帳號:guest(3.137.180.13)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高子倫
作者(外文):Kao, Tzu-Lun
論文名稱(中文):超細鉍奈米線的合成與機制探討
論文名稱(外文):Synthesis and Mechanism Study of Ultrathin Bismuth Nanowires
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing-Yu
口試委員(中文):周更生
曾院介
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032523
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:46
中文關鍵詞:奈米線合成鋰離子電池
外文關鍵詞:BismuthNanowiresSynthesisLithium-ion batteries(LIBs)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:423
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇研究是在溶液相系統中製備直徑約為2~4nm之超細鉍奈米線(Ultrathin Bi NWs),並探討其生長機制。由高溫的油胺(oleylamine, OLA)作為溶劑並與前驅物2-乙基己酸鉍(Bismuth 2-ethylhexanoate) 形成高分子鏈(polymer strands),在反應抑制劑─共聚高分子(PVP/HDE)的存在下,OLA將Bi3+ in situ還原成Bi0而合成出超細鉍奈米線。從X光粉末繞射圖譜(XRD)可判定超細鉍奈米線結構為rhomb-centered結構,而從高解析穿透式電子顯微鏡(HRTEM)可得知超細鉍奈米線沿[012]方向生長,且常聚集成束狀微結構。因鉍熔點(塊材時約為271℃)低,超細鉍奈米線在電子束照射下,會於短時間內熔化為液珠,再結晶形成多晶結構。此研究也進行多組實驗比較不同變因對合成超細鉍奈米線的影響,包含熱溶劑注射法與升溫法的差別、不同反應溫度、不同共聚高分子用量、不同界面活性劑、不同還原劑之影響,再放大實驗條件確定其工業合成的可能性。鉍奈米線也應用於鋰離子電池(LIBs)做充放電測試,其充放電速率越快,電容越低,且在50次循環充放電測試後,可觀察到電容損失的現象。
In this study, ultrathin bismuth nanowires(Bi UNWs) with an diameter of 2~4nm were synthesized in solution-phase system, and the mechanism was discussed. Oleylamine(OLA) played the role as solvent and formed polymer strands with the precursor of Bi (Bismuth 2-ethylhexanoate), then OLA reduced Bi3+ in situ to Bi0 with the existence of copolymer(PVP/HDE) as reaction inhibitor obtaining Bi UNWs. X-ray diffraction data showed that Bi UNWs are crystalline with rhomb-centered structure, and high-resolution transmission electron microscopy studies revealed that Bi UNWs grew along the [012] direction and frequently aggregated into bundle-like mesostructure, which is in accordance with X-ray diffraction data. Due to low melting point of Bi, Bi UNWs melted under electron beam irradiation, leading to the formation of small liquid droplets during TEM examination, and then re-crystallized to a polycrystalline nanowire. The experimental parameters, including method of mixing reagents, reaction temperature, amount of copolymer applied, surfactant, and reducing agent, were tuned to study their effects on the synthesis of Bi UNWs. Large scale synthetic experiment was carried out to evaluate the possibility of Bi UNWs for industrial scale production. Finally, Bi UNWs were also applied as the anode material for lithium-ion batteries. The higher the charge/discharge rate, the lower the capacity. Also, capacity fade is observed after a cycle life of 50 cycles.
第 一 章 緒論 1
第 二 章 文獻回顧 4
2-1模板法(Templating) 5
2-1.1 晶種催化生長(Seeded growth) 5
2-1.2 中孔洞材料(mesoporous material) 8
2-1.3 高分子鏈(polymer strands) 9
2-2界面活性劑控制法(ligand control) 13
2-2.1界面活性劑組合(ligand mixture) 14
2-3方向性連接(oriented attachment) 15
2-4鉍應用於鋰離子電池負極材料 18
第 三 章 實驗方法 20
3-1實驗藥品 20
3-2儀器分析 21
3-3實驗設備 21
3-3.1合成實驗裝置 21
3-3.2鋰電池組裝與測試裝置 22
3-4熱溶劑注射法中鉍前驅物溶液的製備 23
3-5合成超薄鉍奈米線 24
3-6鋰離子電池組裝、測試 24
3-6.1配製漿料 25
3-6.2 塗布成膜 25
3-6.3 準備極片 26
3-6.4 電池組裝 26
3-6.5 充放電測試 26
第 四 章 結果與討論 27
4-1鑑定與機制討論 27
4-2 不同變因對超細鉍奈米線合成的影響 34
4-3鋰離子電池充放電測試 41
第 五 章 結論 44
第 六 章 參考文獻 45
1.Schmid, G. and B. Corain, Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities. Eur. J. Inorg. Chem., 2003. 2003(17): p. 3081-3098.
2.Jun, Y.W., J.S. Choi, and J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Edit., 2006. 45(21): p. 3414-3439.
3.Cademartiri, L. and G.A. Ozin, Ultrathin Nanowires—A Materials Chemistry Perspective. Adv. Mater., 2009. 21(9): p. 1013-1020.
4.Wagner, R.S. and W.C. Ellis, VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH ( NEW METHOD GROWTH CATALYSIS FROM IMPURITY WHISKER EPITAXIAL + LARGE CRYSTALS SI E ). Appl. Phys. Lett., 1964. 4(5): p. 89-90.
5.Wu, Y. and P. Yang, Direct Observation of Vapor−Liquid−Solid Nanowire Growth. J. Am. Chem. Soc., 2001. 123(13): p. 3165-3166.
6.Wang, F. and W.E. Buhro, An Easy Shortcut Synthesis of Size-Controlled Bismuth Nanoparticles and Their Use in the SLS Growth of High-Quality Colloidal Cadmium Selenide Quantum Wires. Small, 2010. 6(4): p. 573-581.
7.Li, L., et al., Synthetic control of large-area, ordered bismuth nanowire arrays. Mater. Lett., 2005. 59(10): p. 1223-1226.
8.Huo, Z., et al., Sub-Two Nanometer Single Crystal Au Nanowires. Nano Lett., 2008. 8(7): p. 2041-2044.
9.Lu, X., et al., Ultrathin Gold Nanowires Can Be Obtained by Reducing Polymeric Strands of Oleylamine−AuCl Complexes Formed via Aurophilic Interaction. J. Am. Chem. Soc., 2008. 130(28): p. 8900-8901.
10.Liu, Z., et al., Growth of Cu2S Ultrathin Nanowires in a Binary Surfactant Solvent. J. Phys. Chem. B, 2005. 109(21): p. 10699-10704.
11.Penn, R.L. and J.F. Banfield, Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim. Cosmochim. Ac., 1999. 63(10): p. 1549-1557.
12.Cho, K.-S., et al., Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles. J. Am. Chem. Soc., 2005. 127(19): p. 7140-7147.
13.Xianming, W., T. Nishina, and I. Uchida, Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte. J. Power Sources, 2002. 104(1): p. 90-96.
14.Gao, Y., et al., Preparation and characterization of single-crystalline bismuth nanowires by a low-temperature solvothermal process. Chem. Phys. Lett., 2003. 367(1–2): p. 141-144.
15.http://www.geocities.jp/ohba_lab_ob_page/Structure/As.JPG
16.ZHOU, B., T. REN, and J.-J. ZHU, A RAPID PREPARATION OF BISMUTH NANOWIRES VIA A MICROWAVE-ASSISTED POLYOL METHOD. Int. J. Mod. Phys. B, 2005. 19(15n17): p. 2829-2834.
17.Morgan, W.E., W.J. Stec, and J.R. Van Wazer, Inner-orbital binding-energy shifts of antimony and bismuth compounds. Inorg. Chem., 1973. 12(4): p. 953-955.
18.Nascimento, V.B., et al., XPS and EELS study of the bismuth selenide. J. Electron Spectrosc., 1999. 104(1–3): p. 99-107.
19.Singh, A., et al., Colloidal Synthesis of Wurtzite Cu2ZnSnS4 Nanorods and Their Perpendicular Assembly. J. Am. Chem. Soc., 2012. 134(6): p. 2910-2913.
20.Li, S., et al., Synthesis and assembly of monodisperse spherical Cu2S nanocrystals. J. Colloid Interf. Sci., 2009. 330(2): p. 483-487.
21.Fauteux, D. and R. Koksbang, Rechargeable lithium battery anodes: alternatives to metallic lithium. J. Appl. Electrochem., 1993. 23(1): p. 1-10.
22.Cabana, J., et al., Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Adv. Mater., 2010. 22(35): p. E170-E192.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *