帳號:guest(3.12.148.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李淳漢
論文名稱(中文):Synthesis and characterization of cyclopentadithiophene (CPDT)-naphthalene (NDI) push-pull ABA-type oligomers and copolymers
指導教授(中文):堀江正樹
口試委員(中文):蘇安仲
游進陽
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032542
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:130
中文關鍵詞:conjugated polymern-type materialC-H direct arylation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:182
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
This thesis presents the synthesis, characterization, and device performance of a
series of cyclopentadithiophene (CPDT)-naphthalene (NDI) donor-acceptor (D-A)
ABA-type oligomers and copolymers. These oligomers composed of
CPDT-NDI-CPDT unit with various alkyl chains are successfully synthesized via
direct arylation using palladium complex catalyst. The corresponding copolymers are
synthesized by oxidative polymerization using FeCl3. All of oligomers and
copolymers are systematically characterized and analyzed by gel permeation
chromatography (GPC), 1H NMR and UV-vis-NIR absorption spectroscopies, cyclic
voltammetry (CV), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and
differential scanning calorimetry (DSC). GPC measurement shows that these
polymers are of relatively high molecular weight, Mn = 21800-76000. These
copolymers show deep-red absorption including near-infrared region (up to 1100 nm)
due to their quite narrow bandgap. Impressively, the electrochemical property of the
resulting copolymers exhibits lowest unoccupied molecular orbital (LUMO) at about -
3.7 eV, which has been considered as the favorable level as n-type materials for use in
organic photovoltaic devices (OPVs).
These copolymers exhibit only n-type property giving the highest electron
mobility of 3.7 x 10-4 cm2 V-1 s-1 in organic field-effect transistor because of its strong
intermolecular interaction. On the other hand, the copolymer with highly soluble
branched alkyl chain shows the highest power conversion efficiency of 0.25% in
organic photovoltaic device.
To investigate the versatile reactivity of C-H direct arylation, the copolymers
composed of above unit with benzothiadiazole, thiophene, or bithiophene are also
II
synthesized by direct arylation polymerization. All polymers have higher molecular
weight (Mn = 18000-52000) than the alternative polymers of dibromo-NDI and CPDT
obtained from similar reaction condition. The optical and electrochemical properties
of these polymers are measured by UV-vis-NIR spectra, 1H-NMR, GPC and CVs.
Table of content
Abstract I
Table of content III
Chapter 1. Introduction and purpose 1
1.1 Introduction 1
1.2 Organic semiconductors 1
1.3 Charge transport in organic semiconductors 4
1.3.1 P-type organic semiconductors 5
1.3.2 Ambipolar semiconductors 9
1.4 Application of conjugated polymers 11
1.4.1 Organic field effect transistors 11
1.4.2 Organic photovoltaics 16
1.5 Structure and property of conjugated polymers 20
1.6 Synthesis of conjugated polymers 25
1.7 Aim of this work 33
Chapter 2. Synthesis and Characterization of ABA Type Copolymers Comprising of Cyclopentadithiophene and Naphthalenediimide 34
2.1 Introduction 34
2.2 Synthesis 38
2.2.1 Synthesis of monomers 38
2.2.2 Synthesis of polymers 51
2.3 Optical and electrochemical properties 54
2.4 Thermal properties 65
2.6 Device characteristics of organic field effect transistors and organic photovoltaics 66
Chapter 3. Synthesis and Characterization of AB alternative copolymers by C-H direct arylation 74
3.1 Introduction 74
3.2 Synthesis of polymers 75
3.3 Optical and electrochemical properties 79
Chapter 4. Conclusions and Outlook 85
Chapter 5: Experimental section 87
5.1 General Procedures 87
5.2 Synthesis of cyclopentadithiophene (CPDT) 88
5.2.1 Bis(2-iodothiophen-3-yl) methanol (1) 88
5.2.2 Bis(2-iodothiophen-3-yl)methanone (2) 89
5.2.3 Cyclopenta[2,1-b;3,4-b']dithiophen-4-one (3) 89
5.2.4 4H-Cyclopenta[2,1-b;3,4-b']dithiophene (4) 90
5.2.5 4,4-bis(n-hexadecyl)cyclopenta[2,1-b;3,4-b']dithiophene (5a) 90
5.2.6 4,4-bis(2-ethylhexyl)cyclopenta[2,1-b;3,4-b']dithiophene (5b) 91
5.3 Synthesis of Naphthalenediimide (NDI) 93
5.3.1 2,6-Dibromonaphthalene-1,4,5,8-tetracarboxydianhydride (6) 93
5.3.2 N,N’-bis(n-hexadecyl)-2,6-dibromo-1,4,5,8-naphthalene diimide (7a) 94
5.3.3 N,N’-bis(2-ethylhexyl)-2,6-dibromo-1,4,5,8-naphthalene diimide (7b) 95
5.4 Synthesis of monomers 96
5.4.1 CPDT-NDI-CPDT 96
5.5 Synthesis of polymers 100
5.5.1 P(CPDT-NDI-CPDT) 100
5.5.2 P(CPDT-NDI-CPDT-BT) 102
Reference 105
Appendix 112
1. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Physical Review Letters. 1977, 39, 1098
2. H. Sirringhaus, Adv. Mater. 2005, 17, 2411.
3. A. Facchetti, Mater. Today. 2007, 10, 28.
4. X. W. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielewski, S. R. Marder, Adv. Mater. 2011, 23, 268.
5. D. J. Gundlach, J. A. Nichols, L. Zhou, T. N. Jackson, Appl. Phys. Lett. 2002, 80, 2925.
6. C. Reese, W. J. Chung, M.-m. Ling, M. Roberts, Z. Bao, Appl. Phys. Lett. 2006, 89, 202108.
7. Kelley, T. W.; Muyres, D. V.; Baude, P. F.; Smith, T. P.; Jones, T. D. Mater. Res. Soc. Symp. Proc. 2003, 771, 169
8. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
9. S. Wang, M. Kappl, I. Liebewirth, M. Müller, K. Kirchhoff, W. Pisula, K. Müllen, Adv. Mater. 2012, 24, 417.
10. D. M. deLeeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Einerhand, Synth. Met. 1997, 87, 53.
11. Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao,; Y. Fukai, Y. Inoue, F. Sato, S. Tokito, J. Am. Chem. Soc. 2004, 126, 8138.
12. J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, J. Am. Chem. Soc. 1996, 118, 11331.
13. D. Shukla, S. F. Nelson, D. C. Freeman, M. Rajeswaran, W. G. Ahearn, D. M. Meyer, J. T. Carey, Chem. Mater. 2008, 20, 7486
14. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett. 1995, 67, 121.
15. T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. M. Ramil, H. Sitter, M. Colle, D. M. d. Leeuw, Appl. Phys. Lett. 2006, 89, 213504.
16. T. B. Singh, N. Marjanovic, P. Stadler, M. Auinger, G. J. Matt, S. Gunes, N. S. Sariciftci, R. Schwodiauer, S. Bauer, J. Appl. Phys. 2005, 97, 083714.
17. A. Babel, S. A. Jenekhe, J. Am. Chem. Soc. 2003, 125, 13656.
18. H. Yan, Z. H. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A. Facchetti, Nature 2009, 457, 679.
19. B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 2000, 403, 521.
20. T. B. Singh, T. Meghdadi, S. Gunes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, N. S. Sariciftci, Adv. Mater. 2005, 17, 2315
21. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, Nat. Mater. 2003, 2, 678.
22. Z. Chen, M. J. Lee, R. Shahid Ashraf, Y. Gu, S. Albert-Seifried, M. Meedom Nielsen, B. Schroeder, T. D. Anthopoulos, M. Heeney, I. McCulloch and H. Sirringhaus, Adv. Mater., 2012, 24, 647–652.
23. G. Horowitz, Adv. Mater. 1998, 10, 365.
24. Z. Bao, J. A. Rogers, H. E. J. Katz, Mater. Chem. 1999, 9, 1895.
25. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
26. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15.
27. B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58.
28. C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Bre´das, P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
29. Z. Bao, J. Locklin, Organic Field-Effect Transistors, CRC Press: Taylor & Francis Group, 2007
30. J. Cornil, J. L. Bredas, J. Zaumseil, H. Sirringhaus, Adv. Mater. 2007, 19, 1791
31. F. C. Krebs, Sol. Energy Mater. Sol. Cells 2009, 93, 394.
32. C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
33. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science. 1995, 270, 1789
34. J. Peet, A. J. Heeger, G. C. Bazan, Acc. Chem. Res., 2009, 42, 1700
35. D. Venkataraman, S. Yurt, B. H. Venkatraman, N. Gavvalapalli, J. Phys. Chem. Lett. 2010, 1, 947–958
36. S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
37. L. Huo, L. Ye, Y. Wu, Z. Li, X. Guo, M. Zhang, S. Zhang, J. Hou, Macromolecules 2012, 45, 6923
38. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849.
39. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.
40. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science. 317, 222 (2007)
41. G. Li, R. Zhu, Y. Yang, Nat. Photonics 2012, 6, 153.
42. A. Facchetti, Chem. Mater. 2011, 23, 733–758
43. Sista, S. et al. Adv. Mater. 2010, 22, 380.
44. U. Salzner, J. B. Lagowski, P.G. Pickup, R.A. Poirier, Synth Met 1998, 96, 177.
45. Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868
46. McCullough RD, Ewbank PC. Head-to-tail coupled poly(3-alkylthiophene) and its derivatives. In: Skotheim TA, Elsenbaumer RL, Reynolds JR, editors. Handbook of conducting polymers. 2nd ed. New York: Marcel Dekker; 1998. p. 225.
47. E. E. Havinga, W. ten Hoeve, H. Wynberg, Polym Bull. 1992, 29, 119.
48. G. Brocks, A. Tol, J. Phys. Chem., 1996, 100, 1838.
49. T.J. Prosa, M.J. Winokur, J. Moulton, P. Smith, A.J. Heeger, Macromolecules. 1992, 25, 4364.
50. N. Miyaura, Cross-Coupling Reactions: A Practical Guide, Springer, New York, 2002.
51. N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457
52. M. Sato, N. Miyaura, A. Suzuki, Chem. Lett. 1989, 1405
53. R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461
54. J. K. Stille, Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
55. D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636.
56. Z. Bao, W. K. Chan, L. Yu, J. Am. Chem. Soc. 1995, 117, 12426.
57. P. Espinet, A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 4704 – 4734
58. D. J. Schipper, Keith Fagnou, Chem. Mater. 2011, 23, 1594–1600
59. L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792
60. M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 16496
61. G. C. Welch, G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 4632–4644
62. G. L. Gibson, T. M. McCormick, D. S. Seferos, J. Am. Chem. Soc. 2012, 134, 539
63. J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, Z. Bao, J. Am. Chem. Soc. 2011, 133, 20130
64. S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324
65. A. Facchetti, Chem. Mater. 2011, 23, 733
66. K. Zhang, B. Tieke, J. C. Forgie, F. Vilela, P. J. Skabara, Macromolecules. 2012, 45, 743
67. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15
68. Y. Liang, L. Yu, Acc. Chem. Res. 2010, 43, 1227.
69. A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A, B. Holmes, Chem. Rev. 2009, 109, 897–1091
70. H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607−632
71. P. T. Boudreault, A. Najari, M. Leclerc, Chem. Mater. 2011, 23, 456–469
72. P. Coppo, M. L. Turner, J. Mater. Chem. 2005, 15, 1123
73. U. Asawapirom, U. Scherf, Macromol. Rapid. Commun. 2001, 22, 746.
74. A. Kraak, A. K. Wiersma, P. Jordens, H. Wynberg, Tetrahedron. 1968, 24, 3381.
75. G. Zotti, G. Schiavon, A. Berlin, G. Fontana, G. Pagani, Macromolecules. 1994, 27, 1938
76. S. Wang, M. Kappl, I. Liebewirth, M. Müller, K. Kirchhoff, W. Pisula, K. Müllen, Adv. Mater. 2012, 24, 417.
77. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater., 2007, 6, 497.
78. S. Albrecht, S. Janietz, W. Schindler, J. Frisch, J. Kurpiers, J. Kniepert, S. Inal, P. Pingel, K. Fostiropoulos, N. Koch, D. Neher, J. Am. Chem. Soc., 2012, 134, 14932
79. X. Guo, F. S. Kim, M. J. Seger, S. A. Jenekhe, M. D. Watson, Chem. Mater. 2012, 24, 1434
80. X. Guo, M. D. Watson, Org. Lett. 2008, 10, 5333.
81. H. Vollmann, H. Becker, M. Corell, H. Streeck, Liebigs Ann. Chem., 1937, 531, 1.
82. L. L. Miller, K. R. Mann, Acc. Chem. Res. 1996, 29, 417.
83. H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin, A. Dodabalapur, Nature. 2000, 404, 478–481.
84. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, Nature. 2009, 457, 679.
85. E. Ahmed, G. Q. Ren, F. S. Kim, E. C. Hollenbeck, S. A. Jenekhe, Chem. Mater. 2011, 23, 4563
86. M. Horie, J. Kettle, C. Y. Yu, L. A. Majewski, S. W. Chang, J. Kirkpatrick, S. M. Tuladhar, J. Nelson, B. R. Saunders, M. L. Turner, J. Mater. Chem. 2012, 22, 381.
87. M. B. Kim, D. W. Dixon, J. Phys. Org. Chem. 2008, 21 731
88. M. R. Andersson, D. Selse, M. Berggren, H. Jarvinen, T. Hjertberg, O. Inganas, O. Wennerstrom and J.-E. Osterholm, Macromolecules. 1994, 27, 6503
89. M. Schubert, D. Dolfen, J. Frisch, S. Roland, R. Steyrleuthner, B. Stiller, Z. Chen, U. Scherf, N. Koch, A. Facchetti, D. Neher, Adv. Energy Mater. 2012, 2, 369
90. M. M. Durban, P. D. Kazarinoff, C. K. Luscombe, Macromolecules. 2010, 43, 6348
91. K. Yamazaki , J. Kuwabara , T. Kanbara, Macromol. Rapid Commun. 2013, D, 69−73
92. H. Zhao, C. Y. Liu, S. C. Luo, B. Zhu, T. H. Wang, H. F. Hsu, H. h. Yu, Macromolecules 2012, 45, 7783−7790
93. P. Berrouard, A. Najari, A. Pron, D. Gendron, P. Morin, J. Pouliot, J. Veilleux, M. Leclerc, Angew. Chem., Int. Ed. 2012, 51, 2068.
94. A. Facchetti, L. Vaccaro and A. Marrocchi, Angew. Chem., Int. Ed., 2012, 51, 3520–3523.
95. Q. Wang, R. Takita, Y. Kikuzaki and F. Ozawa, J. Am.Chem. Soc., 2010, 132, 11420–11421
96. S. W. Chang, H. Waters, J. Kettle, Z. R. Kuo, C. H. Li, C. Y. Yu, M. Horie, Macromol. Rapid Commun., 2012, 33, 1927−1932.
97. T. Okazawa, T. Satoh, M. Miura, M. Nomura, J. Am. Chem. Soc., 2002, 124, 5286-5287
98. A. E. Rudenko, C. A. Wiley, S. M. Stone, J. F. Tannaci, B. C.Thompson, J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3691–3697.
99. Y. Fujinami, J. Kuwabara, W. Lu, H. Hayashi, T. Kanbara, ACS Macro. Lett. 2012, 1, 67–70.
100. K. Okamoto, J. B. Housekeeper, F. E. Michael, and C, K. Luscombe, Polym. Chem., 2013, 4, 3499–3506
101. J. Zhou, S. Xie, E. F. Amond, M. L. Becker, Macromolecules, 2013, 46 (9), 3391–3394
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *