帳號:guest(3.139.103.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):殷振豪
作者(外文):Yin, Chen Hao
論文名稱(中文):PAN/氧化石墨烯奈米複合材料之熱行為與形態學研究
論文名稱(外文):Thermal Behavior and Morphology of Polyacrylonitrile/Graphene Oxide Nanocomposites
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin Lung
口試委員(中文):邱佑宗
賴韋豪
口試委員(外文):Chiu, Yu Tsung
Lai, Wei Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032549
出版年(民國):104
畢業學年度:104
語文別:英文
論文頁數:73
中文關鍵詞:石墨烯聚丙烯腈奈米複合物
外文關鍵詞:Graphene oxideGO/PANnanocomposites
相關次數:
  • 推薦推薦:0
  • 點閱點閱:267
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
近年來,氧化石墨烯(GO)逐漸得到重視,GO被廣泛用於形成良好分散的複合材料,以提高機械性能、熱性能和形態學,而聚丙烯腈(PAN)是用於工業生產中製造碳纖維的常見聚合物之一。本文的重點是GO對PAN的熱性能和奈米複合材料結構的影響。
分散良好的PAN / GO複合膜使用溶液澆鑄法來製備。 WAXS剖面顯示了在PAN結構中並沒有局部聚集的GO層,證實GO在複合材料中的良好分散性。 FT-IR光譜說明了PAN鏈和GO分子之間的相互作用是由GO表面和聚丙烯腈的腈基上羥基之間的氫鍵鍵合。
X射線衍射結果顯示,當GO摻入後約3-8%時,PAN的結晶程度將增強。
在含有4%(重量)水的PAN / GO / DMSO溶液的凝膠化行為研究中,凝膠化過程中會產生液-液相分離並且沒有結晶跡象,隨著加入GO後,凝膠動力學會提升。
SDT分析表明,適量的GO可以提高PAN的熱穩定性和PAN的環化溫度會提昇。
此外,我們使用基辛格法估計GO併入PAN後的環化動力學參數,發現
PAN的環化活化能因GO的存在而較高,表示GO將抑制環化,然而當環化結構形成後,GO可能加速環化反應。
Graphene oxide (GO) has received wide attention in recent years. GO has been used to enhance the mechanical properties, thermal behavior and morphology of polymers by forming well-dispersed composites. Polyacrylonitrile (PAN) is one of the common polymers used as the precursor for manufacturing carbon fiber in industrial production. This thesis is focused on the effect of GO on the thermal property of PAN and the morphology of the nanocomposite.
Well-dispersed PAN/GO composite films were prepared using a solution-casting method. WAXS profiles showed no local aggregation of GO layers in PAN matrix, confirming the good dispersion of GO in the composite. FT-IR spectroscopy suggested that the major interaction between PAN chains and GO molecule was the hydrogen bonding between hydroxyl groups on the surface of GO and the nitrile group on PAN. X-ray diffraction results indicated the degree of crystalling of the PAN was enhanced by around 3-8 % upon the incorporation of GO. The study of the gelation behavior of PAN/GO/DMSO solution containing 4 wt% water revealed that a liquid-liquid phase separation occurred during the gelation with no sign of crystallization and the gelation kinetics was found to be increased by the addition of GO.
SDT analysis showed that an appropriate amount of GO may enhance the thermal stability of PAN and the cyclization temperature of PAN was higher in the presence of GO. Furthermore, the kinetic parameters of the cyclization reactions for PAN incorporated with GO were estimated using the Kissinger method. The activation energies of the cyclization reaction for PAN were higher with the existence of GO, implying that GO inhibited the cyclization However, GO may accelerates the cyclization after the cyclized structure was first formed.
Abstract I
INDEX III
CHAPTER 1 INTRODUCTION 1
1.1 Graphene and graphene oxide 1
1.1-1 Discovery and synthesis 1
1.1-2 Characterization and structural features of graphene 5
1.1-3 Properties of graphene and graphene oxide 11
1.2 Graphene-Polymer composites 13
1.2-1 Overview and fabrication 13
1.2-2 Thermal behavior 15
1.2-3 Morphology and crystallization 19
1.2-4 Gelation behavior 22
1.3 Motivation and Objectives of Research 26
CHAPTER 2 EXPERIMENTAL 28
2.1 Materials 28
2.2 Preparation of PAN/GO composite films and gels 28
2.3 Characterization 31
CHAPTER 3 RESUTLS AND DISCUSSION 33
3.1 Characterization of the constituents 33
3.1-1 Graphene oxide 33
3.1-2 Polyacrylonitrile-Itaconic acid copolymer 36
3.1-3 Interaction between PAN and GO 38
3.2 Morphology and Crystallization Behavior 40
3.2-3 Small-Length Scale Morphology and Crystallization 44
3.3 Gelation of PAN/GO nanocomposite 47
3.3-1 Gelation mechanism and additive effect 47
3.3-2 Morphology and Crystallization of PAN/GO gel 51
3.4 Cyclization Mechanism and Thermal Behavior 53
3.4-1 Cyclization mechanism and kinetics 53
3.4-3 Thermal degradation and stability 60
3.4-4 Thermal behavior in different atmosphere 65
CHAPTER 4 CONCLUSION 68
REFERENCES 70
[1] Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007;6:183–90.
[2] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al.
Electric field effect in atomically thin carbon films. Science 2004;306:666–9.
[3] R.J. Young et al. / Composites Science and Technology 72 (2012) 1459–1476
[4] Kim, H.; Abdala, A. A.; Macosko, C. W. Macromolecules 2010, 43, (16),
6515-6530.
[5] Dreyer RD, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev 2010;39:228–40.
[6] Wang G, Yang J, Park J, Gou X, Wang B, Liu H, et al. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C2008;112:8192–5.
[7] Wang G, Shen X, Wang B, Yao J, Park J. Synthesis and characteriza-
tion of hydrophilic and organophilic graphene nanosheets. Carbon
2009;47:1359–64.
[8] Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth
graphene nanoribon semiconductor. Science 2008;319:1229–31.
[9] Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, et al.
Graphene-based liquid crystal device. Nano Lett 2008;8:1704–8.
[10] Rodolfo M, Amadeo LVP, Graphene:. Surfing ripples towards new devices. Nat Nanotechnol 2009;4:549–50.
[11] T. Kuila et al. / Progress in Polymer Science 35 (2010) 1350–1375
[12] Rao CNR, Biswas K, Subrahmanyam KS, Govindaraj A. Graphene, the new
carbon. J Mater Chem 2009;19:2457–69.
[13] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, Nature, 2009, 457, 706–710.
[14] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science, 2009, 324, 1312–1314.
[15] P. W. Sutter, J. I. Flege and E. A. Sutter, Nat. Mater., 2008, 7, 406–411.
[16] N. Xiao, X. Dong, L. Song, D. Liu, Y. Tay, S. Wu, L.-J. Li, Y. Zhao, T. Yu, H. Zhang, W. Huang, H. H. Hng, P. M. Ajayan and Q. Yan, ACS Nano, 2011, 5, 2749–2755.
[17] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai,
A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer,J. Phys. Chem. B, 2004, 108, 19912–19916.
[18] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, Nat. Mater., 2009, 8, 203–207.
[19] M. Choucair, P. Thordarson and J. A. Stride, Nat. Nanotechnol., 2009, 4, 30–33.
[20] X. Wang, L. Zhi, N. Tsao, Zˇ. Tomovic´, J. Li and K. Mu¨llen, Angew. Chem., Int. Ed., 2008, 47, 2990–2992.
[21] X. Yan, X. Cui and L.-s. Li, J. Am. Chem. Soc., 2010, 132, 5944–5945.
[22] Xiao Huang, Xiaoying Qi, Freddy Boeyand, Hua Zhang, Chem. Soc. Rev. 2011
[23] Brodie BC. On the atomic weight of graphite. Philos Trans Roy Soc Lond 1859; 149:249–59.
[24] Staudenmaier L. Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem
Ges 1898;31:1481–7.
[25] Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc 1958; 80:1339.
[26] Lerf, A.; He, H.; Forster, M.; Klinowski, J. J. Phys. Chem. B 1998, 102, 4477-4482.
[27] He, H.; Klinowski, J.; Forster, M.; Lerf, A. Chem. Phys. Lett. 1998, 287, 53 – 56.
[28] Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. Nature Chem. 2009, 1, 403 - 408, S403/1 - S403/20.
[29] Reddy CD, Rajendran S, Liew KM. Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 2006; 17:864–70.
[30] Boukhvalov DW, Katsnelson MI, Lichtenstein AI. Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys Rev B 2008;77, 035427/1-6.
[31] Andres PL, Ramírez R, Vergés JA. Strong covalent bonding between two graphene layers. Phys Rev B 2008;77, 045403/1-5.
[32] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al.
Electric field effect in atomically thin carbon films. Science 2004;306:666–9.
[33] Lerf, A.; Buchsteiner, A.; Pieper, J.; Schottl, S.; Dekany, I.; Szabo, T.; Boehm, H.
P. J Phys Chem Solids 2006, 67, (5-6), 1106-1110.
[34] Wang, S. Z., Y.; Abidi, N.; Cabrales, L. Langmuir 2009, 25, 11078.
[35] Zhao, X.; Zhang, Q. H.; Chen, D. J.; Lu, P. Macromolecules 2010, 43, (5), 2357-2363.
[36] Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, et al. Raman
spectrum of graphene and graphene layers. Phys Rev Lett 2006;97:187401.
[37] Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon,
J. M. D. Langmuir 2009, 25, (10), 5957-5968.
[38] Geng, Y.; Wang, S. J.; Kim, J. K. J Colloid Interf Sci 2009, 336, (2), 592-598.
[39] M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano Lett., 2008, 8, 3498–3502.
[40] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Science, 2008, 320, 1308–1308.
[41] C. Lee, X. D. Wei, J. W. Kysar and J. Hone, Science, 2008, 321, 385–388.
[42] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306, 666–669.
[43] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Nano Lett., 2008, 8, 902–907.
[44] V. Singh et al. / Progress in Materials Science 56 (2011) 1178–1271
[45] J.R. Potts et al. / Polymer 52 (2011) 5-25
[46] Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol 2007;67:2528–34.
[47] Chen G, Weng W, Wu D, Wu C. Nonlinear conduction in nylon-6/foliated graphite nanocomposites above the percolation threshold. J Polym Sci Part B Polym Phys 2004;42:155–67.
[48] Zheng W, Lu X, Wong SC. Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci 2004;91:2781–8.
[49] Rahaman MSA, Ismail AF, Mustafa A. Polym Degrad Stab 2007;92(8):1421-32.
[50] Mohammad A. Semsarzadeh, Azizalah Molaeei. Iranian Polymer Journal I Volume h Number 2 (1997)
[51] O.-K. Park et al. / Polymer 53 (2012) 2168e2174
[52] P. Bajaj et al. / Polymer 42 (2001) 1707–1718
[53] Thomas J. Xue, Michael A. McKinney, Charles A. Wilkie. Polymer Degradation and stability 58 (1997) 193-202
[54] Fangfang Wu, Yonggen Lu, Guilin Shao, Fanlong Zeng, Qilin Wu. Polym Int (2012)
[55] Hussein M. Etmimi and Ronald D. Sanderson / Macromolecules (2011), 44, 8504–8515
[56] Gyanaranjan Prusty, Sarat K Swain / POLYMER COMPOSITES (2011)
[57] Lianjiang Tan, Ajun Wan, Ding Pan. Materials Letters 65 (2011) 887–890
[58] Lianjiang Tan, Shuiping Liu, Ding Pan. Physicochem. Eng. Aspects 340 (2009) 168–173
[59] L. Tan, H. Chen, D. Pan, N. Pan. European Polymer Journal 45 (2009) 1617–1624
[60] H. Bai, K. Sheng, P. Zhang, C. Li, G. Shi. J. Mater. Chem., 2011, 21, 18653
[61] H. Bai, C. Li, X. Wang, G. Shi. J. Phys. Chem. C 2011, 115, 5545 – 5551
[62] V. Singh et al. / Progress in Materials Science 56 (2011) 1178–1271
[63] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff. Chem. Soc. Rev, 2010, 39, 228–240
[64] Hofmann, U.; Holst, R. Ber Dtsch Chem Ges 1939, 72, 754-771.
[65] Ruess, G. Monatsh. Chem. 1946, 76, 381-417.
[66] Scholz, W.; Boehm, H. P. Z Anorg Allg Chem 1969, 369, (3-6), 327-
[67] Szabo, T.; Berkesi, O.; Forgo, P.; Josepovits, K.; Sanakis, Y.; Petridis, D. Dekany,
I. Chem. Mater 2006, 18, (11), 2740-2749.
[68] Q. Ouyang et al. / Polymer Degradation and Stability 93 (2008) 1415–1421
[69] Devesia et al. / Journal of Applied Polymer Science, Vol. 100, 3055–3062 (2006)
[70] C. Wan, B. Chen. J. Mater. Chem., 2012, 22, 3637–3646
[71] L. Boguslavsky et al. / Journal of Colloid and Interface Science 289 (2005) 71–85
[72] Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J. M. D. Langmuir
2008, 24, (19), 10560-10564.
[73] S. Xiao, W. Cao, B. Wang, L. Xu, B. Chen. J. APPL. POLYM. SCI. 2013, 3198-3203
[74] T. J. Xue, M. A. McKinney, C. A. Wilkie, Polymer Degradation and Stability 58 (1997) 193-202
[75] Shijie Xiao, Weiyu Cao, Bin Wang, Lianghua Xu, Biaohua Chen. J. APPL. POLYM. SCI. 2013, 3198-3203
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *