帳號:guest(18.227.111.30)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):錢元俊
論文名稱(中文):Phase equilibria isothermal section and liquidus projection of thermoelectric Co-Sb-Ga alloys
論文名稱(外文):Phase equilibria isothermal section and liquidus projection of thermoelectric Co-Sb-Ga alloys
指導教授(中文):陳信文
口試委員(中文):紀渥德
林士剛
黃振東
口試委員(外文):Wojciech Gierlotka
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032525
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:85
中文關鍵詞:熱電材料相圖液相線投影圖等溫橫截面圖鈷銻鎵
外文關鍵詞:Thermoelectric materialPhase diagramLiquidus projectionIsothermal sectionCo-Sb-GaCoSb3
相關次數:
  • 推薦推薦:0
  • 點閱點閱:520
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
CoSb3是相當受到關注的熱電材料。近年來研究指出,摻雜Ga至CoSb3熱電材料內能改善此材料的熱電性質,因此Co-Sb-Ga三元系統便具有很高的研究價值。相圖是探討材料相變化的重要資料,同時也是了解不同微結構變化的有力工具,由於熱電材料的微結構對其熱電性質之影響十分巨大,故取得此系統的相圖對於開發此新穎熱電材料便顯得相當重要。本研究之目標在於建構Co-Sb-Ga液相線投影圖以及650℃等溫橫截面圖。在液相線投影圖部份,製備各種不同組成之Co-Sb-Ga三元合金,並從高溫熔融態下淬冷,以進行首要析出相之鑑定。以三個二元子系統的相圖定出首要析出相的二元邊界,並搭配各三元合金的實驗結果,以此建構出Co-Sb-Ga之三元液相線投影圖。首要析出相區除了三個終端固溶體相區外,尚有六個二元介金屬化合物相區,另外並發現以三元化合物- Co3Sb2Ga4為首要析出相的區域,過去之文獻並無此三元化合物之報導。在650℃等溫橫截面圖部份,配置經長時間熱處理之合金樣品,並進行相的鑑定與組成量測,實驗結果確立了四個三相區以及一個兩相區。本研究並利用熱力學計算(Calphad)的方法建構出液相線投影圖以及650℃等溫橫截面圖,其結果與實驗相當吻合。
CoSb3 is an important thermoelectric material. Recent studies indicate that Ga alloying in CoSb3 could further improve its figure of merit, zT. The Co-Sb-Ga ternary system is thus of high interests for thermoelectric applications. Phase diagrams are fundamental for understanding of phase transformation and materials microstructures, which are closely related to the materials thermoelectric properties. Phase diagrams are thus crucial for development of thermoelectric materials. The Co-Sb-Ga liquidus projection and the 650℃ Co-Sb-Ga phase equilibria isothermal section are constructed in this study. As-cast Co-Sb-Ga alloys were prepared, and their primary solidification phases were determined. The Co-Sb-Ga liquidus projection was constructed based on the experimental results of primary phases, and the phase diagrams of its three constituent binary systems. The primary solidification phases are the three terminal solid solution phases, six binary compounds: CoGa, CoGa3, GaSb, CoSb3, CoSb2, CoSb and a ternary compound- Co3Sb2Ga4 which has not been reported before; Ternary Co-Sb-Ga alloys equilibrated at 650℃ as well. The equilibrium phases and their compositions were determined. Four three-phase regions and one two-phase region have been determined. The liquidus projection and the 650℃ isothermal section were also calculated using Calphad method. Both experimental determinations and the calculated results are qualitatively in good agreement.
ABSTRACT I
摘要 II
CONTENT III
LIST OF FIGURES VI
LIST OF TABLES X
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. LITERATURE REVIEW 5
2-1 CoSb3 thermoelectric material 5
2-1-1 Skutterudite structure 5
2-1-2 CoSb3 thermoelectric 5
2-2 Phase equilibrium 6
2-2-1 Co-Sb binary phase diagram 7
2-2-2 Ga-Sb binary phase diagram 7
2-2-3 Co-Ga binary phase diagram 8
2-2-4 Co-Sb-Ga ternary phase diagram 8
CHAPTER 3. EXPERIMENTAL PROCEDURES 13
3-1 Co-Sb-Ga liquidus projection 13
3-2 Differential thermal analysis 13
3-3 650℃ Co-Sb-Ga isothermal section 14
CHAPTER 4. RESULTS AND DISCUSSION 15
4-1 Liquidus projection of the ternary Co-Sb-Ga system 15
4-1-1 Primary phase Co 19
4-1-2 Primary phase CoSb 22
4-1-3 Primary phase CoSb2 26
4-1-4 Primary phase CoSb3 30
4-1-5 Primary phase GaSb 33
4-1-6 Pimary phase Co3Sb2Ga4 37
4-1-7 Primary phase CoGa 39
4-1-8 Primary phase CoGa3 43
4-1-9 Calculated liquidus projection of Co-Sb-Ga ternary system 47
4-1-10 Construction of the Co-Sb-Ga liquidus projection 51
4-2 Differential thermal analysis 53
4-2-1 Ternary eutectic reaction: L= CoSb3+GaSb+Sb 53
4-3 650℃ isothermal section of Co-Sb-Ga ternary system 58
4-3-1 CoSb3+liquid+GaSb three-phase region 60
4-3-2 CoSb3+liquid two-phase region 63
4-3-3 CoSb3+GaSb+Co3Sb2Ga4 three-phase region 66
4-3-4 CoGa+GaSb+Co3Sb2Ga4 three-phase region 70
4-3-5 CoGa3+CoGa+GaSb three-phase region 72
4-3-6 Ternary compound: Co3Sb2Ga4 74
4-3-7 Construction of Co-Sb-Ga 650℃ isothermal section 79
CHAPTER 5. CONCLUSIONS 81
CHAPTER 6. REFERENCE 82
[1] G. J. Snyder, E. S. Toberer et al., “Complex thermoelectric materials”, Nature Materials, Vol. 7, pp. 105-114, (2008).
[2] D. M. Rowe, “CRC Handbook of Thermoelectrics”, Taylor & Francis Group, USA, (2006).
[3] G. Chen, M. S. Dresselhaus et al., “Recent developments in thermoelectric materials”, International Materials Reviews, Vol. 48, pp. 45–66, (2003).
[4] G. S. Nolas, J. Poon et al., “Recent developments in bulk thermoelectric materials”, Materials Research Bulletin, Vol. 31, pp. 199–205, (2006).
[5] M. S. Dresselhaus et al., “New directions for low-dimensional thermoelectric materials”, Advanced Materials, Vol. 19, pp. 1043–1053, (2007).
[6] K. Koumoto, I. Terasaki et al., “Complex oxide materials for potential thermoelectric applications”, Materials Research Bulletin, Vol. 31, pp. 206–210, (2006).
[7] F. D. Rosi, “Thermoelectricity and thermoelectric power generation”, Solid-State Electronics, Vol. 11, pp. 833–848, (1968).
[8] L. D. Hicks, M. S. Dresselhaus et al., “Effect of quantum-well structures on the thermoelectric figure of merit”, Physical Review B: Condensed Matter and Materials Physics, Vol. 47, pp. 12727–12731, (1993).
[9] B. C. Sales, “Electron crystals and phonon glasses: a new path to improved thermoelectric materials”, Materials Research Bulletin, Vol. 23, pp. 15–21, (1998).
[10] J. C. Caylor, K. Coonley et al., “Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity”, Applied Physics Letters, Vol. 87, pp. 23105, (2005).
[11] P. W. Zhu et al., “Enhanced thermoelectric properties of PbTe alloyed with Sb2Te3”, Journal of Physics: Condensed Matter, Vol. 17, pp. 7319–7326, (2005).
[12] J. P. Fleurial, T. Caillat et al., “Skutterudites: An Update”, Proceedings of the XVI International Conference on Thermoelectrics, Dresden, Germany, August 26-29, (1997).
[13] M. Toprsk, C. Stiewe et al., “The Impact of Nanostructuring on the Thermal Conductivity of Thermal Conductivity of Thermoelectric CoSb3”, Advanced Functional Materials, Vol.14, pp. 1189-1196, (2004).
[14] J. L. Mi, T. J. Zhu et al., “Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3”, Journal of applied physics, Vol. 101, pp. 054314, (2007).
[15] A. Watcharapasorn, R. C. DeMattei et al., “Thermoelectric properties of some cobalt phosphide-arsenide compounds”, Materials Research Society, Vol.626, (2000).
[16] Z. He, C. Stiewe et al., “Nano ZrO2/CoSb3 composites with improved thermoelectric figure of merit”, Nanotechnology, Vol. 18, pp. 235602-235607, (2007).
[17] W. S. Liu, B. P. Zhang et al., “Improvement of Thermoelectric performance of CoSb3-xTex Skutterudite Compound by Additional Substitution of IVB-Group Elements for Sb”, Chemistry of Materials, Vol. 20, pp. 7526-7531, (2008).
[18] X. Su et al., “Microstructure and thermoelectric properties of CoSb2.75Ge0.25-xTex prepared by rapid solidification”, Acta Materialia, Vol. 60, pp. 3536–3544, (2012).
[19] T. He, J. Chen et al., “Thermoelectric Properties of Indium-Filled Skutterudites”, Chemistry of Materials, Vol. 18, pp. 759-762, (2006).
[20] P. X. Lu, F. Wu et al., “Thermoelectric properties of rare earths filled CoSb3 based nanostructure skutterudite”, Journal of Alloys and Compounds, Vol. 505, pp. 255-258, (2010).
[21] P. N. Alboni et al., “Synthesis and Thermoelectric Properties of Nano-Engineered CoSb3 Skutterudite Materials”, Electronic Materials, Vol. 36, No. 7, pp. 711-715, (2007).
[22] J. X. Zhang, Q. M. Lu et al., “Synthesis and thermoelectric properties of CoSb3 compounds by spark plasma sintering ”, Materials Letters, Vol. 58, pp. 1981–1984, (2004).
[23] G. D. Tang, Z. H. Wang et al., “Low Thermal Conductivity and Enhanced Thermoelectric Performance in In and Lu Double-Filled CoSb3 skutterudites”, Journal of electronic materials, Vol. 40, pp. 5, (2011).
[24] S. Furuyama, T. Iida et al., “Thermoelectric properties of undoped p-type CoSb3 prepared by vertical Bridgman crystal growth and spark plasma sintering”, Journal of Alloys and Compounds, Vol.415, pp. 251–256, (2006).
[25] J. Yang, Y. Chen et al., “Effect of La filling on thermoelectric properties of LaxCo3.6Ni0.4Sb12-filled skutterudite prepared by MA-HP method”, Journal of Solid State Chemistry, Vol.179, pp. 212-216, (2006).
[26] Z. Xiong, X. Chen et al., “High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy ”, Acta Materialia, Vol.58, pp. 3995–4002, (2010).
[27] A. Harnwunggmoung et al., “Thermoelectric properties of Ga-added CoSb3 based skutterudites”, Journal of Applied physics, Vol. 110, pp. 013521, (2011).
[28] F. N. Rhines, “Phase Diagrams in Metallurgy- Their Development and Application”, McGraw-Hill Book Company Inc.,USA, (1956).
[29] C. J. Vineis, A. Shakouri et al., “Nano Structured Thermoelectric: Big Efficiency Gains from small Features”, Advanced Materials, Vol. 22, pp. 3970-3980, (2010).
[30] Y. Zhang et al., “The thermodynamic assessment of the Co–Sb system”, Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 32, pp. 56–63, (2008).
[31] T. L. Nagi, R. C. Sharma, Y. A. Chang et al., Bulletin of Alloy Phase Diagrams, Vol. 9, (1988).
[32] T. J. Anderson et al., “A Binary Database for III-V Compound Semiconductor Systems”, Calphad, Vol. 18, No. 2, pp. 177-222, (1994).
[33] A. Chari, A. Garay et al., “Thermodynamic remodeling of the Co–Ga system”, Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 34, pp. 189–195, (2010).
[34] S. L. Markovski, J. A. van Beek et al., “Thermodynamic evaluation of Ga-X-Co (x=P, As, Sb) systems related to the metallization of III-V compound semiconductors”, Journal de Chimie Physique, Vol. 94, pp. 992-997, (1997).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *