影響 24
2-1-1 P3HT混摻PCBM系統熱退火的影響 24
2-1-2 混摻不同碳球對太陽能高分子電池的影響 29
2-2 交流電阻抗應用於高分子太陽能電池的文獻回顧 31
2-3 P3HT與PCBM系統電荷移動速率(mobility)之文獻回顧 36
2-3-1 空間電荷限制電流法(space-charge-limited current) 36
2-3-2 飛行時間法(Time of flight) 39
2-3-3 場效電晶體法(Field-Effect transistors) 45
2-3-4 CELIV(Charge exhausted in linear increasing voltage) 46
2-4 交流電阻抗量測導電度鬆弛之文獻回顧 47
2-4-1 電性模數之定義及電荷移動速率計算 47
2-4-2 系統具有不同相(混摻、相分離)對於導電度鬆弛的影響 51
2-5 文獻分析 54
第三章、 研究方法 56
3-1 實驗藥品 56
3-2 儀器設備 57
3-2-1 交流電阻抗儀(Impedance spectroscopy IS) 57
3-2-2 飛行時間量測儀 57
3-2-3 電流-電壓特性量測 58
3-3元件的製作 59
3-4 導電度鬆弛量測條件 60
第四章、 純P3HT與純PCBM之電荷傳遞機構 61
4-1 前言 61
4-2 單一載子導電度鬆弛行為 61
4-3 PEDOT:PSS作為電洞傳輸層對導電度鬆弛的影響 68
4-4 本章結論 69
第五章、 P3HT混摻PCBM系統之電荷傳遞機構 70
5-1 前言 70
5-2 熱退火對於P3HT混摻PCBM系統之導電度鬆弛影響 70
5-3 利用PS混摻P3HT或PCBM探討介面的載子行為 74
5-4 P3HT混摻PCBM之單一載子元件的導電度鬆弛行為 83
5-5 P3HT混摻PCBM之不同熱退火溫度的導電度鬆弛比較 85
5-6 P3HT混摻PCBM系統導電度鬆弛之載子移動速率分析 88
5-7 P3HT混摻PCBM於沒照光底下的導電度鬆弛行為 94
5-8 P3HT混摻PCBM於不同電場下的電荷移動速率 97
5-9 P3HT混摻PCBM之溶劑熱退火(solvent annealing)與一般熱退火製程(thermal annealing)比較 100
5-10 P3HT混摻PCBM於負偏壓下的導電度鬆弛行為 101
5-11 不同碳球的導電度鬆弛比較 103
5-12 P3HT混摻ICBA或PCBM之mobility比較 105
5-13 本章結論 107
第六章、 參考文獻 109
[1] C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. J. Janssen, N. S. Sariciftci, Synth. Metals, 1999, 102, 861
[2] S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour,Appl. Phys. Lett., 2001, 79, 2996
[3] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater., 2001, 11, 15
[4] M. A. Green, K. Emery, Y. Hishikawa, W.Warta, Prog. Photovolt: Res. Appl., 2011, 19, 566
[5] J. C. W. Chien, “Polyacetylene:Chemistry, Physics, and Material Science,” Academic Press, Orlando (1984)
[6] A. S. Wood, “Tapping the power of intrinsic conductivity”, Modern Plastics Int., Aug. (1991) 33
[7] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38, 2042
[8] C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 914
[9] A. Moliton, J.-M. Nunzi, Polym. Int., 2006, 55, 583
[10] M. Knupfer, Appl. Phys. A, 2003, 77, 623
[11] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys. Lett., 1996, 68, 3120
[12] M. Theander, A. Yartsev, D. Zigmantas, V. Sundstrom, W. Mammo, M. R. Andersson, O. Ingänas, Phy. Rev. B, 2000, 61, 12957
[13] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudi, Science, 1992, 258, 1474
[14] P. Peumans, S. R. Forrest,Appl. Phys. Lett. 2001, 79, 126
[15] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, Appl. Phys. Lett. 2002, 80, 1288
[16] H. Hoppe, N. S. Sariciftci, Adv. Polym. Sci. 2008, 214,1
[17] H. Hoppe, N. S. Sariciftci, J. Mater. Chem. 2006, 16, 45
[18] X. Yang and J. Loos, Macromolecules, 2007, 40, 1353
[19] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, J. Appl. Phys. 2005, 98, 043704
[20] D. Chirvase, J. Parisi, J. CHummelen and V. Dyakonov, Nanotechnology, 2004, 15, 1317
[21] C. J. Brabec, A. Cravino, D. Meissner, N. S.Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen,Adv. Funct. Mater. 2001, 11, 374.
[22] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849
[23] E.j Barsoukov, J. Ross Macdonald, Impedance spectroscopy Theory Experiment and application, 2nd
[24] W. Ma, C. Yang, X. Gong, A. J. Heeger, Adv. Func. Mat. 2005, 15, 1617
[25] S. Wu, J. Li, Q. Tai, and F. Yan, J. Phys. Chem. C, 2010, 114, 21873
[26] G. Li, S. Vishal, Y. Yao, J. Huang, Y. Yang, J. Mater. Chem. 2007, 17, 3126
[27] M. Reyes-Reyes, K. Kim and D. L. Carroll, Appl. Phys. Lett., 2005, 87, 083506
[28] G. Li, V. Shrotryia, J. Huang, Y. Yao, Tommoriarty, Keith Emery, Yang Yang, nature materials, 4, 2005, 864
[29] T. Kuwabara, C. Iwata, T. Yamaguchi, Kohshin Takahashi, applied materials and interfaces, 2, 8, 2010, 2254
[30] T. Kuwabara, Y. Kawahara, T. Yamaguchi, K. Takahashi, applied materials and interfaces, 2009, 10, 2107
[31] T. Kuwabara, C. Iwata, T. Yamaguchi, K. Takahashi, applied materials and interfaces, 2010, 8 ,2254
[32] T. Kuwabara, M. Nakamoto, Y. Kawahara, T. Yamaguchi, and K. Takahashi, applied physics, 2009, 105, 124513
[33] J. Bisquert, J. Phys. Chem. B, 2002, 106, 325
[34] J. You, C.C. Chen, L. Dou, Seiichiro Murase, Hsin-Sheng Duan, Steve Hawks, Tao Xu , Hae Jung Son, Luping Yu, Gang Li, Yang Yang, Adv. Mater. 2012, 10, 1002
[35] R. S. Teresa, Antonio uerrero, Juan is uert, Garcia-Belmonte, J. Phys. Chem. C 2012, 116, 16925
[36] J. L. Benjamin, A. B. Christopher, J. M. Tobin, C. H. Mark, F. D. Michael, Adv. Energy Mater. 2012, 2, 120
[37] A. Guerrero, T. Ripolles-Sanchis, P. P. Boix, G. Garcia-Belmonte, Org. Electron. 2012, 13, 2326
[38] N. F.Mott, R. W. Gurney, Electronic Processes in Ionic Crystals; Clarendon Press: New York, 1940.
[39] T. Matsushima, H. Murata Appl. Phys. Lett. 2009, 95, 203306
[40] V. D. Mihailetchi, Xie Hangxing, Bert de Boer, L. Jan Anton Koster, Paul W. M. Blom, Adv. Funct. Mater. 2006, 16, 699
[41] V. D. Mihailetchi, Xie Hangxing, Bert de Boer, L. Jan Anton Koster, Paul W. M. Blom, Adv. Funct. Mater. 2003,13,43
[42] A. Kokil, K. Yang, J. Kumar, J. Polymer Science B:polymer physics, 2012, 50, 1130
[43] I. I. Fishchuk, A. K. Kadashchuk, A. Vakhnin, Y. Korrosko, H. Bassler, B. Souharce, U. Scherf, Phys. Rev. B, 2006, 73,
115210
[44] H. E. Tseng, T. H. Jen, K. Y. Peng, S. A. Chen, Appl. Phys. Lett. 2004, 84, 1456
[45] S. A. Choulis, Y. Kim, J. Nelson, D. D. C. Bradley, M. Giles, Appl. Phys. Lett. 2004, 85, 3890
[46] S. M. Tuladhar, D. Poplavskyy, S. A. Choulis, J. R. Durrant, D. D. C. Bradley J. Nelson, Adv. Funct. Mater. 2005, 15, 1171
[47] M. Morana, P. Koers, C. Waldauf, M. Koppe, D. Muehlbacher, P. Denk, M. Scharber, D. Waller, C. Brabec, adv. Func. Mater. 2007, 17, 3274
[48] G. Juska, K. Arlauskas, M. Viliunas, K. Genevicius, phys. rev. B, 2000, 62, 16235
[49] A. J. Mozer, N. S. Sariciftci, A. Pivrikas, R. Österbacka, y. Juška, L. Brassat, H. ässler, phys. rev. B 2005, 71, 035214
[50] P. B. Macedo, C. T. Moynihan, R Bose -Phys. Chem. Glasses, 1972
[51] C. T. Moynihan, L. P. Boesch, N. L. Laberge, Phys. Chem. Glasses, 1973, 14,122
[52] S. A. Chen, C. S. Liao; Marcomolecules, 1993, 26, 2810
[53] G. Williams, D. C. Watts, Trans. Faraday Soc. 1970, 66, 80
[54] M. C. Phillips, A. J. Barlow, J. Lamb,proc. R. Soc. Lond. A, 329, 1972, 193
[55] M. Y. Chiu, U. S. Jeng, C. H. Su, K. S. Liang, K. H. Wei, Adv. Mater. 2008, 20, 2573
[56] A. J. Mozer, N. S. Sariciftci, A. Pivrikas, R. Österbacka, G. Juška, L. Brassat, H. Bässler, Phys. Rev. B, 2005, 71, 035214
[57] V. Kažukauskas , M. Pranaitis , V. Čyras , L. Sicot , F. Kajzar, thin solid films, 2008, 516, 8988
[58] F. Kremer, A. Schonhals, Broadband Dielectric spectroscopy
[59] M. A. Monedero, G. S. Luengo, S. Moreno, F. Ortega, Ramo´n G. Rubio, M. G. Prolongo, R. M. Masegosa, polmer, 1999, 40, 5833
[60] J. Zhang, M. Mine, D. Zhu, M. Matsuo, Carbon, 2009, 47, 1311
[61] A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merker, K. Reuter, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, CRC Press, 2011
[62] B. Kim, J. Lee, and I. Yu, J. Appl. Phys. 2003, 94, 6724
[63] C. Park, J. H. Kang, J. S. Harrison, R. C. Costen, S. E. Lowther, Adv. Mater. 2008, 20, 2074
[64] A. L. Ayzner, D. D. Wanger, C. J. Tassone, S. H. Tolbert, B. J. Schwartz, J. phys. Chem. C, 2008, 112, 18711
[65] J. Guo, H. Ohkita, H. Benten, Shinzaburo Ito J. Am. Chem. Soc. 2010, 132, 6154
[66] Y. H. Lin , Y. T. Tsai , C. C. Wua, C. H. Tsai , C. H. Chiang , H. F. Hsu , J. J. Lee , C. Y. Cheng, Organic Electronics, 2012, 13, 2333–2341
[67] Y. He, H. T. Chen, J. Hou, and Y. F. Li, J. Am. Chem. Soc. 2010, 132, 1377
[68] Y. Kim, J. Nelson, D. C. Bradley et al. nature materials, 2006, 5, 197
[69] J. Huang, G. Li, Yang Yang, Appl. Phys. Lett. 2005, 87, 112105
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *