帳號:guest(3.145.37.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳昇憲
論文名稱(中文):電觸媒轉化器處理鍋爐廢氣中之氮氧化物
論文名稱(外文):Treatment of nitrogen oxides from boiler exhaust gas via electro-catalytic converter
指導教授(中文):汪上曉
口試委員(中文):周正晃
王聖潔
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032545
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:71
中文關鍵詞:脫硝電觸媒氮氧化物鍋爐
相關次數:
  • 推薦推薦:0
  • 點閱點閱:86
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
提升能源使用效率的最好方法就是提高燃燒效率,但在提高燃燒效率的同時,也會增加氮氧化物(NOx)的排放。為了發展更有效的氮氧化物處理技術,本研究將以電觸媒(electro-catalytic cells,or electro-catalytic converter, ECC)理論為基礎,進行鍋爐燃燒廢氣中的NOx處理。
為了實現處理真實鍋爐廢氣的目標,本研究先設計了一可達35000 kcal/hr熱量輸出之燃燒器,並且安裝了後續的燃燒後處理室,以供熱交換器以及ECC反應器安裝使用。
本研究模擬了燃燒燃料產生之廢氣組成。依此模擬結果,設計了後續所需的熱交換器的大小,以及ECC處理器所需要的面積。並根據此結果,比較了管式、板式、蜂巢狀等不同ECC處理器的優缺。最終決定選用平板式ECC處理器。
接著製作三明治型ECC,從小型實驗開始著手。證明陽極側用如碳粉等固體填料作為還原氛圍的結構可行性。並且進行了真實氣體的模擬實驗。最後以多組串接的方式探討scale-up可能會有的問題。
最終以此35000kcal/hr的燃燒器進行實際的燃燒廢氣測試,作為工廠實際使用的前導實驗,證明三明治型ECC在實際廢氣測試時也能發揮良好的效果。
本研究以前人的文獻為基礎,證實了三明治ECC這種陽極外側不用氫氣等氣體填充,而採用固體填料的結構可行。並且將之量產,以量產的產品進行大型的實驗,確認此結構處理實際廢氣的效果良好。
摘要 I
目錄 II
圖目錄 IV
表目錄 VI
第一章、緒論 1
第二章、文獻回顧 3
二.1 氮氧化物(NOx) 3
二.2現行之氮氧化物處理技術 4
二.2.1 氮氧化物之分解 4
二.2.2選擇性觸媒還原法(selective catalytic reduction, SCR) 6
二.2.3直接分解法 9
二.2.4 外加電壓分解 10
二.3電觸媒轉換法(electro-catalytic convertert,ECC) 12
二.3.1 固態氧化物燃料電池(solid oxide fuel cell,SOFC)處理氮氧化物 12
二.3.2 電觸媒轉換器 17
第三章、研究構想 19
第四章、模擬與實驗設計 21
四.1 ASPEN模擬燃燒結果 21
四.2 所需陰極反應面積 23
四.3 燃燒器以及燃燒後處理室設計 24
四.4 反應器的設計 25
四.4.1 管式反應器 25
四.4.2 板式反應器 27
四.4.3 蜂巢狀反應器 29
四.5 小型反應器試作-以三明治型ECC為例 32
第五章、實驗 34
五.1 實驗藥品 34
五.2 物質安全資料表 35
五.3 儀器 37
五.4 實驗步驟 38
五.4.1 三明治型ECC製作 38
五.4.2 實驗裝置 40
第六章、結果與討論 42
六.1 燃燒器 42
六.2 反應器設計與比較 45
六.3 三明治型ECC實驗 47
六.4 多組三明治型ECC實驗 50
六.5 示範燃燒系統測試 60
六.6工廠鍋爐反應器前導測試 64
第七章、結論 67
七.1 結論 67
參考文獻 70
參考文獻
1. Roy, S., Hegde, M.S. & Madras, G. Catalysis for NOx abatement. Applied Energy 86, 2283-2297 (2009).
2. Nova, I., Ciardelli, C., Tronconi, E., Chatterjee, D. & Weibel, M. NH(3)-NO/NO(2) SCR for diesel exhausts after treatment: mechanism and modelling of a catalytic converter. Topics in Catalysis 42-43, 43-46 (2007).
3. Fang, H.L. & DaCosta, H.F.M. Urea thermolsis and NOx reduction with and without SCR catalysts. Applied Catalysis B-Environmental 46, 17-34 (2003).
4. Oh, S.H. & Eickel, C.C. EFFECTS OF CERIUM ADDITION ON CO OXIDATION-KINETICS OVER ALUMINA-SUPPORTED RHODIUM CATALYSTS. Journal of Catalysis 112, 543-555 (1988).
5. Teraoka, Y., Harada, T. & Kagawa, S. Reaction mechanism of direct decomposition of nitric oxide over Co- and Mn-based perovskite-type oxides. Journal of the Chemical Society-Faraday Transactions 94, 1887-1891 (1998).
6. Hansen, K.K. Solid state electrochemical DeNOx—An overview. Applied Catalysis B: Environmental 100, 427-432 (2010).
7. Huang, T.J. & Chou, C.L. Electrochemical NOx Reduction with Power Generation in Solid Oxide Fuel Cells with Cu-Added (LaSr)(CoFe)O-3-(Ce,Gd)O2-x Cathode. Journal of The Electrochemical Society 157, P28-P34 (2010).
8. Huang, T.J. & Hsiao, I.C. Nitric oxide removal from simulated lean-burn engine exhaust using a solid oxide fuel cell with V-added (LaSr)MnO3 cathode. Chemical Engineering Journal 165, 234-239 (2010).
9. Huang, T.J. & Wang, C.H. Effect of temperature and NOx concentration on nitric oxide removal from simulated lean-burn engine exhaust via electrochemical-catalytic cells. Chemical Engineering Journal 173, 530-535 (2011).
10. Huang, T.J. & Wu, C.Y. Kinetic behaviors of high concentration NOx removal from simulated lean-burn engine exhaust via electrochemical-catalytic cells. Chemical Engineering Journal 178, 225-231 (2011).
11. Huang, T.J., Wu, C.Y., Hsu, S.H. & Wu, C.C. Complete emissions control for highly fuel-efficient automobiles via a simulated stack of electrochemical-catalytic cells. Energy & Environmental Science 4, 4061-4067 (2011).
12. Huang, T.J., Wu, C.Y. & Wu, C.C. Lean-burn NOx emission control via simulated stack of solid oxide fuel cells with Cu-added (LaSr)MnO3 cathodes. Chemical Engineering Journal 172, 665-670 (2011).
13. Huang, T.J., Wu, C.Y. & Wu, C.C. Simultaneous CO and NOx removal from simulated lean-burn engine exhaust via solid oxide fuel cell with La0.8Sr0.2Mn0.95Cu0.05O3 cathode. Electrochemistry Communications 13, 755-758 (2011).
14. Huang, T.-J., Wu, C.-Y. & Wu, C.-C. Effect of temperature and concentration on treating NO in simulated diesel exhaust via SOFCs with Cu-added (LaSr)MnO3 cathode. Chemical Engineering Journal 168, 672-677 (2011).
15. Huang, T.J., Hsu, S.H. & Wu, C.Y. Simultaneous NOx and Hydrocarbon Emissions Control for Lean-Burn Engines Using Low-Temperature Solid Oxide Fuel Cell at Open Circuit. Environmental Science & Technology 46, 2324-2329 (2012).
16. Huang, B., Qi, Y. & Murshed, M. Solid oxide fuel cell: Perspective of dynamic modeling and control. Journal of Process Control 21, 1426-1437 (2011).
17. Huang, T.J., Wu, C.Y. & Lin, Y.H. Electrochemical Enhancement of Nitric Oxide Removal from Simulated Lean-Burn Engine Exhaust via Solid Oxide Fuel Cells. Environmental Science & Technology 45, 5683-5688 (2011).
18. Huang, T.-J., Wu, C.-Y., Hsu, S.-H. & Wu, C.-C. Complete emissions control for highly fuel-efficient automobiles via a simulated stack of electrochemical-catalytic cells. Energy & Environmental Science 4, 4061 (2011).
19. Huang, T.J., Wu, C.Y., Hsu, S.H. & Wu, C.C. Electrochemical-catalytic conversion for simultaneous NOx and hydrocarbons emissions control of lean-burn gasoline engine. Applied Catalysis B-Environmental 110, 164-170 (2011).
20. 吳重瑩. 以電化學觸媒電池進行模擬廢氣中氮氧化物分解之動力學行為之研究. 國立清華大學化工所 博士論文 (民國一百零一年).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *