帳號:guest(3.137.161.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉韋志
作者(外文):Liu, Wei-Jhih
論文名稱(中文):使用質傳速率模型探討碳酸二甲酯/甲醇之萃取蒸餾
論文名稱(外文):Study of extractive distillation process for the separation of dimethyl carbonate and methanol using rate-based model
指導教授(中文):汪上曉
指導教授(外文):Wong, David Shan-Hill
口試委員(中文):王聖潔
何宗仁
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032546
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:77
中文關鍵詞:質傳速率模型萃取蒸餾
相關次數:
  • 推薦推薦:0
  • 點閱點閱:651
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
碳酸二甲酯是一個重要且低毒性有機化合物,可以稱呼為綠色化學品。在石化工業上,碳酸二甲酯可以取代硫酸二甲酯當作甲基化劑,亦可取代光氣當作羰基化劑,生產聚碳酸酯和聚氨酯聚合物。在大部分合成碳酸二甲酯的方法幾乎都會有甲醇和碳酸二甲酯的共沸物產生,由於共沸物的分離較困難,因此,發展出有效且具有經濟效益的分離方法,成為生產碳酸二甲酯的關鍵之一。分離甲醇和碳酸二甲酯之共沸物有許多方法,但其中萃取蒸餾無論在投資效益或操作安全方面都優於其它方法,是最有工業化前景的分離方法。由Quijada-Maldonado et al.所發表的文獻中得知質傳速率模型比平衡板模型提供了更好的預測溫度和濃度分布,故本研究的目的是要探討如何利用質傳速率模型設計碳酸二甲酯和甲醇之萃取蒸餾系統所需要的塔件硬體。以Hsu(2010)此篇論文之萃取蒸餾系統當作探討對象,利用其平衡板模型當作本研究進行質傳速率模型模擬時之基礎,質傳速率模型之模擬方法為在固定塔高下,將填充塔之板數逐漸增加,出料純度皆會達到收斂,而板數為塔內積分切割段數。再利用達到收斂之板數作為基礎,改變填充塔高,尋求使出料純度滿足要求之填充塔高,此即為所需填充塔高。在質傳速率模型之平衡板比例設計法中,本研究採用Aspen Plus中Bravo et al.(1985)與HanleyStruc(2012) 此兩種內建關聯公式個別進行液相膜及雙膜兩種阻力存在下的模擬,結果得知主要膜阻力為氣相膜。兩者關聯公式在液相膜中,HanleyStruc(2012)關聯公式之膜阻力較大;在雙膜中,Bravo et al.(1985)關聯公式之膜阻力較大;綜合雙膜與液相膜之結果,Bravo et al.(1985)關聯公式在氣相膜之膜阻力較大。
本研究亦使用分段設計法進行設計並與平衡板比例設計法(Bravo et al.,1985)進行比較,其所需總塔高較低,平衡板比例設計法所需總塔高較為高估。利用增加萃取蒸餾塔之萃取段及溶劑回收塔之氣提段塔高,而減少精餾段塔底進料之碳酸二甲酯純度,以利降低其所需塔高,但均不符合經濟效益;將兩塔各段之填充物種類由Mellapak 250Y換成BX,只有在精餾段中選擇適合的填充物較有利減少設備成本;利用Sulzer Chemtech公司提供的經驗值與各段進行比較,結果顯示精餾段之相當理論板高度較經驗值高出許多,萃取段與氣提段較接近經驗值。較高純度的要求是造成精餾段之相當理論板高度高出經驗值許多的部分原因。在萃取蒸餾塔中,發現質傳速率模型的精餾路徑是與平衡板模型不相同的,且精餾段的精餾路徑本來會隨著蒸餘曲線偏離鞍點,造成所蒸餾出的甲醇純度較低,為了獲得純度較高的甲醇,精餾段的塔高就必須增加,故此亦為精餾段的HETP會比其他段高度較高的原因之一;在溶劑回收塔中,蒸餘曲線亦會偏離鞍點,但蒸餘曲線在鞍點時較陡,故造成精餾段之HETP較高,但不會像萃取蒸餾塔之精餾段的HETP高出其他段那麼多。
誌謝 I
摘要 II
目錄 IV
圖目錄 V
表目錄 IX
一、 緒論 1
1.1. 研究背景 1
1.2. 文獻回顧 5
1.3. 研究動機 10
二、 質傳速率模型介紹 11
2.1. 平衡板模型 11
2.2. 質傳速率模型 13
三、 甲醇-碳酸二甲酯之萃取蒸餾系統 18
3.1. 建立熱力學模式 18
3.2. 甲醇-碳酸二甲酯之萃取蒸餾系統 23
四、 甲醇-碳酸二甲酯萃取蒸餾系統之質傳速率模型 26
五、 比較質傳速率模型之不同因素 36
5.1. 內建關聯公式比較 36
5.2. 板數放大方法之比較 44
5.3. 減少精餾段高度之方法 54
5.4. 模擬結果與Sulzer比較 64
5.5. 蒸餘曲線圖分析 71
六、 結論 73
參考文獻 75
1.Delledonne, D.; Rivetti, F.; Romano, U., Developments in the production and application of dimethylcarbonate. Appl. Catal. A-Gen. 2001, 221, (1-2), 241-251.
2.楊士賢. 水中MTBE氧化特性之研究. 碩士論文, 國立成功大學, 2003.
3.張中興. The properties of supported cuprous chloride catalysts in the synthesis of dialkyl carbonates. 博士論文, 國立台灣科技大學, 2006.
4.Pacheco, M. A.; Marshall, C. L., Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels 1997, 11, (1), 2-29.
5.Jun, R.; Zhong, L.; Yuan, Z.; Fanhui, M.; Kechang, X., Advances in dimethyl carbonate synthesis by gas-phase oxidative carbonylation of methanol. Chemical Industry and Engineering Progress 2007, 26, (9), 1246-1252.
6.Pasternak, M.; Bartels, C. R.; Jr., J. R.; Shah, V. M. Membrane process for separation of organic liquids. US:4960519, 1990.
7.Gilpin, J. A.; Emmons, A. H. Synthesis of dimethyl carbonate. US:3803201, 1974.
8.Spencer, M. S. Carbonate production. US:4582645, 1986.
9.Janisch, I.; Landscheidt; Struver; Klausener Process for separating off methanol from a mixture of dimethyl carbonate and methanol. US:5455368, 1995.
10.U., R. Recovery of dimthyl carbonate from its azeotropic mixture with methanol. DE:2607003, 1976.
11.Li, C. S.; Zhang, X. P.; Zhang, S. J.; Xu, Q. Q., Vapor-liquid equilibria and process simulation for separation of dimethyl carbonate and methanol azeotropic system. The Chinese Journal of Process Engineering 2003, 3, (5), 453-458.
12.Xiong, G. X.; Li, G. X., Separations of binary methanol - dimethyl carbonate azeotrope. Chemical Industry and Engineering Progress 2002, 21, (1), 26-28.
13.Walter, H.; Karl, F.; Gerd, K.; Kurt, S.; Rudolf, I. Preparation of pure dimethyl carbonate US:4162200, 1979.
14.蕭永長. Design and control of dimethyl carbonate reactive distillation column process. 碩士論文, 國立台灣科技大學, 2007.
15.Wang, S. J.; Yu, C. C.; Huang, H. P., Plant-wide design and control of DMC synthesis process via reactive distillation and thermally coupled extractive distillation. Comput. Chem. Eng. 2010, 34, (3), 361-373.
16.Keigo, N.; Shinichi, Y.; Shuji, T. Process for purifying dimethyl carbonate. US:5292917, 1994.
17.Nisoli, A.; Bouwens, S. M.; Doherty, M. F.; Malone, M. F. Method of separating dimethyl carbonate and methanol US:6315868, 2001.
18.Hsu, K. Y.; Hsiao, Y. C.; Chien, I. L., Design and control of dimethyl carbonate-methanol separation via extractive distillation in the dimethyl carbonate reactive-distillation process. Ind. Eng. Chem. Res. 2010, 49, (2), 735-749.
19.Matsuda, H.; Takahara, H.; Fujino, S.; Constantinescu, D.; Kurihara, K.; Tochigi, K.; Ochi, K.; Gmehling, J., Selection of entrainers for the separation of the binary azeotropic system methanol plus dimethyl carbonate by extractive distillation. Fluid Phase Equilib. 2011, 310, (1-2), 166-181.
20.Hai-xia, W.; Xiao-ping, L., Extractive distillation of dimethyl carbonate-methanol azeotrope using ethylene carbonate as extractant. 天然氣化工 2007, 32, (5), 19-22.
21.Zhang, L. Q.; Sun, S.; Jiang, X. Z., Study on extractive distillation of dimethyl carbonate from its azeotrope with methanol using optimization. Spcaility Petrochemicals 1999, 7, (4), 61-64.
22.Afkhamipour, M.; Mofarahi, M., Comparison of rate-based and equilibrium-stage models of a packed column for post-combustion CO2 capture using 2-amino-2-methyl-1-propanol (AMP) solution. Int. J. Greenh. Gas Control 2013, 15, 186-199.
23.Taylor, R.; Krishna, R.; Kooijman, H., Real-world modeling of distillation. Chem. Eng. Prog. 2003, 99, (7), 28-39.
24.Quijada-Maldonado, E.; Aelmans, T. A. M.; Meindersma, G. W.; de Haan, A. B., Pilot plant validation of a rate-based extractive distillation model for water–ethanol separation with the ionic liquid [emim][DCA] as solvent. Chemical Engineering Journal 2013, 223, 287-297.
25.Rodriguez, A.; Canosa, J.; Dominguez, A.; Tojo, J., Vapour-liquid equilibria of dimethyl carbonate with linear alcohols and estimation of interaction parameters for the UNIFAC and ASOG method. Fluid Phase Equilib. 2002, 201, (1), 187-201.
26.Hsu, P. H.-C. Design and Control of Separating Various Azeotropic Mixtures via an Extractive Divided-Wall Column. Master Thesis, National Taiwan University, 2012.
27.Bravo, J. L.; Rocha, J. A.; Fair, J. R., Mass-transfer in gauze packings. Hydrocarb. Process. 1985, 64, (1), 91-95.
28.Hanley, B.; Chen, C. C., New Mass-transfer correlations for packed towers. AIChE Journal 2012, 58, (1), 132-152.
29.Structured packings for distillaiton,absorption and reactive distillation. www.sulzer.com/en/-/media/Documents/ProductsAndServices/Separation_Technology/Structured_Packings/Brochures/Structured_Packings.pdf
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *