|
[1] G. J. Snyder, E. S. Toberer et al., “Complex thermoelectric materials”, Nature Materials, Vol. 7, pp. 105-114, (2008). [2] D. M. Rowe, “CRC Handbook of Thermoelectrics”, Taylor & Francis Group, USA, (2006). [3] G. Chen, M. S. Dresselhaus et al., “Recent developments in thermoelectric materials”, International Materials Reviews, Vol. 48, pp. 45–66, (2003). [4] G. S. Nolas, J. Poon et al., “Recent developments in bulk thermoelectric materials”, Materials Research Bulletin, Vol. 31, pp. 199–205, (2006). [5] M. S. Dresselhaus et al., “New directions for low-dimensional thermoelectric materials”, Advanced Materials, Vol. 19, pp. 1043–1053, (2007). [6] K. Koumoto, I. Terasaki et al., “Complex oxide materials for potential thermoelectric applications”, Materials Research Bulletin, Vol. 31, pp. 206–210, (2006). [7] F. D. Rosi, “Thermoelectricity and thermoelectric power generation”, Solid-State Electronics, Vol. 11, pp. 833–848, (1968). [8] L. D. Hicks, M. S. Dresselhaus et al., “Effect of quantum-well structures on the thermoelectric figure of merit”, Physical Review B: Condensed Matter and Materials Physics, Vol. 47, pp. 12727–12731, (1993). [9] B. C. Sales, “Electron crystals and phonon glasses: a new path to improved thermoelectric materials”, Materials Research Bulletin, Vol. 23, pp. 15–21, (1998). [10] J. C. Caylor, K. Coonley et al., “Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity”, Applied Physics Letters, Vol. 87, pp. 23105, (2005). [11] P. W. Zhu et al., “Enhanced thermoelectric properties of PbTe alloyed with Sb2Te3”, Journal of Physics: Condensed Matter, Vol. 17, pp. 7319–7326, (2005). [12] J. P. Fleurial, T. Caillat et al., “Skutterudites: An Update”, Proceedings of the XVI International Conference on Thermoelectrics, Dresden, Germany, August 26-29, (1997). [13] M. Toprsk, C. Stiewe et al., “The Impact of Nanostructuring on the Thermal Conductivity of Thermal Conductivity of Thermoelectric CoSb3”, Advanced Functional Materials, Vol.14, pp. 1189-1196, (2004). [14] J. L. Mi, T. J. Zhu et al., “Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3”, Journal of applied physics, Vol. 101, pp. 054314, (2007). [15] A. Watcharapasorn, R. C. DeMattei et al., “Thermoelectric properties of some cobalt phosphide-arsenide compounds”, Materials Research Society, Vol.626, (2000). [16] Z. He, C. Stiewe et al., “Nano ZrO2/CoSb3 composites with improved thermoelectric figure of merit”, Nanotechnology, Vol. 18, pp. 235602-235607, (2007). [17] W. S. Liu, B. P. Zhang et al., “Improvement of Thermoelectric performance of CoSb3-xTex Skutterudite Compound by Additional Substitution of IVB-Group Elements for Sb”, Chemistry of Materials, Vol. 20, pp. 7526-7531, (2008). [18] X. Su et al., “Microstructure and thermoelectric properties of CoSb2.75Ge0.25-xTex prepared by rapid solidification”, Acta Materialia, Vol. 60, pp. 3536–3544, (2012). [19] T. He, J. Chen et al., “Thermoelectric Properties of Indium-Filled Skutterudites”, Chemistry of Materials, Vol. 18, pp. 759-762, (2006). [20] P. X. Lu, F. Wu et al., “Thermoelectric properties of rare earths filled CoSb3 based nanostructure skutterudite”, Journal of Alloys and Compounds, Vol. 505, pp. 255-258, (2010). [21] P. N. Alboni et al., “Synthesis and Thermoelectric Properties of Nano-Engineered CoSb3 Skutterudite Materials”, Electronic Materials, Vol. 36, No. 7, pp. 711-715, (2007). [22] J. X. Zhang, Q. M. Lu et al., “Synthesis and thermoelectric properties of CoSb3 compounds by spark plasma sintering ”, Materials Letters, Vol. 58, pp. 1981–1984, (2004). [23] G. D. Tang, Z. H. Wang et al., “Low Thermal Conductivity and Enhanced Thermoelectric Performance in In and Lu Double-Filled CoSb3 skutterudites”, Journal of electronic materials, Vol. 40, pp. 5, (2011). [24] S. Furuyama, T. Iida et al., “Thermoelectric properties of undoped p-type CoSb3 prepared by vertical Bridgman crystal growth and spark plasma sintering”, Journal of Alloys and Compounds, Vol.415, pp. 251–256, (2006). [25] J. Yang, Y. Chen et al., “Effect of La filling on thermoelectric properties of LaxCo3.6Ni0.4Sb12-filled skutterudite prepared by MA-HP method”, Journal of Solid State Chemistry, Vol.179, pp. 212-216, (2006). [26] Z. Xiong, X. Chen et al., “High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy ”, Acta Materialia, Vol.58, pp. 3995–4002, (2010). [27] A. Harnwunggmoung et al., “Thermoelectric properties of Ga-added CoSb3 based skutterudites”, Journal of Applied physics, Vol. 110, pp. 013521, (2011). [28] F. N. Rhines, “Phase Diagrams in Metallurgy- Their Development and Application”, McGraw-Hill Book Company Inc.,USA, (1956). [29] C. J. Vineis, A. Shakouri et al., “Nano Structured Thermoelectric: Big Efficiency Gains from small Features”, Advanced Materials, Vol. 22, pp. 3970-3980, (2010). [30] Y. Zhang et al., “The thermodynamic assessment of the Co–Sb system”, Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 32, pp. 56–63, (2008). [31] T. L. Nagi, R. C. Sharma, Y. A. Chang et al., Bulletin of Alloy Phase Diagrams, Vol. 9, (1988). [32] T. J. Anderson et al., “A Binary Database for III-V Compound Semiconductor Systems”, Calphad, Vol. 18, No. 2, pp. 177-222, (1994). [33] A. Chari, A. Garay et al., “Thermodynamic remodeling of the Co–Ga system”, Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 34, pp. 189–195, (2010). [34] S. L. Markovski, J. A. van Beek et al., “Thermodynamic evaluation of Ga-X-Co (x=P, As, Sb) systems related to the metallization of III-V compound semiconductors”, Journal de Chimie Physique, Vol. 94, pp. 992-997, (1997). |