|
參考文獻 1. Roy, S., Hegde, M.S. & Madras, G. Catalysis for NOx abatement. Applied Energy 86, 2283-2297 (2009). 2. Nova, I., Ciardelli, C., Tronconi, E., Chatterjee, D. & Weibel, M. NH(3)-NO/NO(2) SCR for diesel exhausts after treatment: mechanism and modelling of a catalytic converter. Topics in Catalysis 42-43, 43-46 (2007). 3. Fang, H.L. & DaCosta, H.F.M. Urea thermolsis and NOx reduction with and without SCR catalysts. Applied Catalysis B-Environmental 46, 17-34 (2003). 4. Oh, S.H. & Eickel, C.C. EFFECTS OF CERIUM ADDITION ON CO OXIDATION-KINETICS OVER ALUMINA-SUPPORTED RHODIUM CATALYSTS. Journal of Catalysis 112, 543-555 (1988). 5. Teraoka, Y., Harada, T. & Kagawa, S. Reaction mechanism of direct decomposition of nitric oxide over Co- and Mn-based perovskite-type oxides. Journal of the Chemical Society-Faraday Transactions 94, 1887-1891 (1998). 6. Hansen, K.K. Solid state electrochemical DeNOx—An overview. Applied Catalysis B: Environmental 100, 427-432 (2010). 7. Huang, T.J. & Chou, C.L. Electrochemical NOx Reduction with Power Generation in Solid Oxide Fuel Cells with Cu-Added (LaSr)(CoFe)O-3-(Ce,Gd)O2-x Cathode. Journal of The Electrochemical Society 157, P28-P34 (2010). 8. Huang, T.J. & Hsiao, I.C. Nitric oxide removal from simulated lean-burn engine exhaust using a solid oxide fuel cell with V-added (LaSr)MnO3 cathode. Chemical Engineering Journal 165, 234-239 (2010). 9. Huang, T.J. & Wang, C.H. Effect of temperature and NOx concentration on nitric oxide removal from simulated lean-burn engine exhaust via electrochemical-catalytic cells. Chemical Engineering Journal 173, 530-535 (2011). 10. Huang, T.J. & Wu, C.Y. Kinetic behaviors of high concentration NOx removal from simulated lean-burn engine exhaust via electrochemical-catalytic cells. Chemical Engineering Journal 178, 225-231 (2011). 11. Huang, T.J., Wu, C.Y., Hsu, S.H. & Wu, C.C. Complete emissions control for highly fuel-efficient automobiles via a simulated stack of electrochemical-catalytic cells. Energy & Environmental Science 4, 4061-4067 (2011). 12. Huang, T.J., Wu, C.Y. & Wu, C.C. Lean-burn NOx emission control via simulated stack of solid oxide fuel cells with Cu-added (LaSr)MnO3 cathodes. Chemical Engineering Journal 172, 665-670 (2011). 13. Huang, T.J., Wu, C.Y. & Wu, C.C. Simultaneous CO and NOx removal from simulated lean-burn engine exhaust via solid oxide fuel cell with La0.8Sr0.2Mn0.95Cu0.05O3 cathode. Electrochemistry Communications 13, 755-758 (2011). 14. Huang, T.-J., Wu, C.-Y. & Wu, C.-C. Effect of temperature and concentration on treating NO in simulated diesel exhaust via SOFCs with Cu-added (LaSr)MnO3 cathode. Chemical Engineering Journal 168, 672-677 (2011). 15. Huang, T.J., Hsu, S.H. & Wu, C.Y. Simultaneous NOx and Hydrocarbon Emissions Control for Lean-Burn Engines Using Low-Temperature Solid Oxide Fuel Cell at Open Circuit. Environmental Science & Technology 46, 2324-2329 (2012). 16. Huang, B., Qi, Y. & Murshed, M. Solid oxide fuel cell: Perspective of dynamic modeling and control. Journal of Process Control 21, 1426-1437 (2011). 17. Huang, T.J., Wu, C.Y. & Lin, Y.H. Electrochemical Enhancement of Nitric Oxide Removal from Simulated Lean-Burn Engine Exhaust via Solid Oxide Fuel Cells. Environmental Science & Technology 45, 5683-5688 (2011). 18. Huang, T.-J., Wu, C.-Y., Hsu, S.-H. & Wu, C.-C. Complete emissions control for highly fuel-efficient automobiles via a simulated stack of electrochemical-catalytic cells. Energy & Environmental Science 4, 4061 (2011). 19. Huang, T.J., Wu, C.Y., Hsu, S.H. & Wu, C.C. Electrochemical-catalytic conversion for simultaneous NOx and hydrocarbons emissions control of lean-burn gasoline engine. Applied Catalysis B-Environmental 110, 164-170 (2011). 20. 吳重瑩. 以電化學觸媒電池進行模擬廢氣中氮氧化物分解之動力學行為之研究. 國立清華大學化工所 博士論文 (民國一百零一年).
|