帳號:guest(3.16.47.86)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李慧君
作者(外文):Lee, Hui-Chun
論文名稱(中文):Functionalized Nanoporous Gyroid SiO2 with Double Stimuli-Responsive Properties as Environment-Selective Delivery Systems
指導教授(中文):何榮銘
指導教授(外文):Ho, Rong-Ming
口試委員(中文):曾繁根
孫亞賢
蔣酉旺
莊偉綜
口試委員(外文):Tseng, Fan-Gang
Sun, Ya-Sen
Chiang, Yeo-Wan
Chuang, Wei-Tsung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032530
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:88
中文關鍵詞:BCPnanoporous SiO2gyroidstimuli-responsivePDMAEMA
外文關鍵詞:BCPnanoporous SiO2gyroidstimuli-responsivePDMAEMA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:112
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Functionalized nanoporous materials with high porosity and high specific surface area have become promising materials for appealing applications. Gyroid phase with ordered, bi-continuous networks in 3D space is one of the most appealing morphologies for practical applications due to its high specific interfacial surface area. In this study, we aim to fabricate nanoporous gyroid SiO2 materials from templated sol-gel reaction using degradable block copolymer with gyroid-forming nanostructure as a template, and then to functionalize the nanoporous materials using “smart” polymer, poly(2-dimethylaminoethyl methacrylate) (PDMAEMA), brushes via “grafting from” method to give double stimuli-responsive properties. By taking advantage of the environmental stimuli, both thermal and pH, the pore features can be well defined by stretching and re-coiling of the grafted PDMAEMA brushes because of their adjustable chain conformation with reversible character. The grafting PDMAEMA on the inner wall of the nanoporous materials is evidenced by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The responsive properties with respect to environmental stimuli can be successfully traced by temperature-resolved small angle X-ray scattering (SAXS) in aqueous environment. Owing to the high specific surface area, 3D pore network, biocompatibility and environmental response, the functionalized nanoporous gyroid SiO2 are further demonstrated as stimuli-responsive controlled release system. As a result, the nanoporous SiO2 with tunable pore size can be fabricated to give promising properties for various applications, such as environment-selective delivery systems, bio-mimetic on/off gates, and specific environmental detectors.
Functionalized nanoporous materials with high porosity and high specific surface area have become promising materials for appealing applications. Gyroid phase with ordered, bi-continuous networks in 3D space is one of the most appealing morphologies for practical applications due to its high specific interfacial surface area. In this study, we aim to fabricate nanoporous gyroid SiO2 materials from templated sol-gel reaction using degradable block copolymer with gyroid-forming nanostructure as a template, and then to functionalize the nanoporous materials using “smart” polymer, poly(2-dimethylaminoethyl methacrylate) (PDMAEMA), brushes via “grafting from” method to give double stimuli-responsive properties. By taking advantage of the environmental stimuli, both thermal and pH, the pore features can be well defined by stretching and re-coiling of the grafted PDMAEMA brushes because of their adjustable chain conformation with reversible character. The grafting PDMAEMA on the inner wall of the nanoporous materials is evidenced by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The responsive properties with respect to environmental stimuli can be successfully traced by temperature-resolved small angle X-ray scattering (SAXS) in aqueous environment. Owing to the high specific surface area, 3D pore network, biocompatibility and environmental response, the functionalized nanoporous gyroid SiO2 are further demonstrated as stimuli-responsive controlled release system. As a result, the nanoporous SiO2 with tunable pore size can be fabricated to give promising properties for various applications, such as environment-selective delivery systems, bio-mimetic on/off gates, and specific environmental detectors.
Contents
Abstract I
Contents III
List of Figures VI
List of Tables and Schemes VII
Chapter 1 Introduction 1
1.1 Self Assembly of Block Copolymers 1
1.2 Gyroid Phase from BCP Self-Assembly 2
1.3 Nanoporous Materials 7
1.3.1 Nanoporous polymers 8
1.3.2 Nanoporous ceramics 16
1.3.3 Templated sol-gel reaction 21
1.4 Surface Functionalization 27
1.4.1 Organically functionalized nanoporous SiO2 28
1.4.2 Surface-initiated atom transfer radical polymerization
(SI-ATRP) 32
1.4.3 Poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) with double stimuli-responsive properties 34
1.5 Applications 37
Chapter 2 Objectives 41
Chapter 3 Materials and Experimental Methods 44
3.1 Materials 44
3.2 Synthesis of PS-PLLA BCP 46
3.3 Synthesis of halogen-functionalized initiator (2-bromo
thioisobutyrate, MPTS-Br) 51
3.4 ATRP of PDMAEMA 51
3.5 Sample Preparation 51
3.5.1 Sample preparation for nanoporous PS template 52
3.5.2 Sample preparation for templated sol-gel reaction 52
3.5.3 Sample preparation for nanoporous gyroid SiO2 54
3.5.4 Sample preparation for PDMAEMA functionalized nanoporous
gyroid SiO2 54
3.5.5 Sample preparation for riboflavin-loaded PDMAEMA
functionalized nanoporous gyroid SiO2 55
3.6 Instrumentation 55
3.6.1 Nuclear magnetic resonance spectroscopy (NMR) 55
3.6.2 Gel permeation chromatography (GPC) 56
3.6.3 Small-angle x-ray scattering (SAXS) 56
3.5.4 Fourier transform infrared spectroscopy (FTIR) 57
3.5.5 Field-emission scanning electron microscopy (FESEM) 57
3.5.6 Transmission electron microscopy (TEM) 57
3.5.7 Fluorescence spectroscopy 58
Chapter 4 Results and Discussion 59
4.1 Fabrication of Nanoporous Gyroid SiO2 59
4.1.1 Gyroid PS/SiO2 nanohybrids 59
4.1.2 Nanoporous gyroid SiO2 60
4.2 Surface Functionalization of Nanoporous Gyroid SiO2 62
4.2.1 Halogen-functionalized initiator (MPTS-Br) 63
4.2.2 Si wafers with SiO2 as a model system for SI-ATRP 65
4.2.3 Characterization of PDMAEMA functionalized nanoporous
gyroid SiO2 67
4.3 Double Stimuli-Responsive Properties of PDMAEMA Functionalized Nanoporous Gyroid SiO2 72
4.4 PDMAEMA Functionalized Nanoporous Gyroid SiO2 as
Environment-Selective Delivery Systems 76
4.4.1 Cumulative release profiles in response to environmental
changes 77
4.4.2 Kinetic modeling on cumulative release profiles 78
Chapter 5 Conclusion 80
Chapter 6 References 82
1. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
2. (a) Martin-Moreno, L.; Garcia-Vidal, F. J.; Somoza, A. M. Phys. Rev. Lett. 1999, 83, 73. (b) Milhaupt, J. M.; Lodge, T. P. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 843. (c) Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T. Macromolecules 2006, 39, 6352.
3. (a) Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K. Macromolecules 1997, 30, 3788. (b) Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K. J. Phys. Chem. B 1998, 102, 1356.
4. Jinnai, H.; Hasegawa, H.; Nishikawa, Y.; Sevink, G. J. A.; Braunfeld, M. B.; Agard, D. A.; Spontak, R. J. Macromol. Rapid Commun. 2006, 27, 1424.
5. (a) Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86. (b) Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922. (c) Wang, C. Y.; Lodge, T. P. Macromolecules 2002, 35, 6997. (d) Wang, C. Y.; Lodge, T. P. Macromol. Rapid Commun. 2002, 23, 49.
6. (a) Sakurai, S.; Umeda, H.; Furukawa, C.; Irie, H.; Nomura, S.; Lee, H. H.; Kim, J. K. J. Chem. Phys. 1998, 108, 4333. (b) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Mai, S.-M.; Booth, C. Phys. Chem. Chem. Phys. 1999, 1, 2097.
7. Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1986, 19, 215.
8. Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
9. Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
10. Luzzati, V.; Spegt, P. A. Nature 1967, 215, 701.
11. Schoen, A. H. NASA TN D-5541, 1970.
12. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
13. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
14. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
15. Detsi, E.; De Jong, E.; Zinchenko, A.; Vuković, Z.; Vukovic, I.; Punzhin, S.; Loos, K.; Brinke, G. ten; De Raedt, H.A.; Onck, P.R.; De Hosson, J.T.M. Acta Materialia 2011, 59, 7488.
16. Li, L.; Schulte, L.; Clausen, L. D.; Hansen, K. M.; Jonsson, G. E.; Ndoni, S. ACS Nano 2011, 5, 7754.
17. Mueller, A.; O'Brien, D. F. Chem. Rev. 2002, 102, 727.
18. Wang, Y.; He, C. C.; Xing, W. H.; Li, F. B.; Tong, L.; Chen, Z. Q.; Liao, X. Z.; Steinhart, M. Adv. Mater. 2010, 22, 2068.
19. Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704.
20. (a) Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519. (b) Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
21. Mansky, M.; Harrison, C. K.; Chaikin, P. M.; Register, R. A.; Yao, N. Appl. Phys. Lett. 1996, 68, 2586.
22. Guo, F.; Andreasen, J. W.; Vigild, M. E.; Ndoni, S. Macromolecules 2007, 40, 3669.
23. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H.; Science 1997, 276, 1401.
24. Thurn-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
25. Ho, R. M.; Tseng, W. H.; Fan, H. W.; Chiang, Y. W.; Lin, C. C.; Ko, B, T,; Huang, B. H. Polymer 2005, 46, 9362.
26. Sanchez, C.; Ribot, F. New J. Chem. 1994, 18, 1007.
27. (a) Pekala, R. W. J. Mater. Sci. 1989, 24. 3221. (b) Vancher, R.; Woignier, T.; Pelous, J.; Courtens, E. Phys. Rev. B, 1988, 37. 6500.
28. Morris, C. A.; Anderson, M. L.; Stroud, R. M.; Merzbacher, C. I.; Rolison, D. R. Science 1999, 284, 622.
29. Sanchez, C.; Boissiere, C.; Grosso, D.; Laberty, C.; Nicole, L. Chem. Mater. 2008, 20. 682.
30. Branton, P. J.; Hall, P. G.; Sing, K. S. W.; Reichert, H.; Schuth, F.; Unger, K. K. J. Chem. Soc. Faraday Trans. 1994, 90, 2965.
31. Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33.
32. Pierre, A. C. Introduction to Sol-gel Processing; Kluwer Academic: Boston, 1998.
33. Tseng, W.-H.; Chen, C.-K.; Chiang, Y.-W.; Ho, R.-M.; Akasaka, S.; Hasegawa, H. J. Am. Chem. Soc. 2009, 131, 1356.
34. Novak, B. M. Adv. Mater. 1993, 5, 422.
35. Pyun, J.; Matyjaszewski, K.; Chem. Mater. 2001, 13, 3436.
36. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Angew. Chem. Int. 2006, 45, 3216.
37. Loy, D. A.; Shea, K. J. Chem. Rev. 1995, 95, 1431.
38. Shea, K. J.; Loy, D. A.; Chem. Mater. 2001, 13, 3306.
39. Radhakrishnan, B.; Ranjan, R.; Brittain, W. J. Soft Matter 2006, 2, 386.
40. Lyatskaya, Y.; Balazs, A. C. Macromolecules 1998, 31, 6676.
41. Pruker, O.; Rühe, J. Mater. Res. Soc. Symp. Proc. 1993, 304, 1675.
42. Edmondson, S.; Osborne, V. L.; Huck, W. T. S. Chem. Soc. Rev. 2004, 33, 14.
43. Kong, X.; Kawai, T.; Abe, J; Iyoda, T. Macromolecules 2001, 34, 1837.
44. (a) For review papar, see: Patten, T. E.; Matyjaszewski, K. Adv. Mater. 1998, 10, 901. (b) Xia, J.; Zhang, X.; Matyjaszewski, K. Macromolecules 1999, 32, 3531.
45. (a) Uegaki, H.; Kotani, Y.; Kamigaito, M.; Sawamoto, M. Macromolecules 1997, 30, 2249. (b) Ibid. 1998, 31, 6756. (c) Nishikawa, T.; Kamigaito, M.; Sawamoto, M.; Ibid. 1999, 32, 2204.
46. Wang, J. S.; Matyjaszewski, K.; J. Am. Chem. Soc. 1995, 117, 5614.
47. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721.
48. (a) Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921; (b) Patten, T.; Matyjaszewski, K. Adv. Mater. 1998, 10, 901; (c) Lutz, J. F.; Jahed, N.; Matyjaszewski, K. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 1939.
49. Werne, T. V.; Patten, T. E. J. Am. Chem. Soc. 1999, 121, 7409.
50. Werne, T. V.; Patten, T. E. J. Am. Chem. Soc. 2001, 123, 7497.
51. S. Dai, P. Ravi, K.-C. Tam, Soft Matter 2008, 4, 435.
52. Agarwal, S.; Zhang, Y.; Maji, S.; Greiner, A. MATER. TODAY 2012, 15, 388.
53. Schacher, F.; Ulbricht, M.; Müller, A. H. E. Adv. Funct. Mater. 2009, 19, 1040.
54. Jiang, X.; Lok, M. C.; Hennink, W. E. Bioconjugate Chem. 2007, 18, 2077.
55. Zhang, X.; Xia, J.-H.; Matyjaszewski, K. Macromolecules 1998, 31, 5167.
56. Plamper, F.; Ruppel, M.; Schmalz, A.; Borisov, O.; Ballauff, M.; Müller, A. H. E. Macromolecules 2007, 40, 8361.
57. Plamper, F.; Walther, A.; Müller, A. H. E.; Ballauff, M.; Nano Lett. 2007, 7, 167.
58. Plamper, F. A.; Schmalz, A.; Ballauf, M.; Müller, A. H. E. J. Am. Chem. Soc. 2007, 129, 14538.
59. Xu, F. J.; Ping, Y.; Ma, J.; Tang, G. P.; Yang, W. T.; Li, J.; Kang, E. T.; Neoh, K. G. Bioconjugate Chemistry 2009, 20, 1449.
60. Georgiou, T. K.; Phylactou, L. A.; Patrickios, C. S. Biomacromolecules 2006, 7, 3505.
61. Georgiou, T. K.; Vamvakaki, M.; Patrickios, C. S.; Yamasaki, E. N.; Phylactou, L. A. Biomacromolecules 2004, 5, 2221.
62. Synatschke, C. V.; Schallon, A.; Jerome, V.; Freitag, R.; Müller, A. H. E. Biomacromolecules 2011, 12, 4247.
63. Zhang, Y.; Zheng, M.; Kissel, T.; Agarwal, S. Biomacromolecules 2012, 13, 313.
64. Kim, K. T.; Meeuwissen, S. A.; Nolte, R. J. M.; van Hest, J. C. M. Nanoscale 2010, 2, 844.
65. Vriezema, D.; Comellas-Aragonès, M.; Elemans, J.; Corne-lissen J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Chem. Rev. 2005, 105, 1445.
66. Kinney, J. N.; Axen, S. D.; Kerfeld, C. A. Photosynth. Res. 2011, 109, 21.
67. Glasgow, J. E.; Capehart, S. L.; Francis, M. B.; Tullman-Ercek, D. ACS Nano 2012, Article ASAP.
68. Zhou, Y.; Guo, W.; Cheng, J.; Liu, Y.; Li, J.; Jiang, L. Adv. Mater. 2012, 24, 962.
69. Yah, W. O.; Takahara, A.; Lvov, Y. M. J. Am. Chem. Soc. 2012, 134, 1853.
70. Bruening, M. L.; Dotzauer, D. M.; Jain, P.; Ouyang, L.; Baker, G. L. Langmuir 2008, 24, 7663.
71. Jeon, G.; Yang, S. Y.; Kim, J. K. J. Mater. Chem. 2012, 22, 14814.
72. Savariar, E. N.; Krishnamoorthy, K.; Thayumanavan, S. Nature Nanotech. 2008, 3, 112.
73. Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921
74. Sakata, H.; Kobayashi, M.; Otsuka, H.; Takahara, A. Polymer Journal 2005, 37, 767.
75. Hsueh, H. Y.; Chen, H. Y.; She, M. S.; Chen, C. K.; Ho, R. M.; Gwo, S.; Hasegawa, H.; Thomas, E. L. Nano Lett. 2010, 10, 4994
76. Kamph, N.; Gohy, J. F.; Jerome, R.; Klein, J. J. Polym. Sci. Part
B: Polym. Phys. 2005, 43, 193.
77. Ohsedo, Y.; Takashina, R.; Gong, J. P.; Osada, Y. Langmuir 2004, 20, 6549.
78. Sheth, S. R.; Efremove, N.; Leckband, D. E. J. Phys. Chem. B 2000,104, 7652.
79. Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Nature Mater. 2010, 9, 101.
80. Fournier, D.; Hoogenboom, R.; Thijs, H. M. L.; Paulus, R. M.; Schubert, U. S. Macromolecules 2007, 40, 915
81. Wetering, P. van de; Zuidam, N. J.; Steenbergen, M. J. van; Houwen, O. A. G. J. van der; Underberg, W. J. M.; Hennink, W. E. Macromolecules 1998, 31, 8063
82. Zhu, Y.; Shi, J.; Shen, W.; Dong, X.; Feng, J.; Ruan, M.; Li, Y.; Angew. Chem. Int. Ed. 2005, 44, 5083
83. Zhang, X.; Yang, P.; Dai, Y.; Ma, P.;, Li, X.; Cheng, Z.; Hou, Z.; Kang, X.; Li, C.; Lin, J. Adv. Funct. Mater. 2013, 10
84. Korsemeyar, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N. A. Int. J. Pharm. 1983, 15, 25
85. Dash, S.; Murthy, P. N.; Nath, L.; Chowdhury, P. Acta Pol Pharm. 2010, 67, 217
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *