帳號:guest(3.22.61.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周怡君
作者(外文):Chou, Yi-Chun
論文名稱(中文):多功能奈米微粒做為GCSF蛋白質藥物之口服釋放載體的研發
論文名稱(外文):Multi-functional Nanoparticles for Oral Delivery of Granulocyte-Colony Stimulating Factor
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing-Wen
口試委員(中文):林昆儒
俸清珠
陳炯東
宋信文
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032526
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:39
中文關鍵詞:口服蛋白質藥物GCSF奈米微粒pH敏感
相關次數:
  • 推薦推薦:0
  • 點閱點閱:431
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
顆粒性白血球集落刺激因子(granulocyte colony-stimulating factor, GCSF)被廣泛用於治療罹患嗜中性白血球缺乏症(neutropenia)之病患。目前GCSF主要以皮下注射或是靜脈注射來投遞,而為使GCSF在體內維持一定濃度及藥效,須定時針劑給藥,對於需長期施打的病患不僅不方便亦帶來不適感。
口服投藥對於病患來說,是一個最方便且接受度高的投藥方式。但在被人體所吸收前腸胃道中的胃酸及消化酵素會降解這些蛋白質藥物,且蛋白質藥物普遍為親水性大分子,不易穿透過小腸上皮細胞,使蛋白質藥物可被小腸吸收的量相當低。為了促進小腸對蛋白質藥物的吸收,本研究利用金屬螯合劑DTPA (diethylene triamine pentaacetic acid)修飾聚麩胺酸(γ-PGA),再與幾丁聚醣(chitosan, CS)以離子鍵結形成多功能奈米微粒做為GCSF的口服釋放載體。CS具有增加細胞間隙滲透性(paracellular permeation enhancement)的功能;DTPA可藉由螯合腸道中的二價金屬離子,來抑制酵素對GCSF所造成的降解。因此,由CS及γPGA-DTPA所形成的多功能奈米微粒具有可抑制腸道酵素對GCSF的降解與促進腸道對GCSF的吸收等功能,預期能增加口服投遞GCSF的藥物生體可用率(bioavailability)與增加嗜中性白血球的增生。
本研究主要分成四大部分。第一部分為GCSF奈米微粒的製備及特性分析,量測GCSF在奈米微粒中的包覆率,及觀察奈米微粒的粒徑及表面電荷在不同pH值環境中的變化情形。第二部分為GCSF奈米微粒多功能性評估,分別藉由小腸酵素抑制試驗與跨模電阻試驗來分析奈米微粒的功能性。第三部分是利用小鼠造血細胞NFS-60作為in vitro之模型,探討包覆於奈米微粒中的GCSF促進造血細胞增生的活性與機制探討。第四部份則是大鼠的in vivo實驗,將製備好的GCSF奈米微粒經口服投遞予大鼠後,探討其藥效學及藥物動力學之變化,並分別使用SPECT/CT與PET觀察其生物分布與治療效果。由上述實驗結果證實,此多功能奈米微粒相當有潛力做為GCSF的口服釋放載體。
Granulocyte colony-stimulating factor (G-CSF) is used to treat neutropenia patients. Although subcutaneous (SC) injections of GCSF are the conventional means to used, the inconvenience, pain, and side effects associated with such injections reduce patient compliance.
Oral administration of GCSF is a viable alternative to SC injections, since patients are more receptive to it. Nevertheless, delivering GCSF orally often leads to a low bioavailability owing to its presystemic degradation and inadequate permeation through the intestinal epithelium. To improve the oral bioavailability of GCSF, we described a pH-responsive nanoparticle system composed of chitosan (CS) and DTPA (diethylene triamine pentaacetic acid) modified poly(g-glutamic acid) (γPGA-DTPA). CS, a mucoadhesive polycation, can enhance the intestinal paracellular permeability by transiently opening the tight junctions (TJs) between epithelial cells; DTPA, which can inhibit enzymes degradation by chelating metal cations (such as Ca2+ or Zn2+).
The functional nanoparticles composed of CS and γPGA-DTPA has a mucosal adsorption, intestinal enzymes inhibition, and enhancing intestinal absorption of G-CSF, which can be expected to increase drug bioavailability.
致謝 I
摘要 II
圖目錄 V
表目錄 VI
第一章 緒論 1
1.1 嗜中性白血球缺乏症(Neutropenia) 1
1.2 顆粒性白血球集落刺激因子(GCSF) 2
1.3 口服傳遞系統(Oral delivery) 3
1.4 由幾丁聚醣(chitosan, CS)及金屬螯合劑修飾聚麩胺酸(poly(g-glutamic acid)-DTPA, γPGA-DTPA)所構成之奈米微粒 5
1.5 研究動機與目的 6
第二章 材料與實驗方法 10
2.1 小分子量幾丁聚醣之合成 10
2.2 γPGA-DTPA複合物之合成 11
2.2.1 合成γPGA-(N-Boc-hexanediamine) 11
2.2.2 合成γPGA-hexanediamine 11
2.2.3 合成γPGA-DTPA 11
2.3 包覆GCSF之多功能奈米微粒之製備與特性分析 13
2.3.1 包覆GCSF之多功能奈米微粒之製備 13
2.3.2 包覆GCSF之多功能奈米微粒之特性分析 13
2.4 包覆GCSF之多功能奈米微粒之功能性評估 14
2.4.1 抑制酵素活性分析 14
2.4.2 Transepithelial electrical resistance (TEER)量測與滲透性測試(Transport assay) 15
2.5 體外實驗(In vitro) 17
2.5.1 GCSF活性分析 17
2.5.2 體外實驗機制探討 17
2.6 體內實驗(In vivo) 18
2.6.1 藥物動力學(Pharmacokinetics, PK)之探討 18
2.6.2 藥效學(Pharmacodynamics, PD)之探討 18
2.6.3 生物分布 19
第三章 實驗結果與討論 21
3.1 包覆GCSF之多功能奈米微粒之特性分析 21
3.2 包覆GCSF之多功能奈米微粒之功能性評估 22
3.2.1 抑制酵素活性分析 22
3.2.2 Transepithelial electrical resistance (TEER)量測與滲透性測試(Transport assay) 23
3.3 體外實驗(In vitro) 25
3.3.1 GCSF活性分析 26
3.3.2 GCSF體外機制探討 27
3.4 體內實驗(In vivo) 27
3.4.1 藥物動力學(Pharmacokinetics)之探討 27
3.4.2 藥效學(Pharmacodynamics)之探討 29
3.4.3 生物分布 31
第四章 結論 35
參考文獻 36
[1] 陳怡璇. 以基質輔助雷射游離質譜法研究唾液中的防禦素的分佈及其與生長的關係. 高雄市: 國立中山大學; 2009.
[2] Boxer L, Dale DC. Neutropenia: causes and consequences. Seminars in hematology. 2002;39:75-81.
[3] Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine. 2008;42:277-88.
[4] Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation. 2004;110:1847-54.
[5] Mora-Garcia P, Pan R, Sakamoto KM. G-CSF regulation of SRE-binding proteins in myeloid cells. Leukemia. 2002;16:2332-3.
[6] 胡宜禎. 具溫度/酸鹼敏感雙重開關之藥物釋放系統: 國立清華大學; 2012.
[7] Sally Boudinot. Anatomy of the Gastrointestinal Tract and Drug Absorption. 2000.
[8] Cleveland Clinic, Transplant center, Transplant Programs, GI tract, http://my.clevelandclinic.org/transplant/ped_int_tx_gi_tract.aspx
[9] Lin YH, Chung CK, Chen CT, Liang HF, Chen SC, Sung HW. Preparation of nanoparticles composed of chitosan/poly-gamma-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules. 2005;6:1104-12.
[10] 莊景光. 離子鍵結型奈米微粒製備與其對小腸上皮細胞滲透能力之探討: 國立清華大學; 2003.
[11] 莊仲揚, 陳俊男. 幾丁聚醣於生醫產業上的應用. 化工資訊與商情. 2006:頁62-6.
[12] Marschutz MK, Bernkop-Schnurch A. Oral peptide drug delivery: polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials. 2000;21:1499-507.
[13] Bernkop-Schnurch A. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. Journal of controlled release : official journal of the Controlled Release Society. 1998;52:1-16.
[14] Citi S, Denisenko N. Phosphorylation of the tight junction protein cingulin and the effects of protein kinase inhibitors and activators in MDCK epithelial cells. Journal of cell science. 1995;108 ( Pt 8):2917-26.
[15] Su FY, Lin KJ, Sonaje K, Wey SP, Yen TC, Ho YC, et al. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012;33:2801-11.
[16] Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. International journal of pharmaceutics. 1999;182:21-32.
[17] 翁漢昇. 幾丁聚醣包覆肝素之奈米微粒做為口服途徑傳遞肝素之可行性評估: 國立清華大學; 2006.
[18] Wen X, Jackson EF, Price RE, Kim EE, Wu Q, Wallace S, et al. Synthesis and characterization of poly(L-glutamic acid) gadolinium chelate: a new biodegradable MRI contrast agent. Bioconjugate chemistry. 2004;15:1408-15.
[19] Lin YH, Sonaje K, Lin KM, Juang JH, Mi FL, Yang HW, et al. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. Journal of controlled release : official journal of the Controlled Release Society. 2008;132:141-9.
[20] Scaramuzza S, Tonon G, Olianas A, Messana I, Schrepfer R, Orsini G, et al. A new site-specific monoPEGylated filgrastim derivative prepared by enzymatic conjugation: Production and physicochemical characterization. Journal of controlled release : official journal of the Controlled Release Society. 2012;164:355-63.
[21] Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery. Advanced drug delivery reviews. 2012.
[22] Widera A, Bai Y, Shen WC. The transepithelial transport of a G-CSF-transferrin conjugate in Caco-2 cells and its myelopoietic effect in BDF1 mice. Pharmaceutical research. 2004;21:278-84.
[23] Bai Y, Ann DK, Shen WC. Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:7292-6.
[24] Veronese FM, Mero A, Caboi F, Sergi M, Marongiu C, Pasut G. Site-specific pegylation of G-CSF by reversible denaturation. Bioconjugate chemistry. 2007;18:1824-30.
[25] Matsuda S, Shirafuji N, Asano S. Human granulocyte colony-stimulating factor specifically binds to murine myeloblastic NFS-60 cells and activates their guanosine triphosphate binding proteins/adenylate cyclase system. Blood. 1989;74:2343-8.
[26] Pawlak G, Valadoux-Delplanque C, Revol V, Bourette RP, Blanchet JP, Mouchiroud G. Colony-stimulating factor-1 impairs both proliferation and differentiation signals of erythropoietin during the commitment of bipotential NFS-60 cell line to the monocytic lineage. Experimental hematology. 1999;27:797-805.
[27] The Jin Lab, FITC Labeling of Proteins. 2007.
[28] Teply BA, Tong R, Jeong SY, Luther G, Sherifi I, Yim CH, et al. The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules. Biomaterials. 2008;29:1216-23.
[29] Shimamura M, Kobayashi Y, Yuo A, Urabe A, Okabe T, Komatsu Y, et al. Effect of human recombinant granulocyte colony-stimulating factor on hematopoietic injury in mice induced by 5-fluorouracil. Blood. 1987;69:353-5.
[30] Sodoyez JC, Sodoyez-Goffaux F, Guillaume M, Merchie G. [123I]Insulin metabolism in normal rats and humans: external detection by a scintillation camera. Science. 1983;219:865-7.
[31] Chen MC, Wong HS, Lin KJ, Chen HL, Wey SP, Sonaje K, et al. The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin. Biomaterials. 2009;30:6629-37.
[32] Lin KJ, Liao CH, Hsiao IT, Yen TC, Chen TC, Jan YY, et al. Improved hepatocyte function of future liver remnant of cirrhotic rats after portal vein ligation: a bonus other than volume shifting. Surgery. 2009;145:202-11.
[33] Jacene HA, Ishimori T, Engles JM, Leboulleux S, Stearns V, Wahl RL. Effects of pegfilgrastim on normal biodistribution of 18F-FDG: preclinical and clinical studies. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2006;47:950-6.
[34] Kazama T, Faria SC, Varavithya V, Phongkitkarun S, Ito H, Macapinlac HA. FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics : a review publication of the Radiological Society of North America, Inc. 2005;25:191-207.
[35] Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Danish medical bulletin. 1999;46:183-96.
[36] Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules. 2008;9:1837-42.
[37] Wittaya-areekul S, Kruenate J, Prahsarn C. Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone. International journal of pharmaceutics. 2006;312:113-8.
[38] Marschutz MK, Caliceti P, Bernkop-Schnurch A. Design and in vivo evaluation of an oral delivery system for insulin. Pharmaceutical research. 2000;17:1468-74.
[39] Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochemical and biophysical research communications. 1991;175:880-5.
[40] Ward PD, Tippin TK, Thakker DR. Enhancing paracellular permeability by modulating epithelial tight junctions. Pharmaceutical science & technology today. 2000;3:346-58.
[41] Adson A, Burton PS, Raub TJ, Barsuhn CL, Audus KL, Ho NF. Passive diffusion of weak organic electrolytes across Caco-2 cell monolayers: uncoupling the contributions of hydrodynamic, transcellular, and paracellular barriers. Journal of pharmaceutical sciences. 1995;84:1197-204.
[42] MACS, Miltenyl Biotrc, https://www.miltenyibiotec.com/
[43] Acton PD, Kung HF. Small animal imaging with high resolution single photon emission tomography. Nuclear medicine and biology. 2003;30:889-95.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *