帳號:guest(13.59.67.238)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳盈燕
作者(外文):Chen, Ying-Yan
論文名稱(中文):新型凍凝膠支架開發並結合桿狀病毒改質之脂肪間葉幹細胞應用於軟骨組織工程
論文名稱(外文):Development of New Cryogel Scaffolds for Baculovirus-engineered Adipose-derived Stem Cell Culture and Cartilage Tissue Engineering
指導教授(中文):胡育誠
指導教授(外文):Hu, Yu-Chen
口試委員(中文):陳彥霖
陳皇綺
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032520
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:49
中文關鍵詞:凍凝膠硫酸軟骨素桿狀病毒轉化生長因子
外文關鍵詞:cryogelchondroitin sulfatebaculovirustransforming growth factor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:211
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗室曾開發出醣胺素/幾丁聚醣(chondroitin-6-sulfate/dermatan sulfate/chitosan, CSC/DS/chitosan)生物模擬材料作為軟骨細胞的培養支架,能夠促進軟骨組織的再生。然而,以凍乾法製備的CSC/DS/chitosan支架孔徑約100-200 μm,不利於種入高密度的脂肪間葉幹細胞(Adipose-derived stem cells, ASCs),且其機械性質不宜植入膝關節軟骨缺陷,因此本研究以凍凝膠製程(cryogelation)開發大孔徑且具彈性的新型凍凝膠細胞支架。我們首先製備幾丁聚醣/明膠凍凝膠支架(幾丁聚醣:明膠為1:4,命名為CS000),並於3±0.5 mg之幾丁聚醣/明膠凍凝膠上分別接枝0.15 , 0.3, 0.6與3 mg的硫酸軟骨素(CS),得到四組硫酸軟骨素/幾丁聚醣/明膠凍凝膠支架分別命名為CS015,CS030,CS060及CS300。利用掃描式電子顯微鏡(scanning electron microscopy, SEM)可觀察到相連的孔洞結構,孔徑分布於200-400 μm之間。FT-IR圖譜分析顯示三種成份皆成功交聯。我們以SEM觀察到此孔徑可使ASCs均勻地種入支架中,僅CS300組的細胞累積於支架表面。LIVE/DEAD螢光染色亦證實此新型凍凝膠支架不具有細胞毒性(cytotoxicity),同時可觀察到細胞團塊的形成。qRT-PCR的結果顯示接枝了CS的凍凝膠支架可促進ASCs軟骨化指標基因SOX9, ACAN及COL2A1的表現,CS030組可貼附較多的細胞且達到促進分化的效果,因此用於後續種入經由桿狀病毒改質之rASCs (可長效表現BMP-6與TGF-β3)後培養工程軟骨。然而,實驗結果顯示ASCs在培養過程中形成細胞團塊逐漸遷徙脫離細胞支架,使支架中細胞數降低。在高濃度的BMP-6/TGF-β3刺激下,細胞貼附及增生能力下降,因此其軟骨化基因表現未明顯上升,組織染色的結果亦顯示無明顯的軟骨細胞外間質(extracellular matrix, ECM)累積。未來可經由改善支架的交聯條件以及最佳化病毒劑量以培養出類似於天然軟骨的工程軟骨,進行軟骨缺陷的修復。
We had developed a biomimetic scaffold comprising chondroitin-6-sulfate/dermatan sulfate/chitosan (CSC/DS/chitosan) for culturing chondrocytes and enhancing the engineered cartilage formation. However, the mechanical properties of freeze-dried CSC/DS/chitosan scaffold is not suitable for the repair of full-thickness defects in load-bearing site。 Therefore, we prepared macroporous CS/chitosan/gelatin cryogel scaffolds with elasticity via cryogelation process for cartilage tissue engineering. We synthesized four scaffolds with either no CS (control) or different CS contents and analyzed their physiochemical properties. The CS/chitosan/gelatin cryogels contained large, interconnected pores and allowed for uniform seeding of adipose-derived stem cells (ASCs), as confirmed by scanning electron microscopy (SEM). LIVE/DEAD staining showed that the cryogels are noncytotoxic and cell cluster formation was observed. The incorporation of CS can up-regulate chondrospecific gene expression. The optimal formulation comprised of 0.3 mg CS per chitosan-gelatin scaffold for its better cell attachment and chondrogenic effect. We further use the scaffolds for the culture of baculovirus-engineered ASCs. Results showed that with sustained baculovirus-mediated BMP-6/TGF-3 stimulation, the cell attachment and proliferation rate of ASCs decrease and no obvious cartilage extracellular matrix (ECM) accumulation. Engineered cartilage that resembles native cartilage will form by modification of crosslinking process and optimization of virus dosage.
第一章 緒論
第二章 文獻回顧
2.1 關節軟骨
2.2 關節軟骨之修復方法
2.3 關節軟骨組織工程
2.4 基因治療載體
2.5 桿狀病毒
2.6 研究動機
第三章 材料與方法
3.1 醣胺素/幾丁聚醣/明膠凍凝膠細胞支架之製備方法
3.2 材料性質之評估
3.3 脂肪間葉幹細胞之分離與培養
3.4 三維細胞培養之方法
3.5 細胞支架之生物性質分析
3.6 長效表現生長因子刺激體外工程軟骨生成之效果評估
第四章 結果與討論
4.1 凍凝膠支架的物理性質
4.2 凍凝膠支架的化學性質
4.3 凍凝膠支架的生物性質
4.4 凍凝膠支架對於脂肪間葉幹細胞軟骨化之影響
4.5 硫酸軟骨素/幾丁聚醣/明膠凍凝膠支架結合長效型桿狀病毒表現系統培養工程軟骨之影響
4.6 討論
第五章 結論與未來展望
第六章 參考文獻
Afizah H, Yang Z, Hui JH, Ouyang HW, Lee EH. 2007. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng 13(4):659-666.
Ahmed TA, Hincke MT. 2010. Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng Part B Rev 16(3):305-29.
Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. 2004. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16):3211-22.
Barry F, Boynton RE, Liu B, Murphy JM. 2001. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268(2):189-200.
Baum C. 2007. What are the consequences of the fourth case? Mol Ther 15(8):1401-2.
Chen YL, Chen HC, Chan HY, Chuang CK, Chang YH, Hu YC. 2008. Co-conjugating chondroitin-6-sulfate/dermatan sulfate to chitosan scaffold alters chondrocyte gene expression and signaling profiles. Biotechnol Bioeng 101(4):821-30.
Chen YL, Chen HC, Lee HP, Chan HY, Hu YC. 2006. Rational development of GAG-augmented chitosan membranes by fractional factorial design methodology. Biomaterials 27(10):2222-2232.
Diekman BO, Rowland CR, Lennon DP, Caplan AI, Guilak F. 2010. Chondrogenesis of adult stem cells from adipose tissue and bone marrow: Induction by growth factors and cartilage-derived matrix. Tissue Eng. Part A 16(2):523-533.
Donsante A, Miller DG, Li Y, Vogler C, Brunt EM, Russell DW, Sands MS. 2007. AAV vector integration sites in mouse hepatocellular carcinoma. Science 317(5837):477.
Estes BT, Wu AW, Guilak F. 2006. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 54(4):1222-32.
Feng G, Wan Y, Balian G, Laurencin CT, Li X. 2008. Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors 26(3):132-42.
Gelse K, Schneider H. 2006. Ex vivo gene therapy approaches to cartilage repair. Adv. Drug Deliv. Rev. 58(2):259-284.
Han Y, Wei Y, Wang S, Song Y. 2010. Cartilage regeneration using adipose-derived stem cells and the controlled-released hybrid microspheres. Joint Bone Spine 77(1):27-31.
Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M. 1995. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 92(22):10099-103.
Hu YC. 2006. Baculovirus vectors for gene therapy. Adv Virus Res 68:287-320.
Hu YC. 2008. Baculoviral vectors for gene delivery: a review. Curr Gene Ther 8(1):54-65.
Huang AH, Farrell MJ, Kim M, Mauck RL. 2010. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur Cell Mater 19:72-85.
Huang GS, Dai LG, Yen BL, Hsu SH. 2011. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 32(29):6929-45.
Hwang Y, Sangaj N, Varghese S. 2010. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Tissue Eng Part A 16(10):3033-41.
Im GI, Kim HJ, Lee JH. 2011. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials 32(19):4385-92.
Im GI, Ko JY, Lee JH. 2012. Chondrogenesis of adipose stem cells in a porous polymer scaffold: influence of the pore size. Cell Transplant 21(11):2397-405.
Jin X, Sun Y, Zhang K, Wang J, Shi T, Ju X, Lou S. 2007. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials 28(19):2994-3003.
Kalson NS, Gikas PD, Briggs TW. 2010. Current strategies for knee cartilage repair. Int J Clin Pract 64(10):1444-52.
Kathuria N, Tripathi A, Kar KK, Kumar A. 2009. Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Acta Biomater 5(1):406-18.
Kolostova K, Taltynov O, Pinterova D, Boubelik M, Raska O, Hozak P, Jirkovska M, Bobek V. 2012. Wound healing gene therapy: cartilage regeneration induced by vascular endothelial growth factor plasmid. Am J Otolaryngol 33(1):68-74.
Kumar A, Mishra R, Reinwald Y, Bhat S. 2010. Cryogels: Freezing unveiled by thawing. Materials Today 13(11):42-44.
Kumar A, Srivastava A. 2010. Cell separation using cryogel-based affinity chromatography. Nat Protoc 5(11):1737-47.
Li J, Zhao Q, Wang E, Zhang C, Wang G, Yuan Q. 2012. Dynamic compression of rabbit adipose-derived stem cells transfected with insulin-like growth factor 1 in chitosan/gelatin scaffolds induces chondrogenesis and matrix biosynthesis. J Cell Physiol 227(5):2003-12.
Mahmoudifar N, Doran PM. 2010. Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31(14):3858-67.
Matsiko A, Levingstone TJ, O'Brien FJ, Gleeson JP. 2012. Addition of hyaluronic acid improves cellular infiltration and promotes early-stage chondrogenesis in a collagen-based scaffold for cartilage tissue engineering. J Mech Behav Biomed Mater 11:41-52.
Merceron C, Vinatier C, Clouet J, Colliec-Jouault S, Weiss P, Guicheux J. 2008. Adipose-derived mesenchymal stem cells and biomaterials for cartilage tissue engineering. Joint Bone Spine 75(6):672-4.
Merceron C, Vinatier C, Portron S, Masson M, Amiaud J, Guigand L, Cherel Y, Weiss P, Guicheux J. 2010. Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Physiol Cell Physiol 298(2):C355-64.
Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, Kon E. 2012. Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc 20(6):1182-91.
Puetzer JL, Petitte JN, Loboa EG. 2010. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng Part B Rev 16(4):435-44.
Rada T, Reis RL, Gomes ME. 2009. Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering. Tissue Eng Part B Rev 15(2):113-25.
Swieszkowski W, Ku DN, Bersee HE, Kurzydlowski KJ. 2006. An elastic material for cartilage replacement in an arthritic shoulder joint. Biomaterials 27(8):1534-41.
Thorpe SD, Buckley CT, Vinardell T, O'Brien FJ, Campbell VA, Kelly DJ. 2010. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann Biomed Eng 38(9):2896-909.
Toghraie F, Razmkhah M, Gholipour MA, Faghih Z, Chenari N, Torabi Nezhad S, Nazhvani Dehghani S, Ghaderi A. 2012. Scaffold-free adipose-derived stem cells (ASCs) improve experimentally induced osteoarthritis in rabbits. Arch Iran Med 15(8):495-9.
Toh WS, Guo XM, Choo AB, Lu K, Lee EH, Cao T. 2009. Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro. J Cell Mol Med 13(9B):3570-90.
Tripathi A, Vishnoi T, Singh D, Kumar A. 2013. Modulated Crosslinking of Macroporous Polymeric Cryogel Affects In Vitro Cell Adhesion and Growth. Macromol Biosci.
Tsung LH, Chang K-H, Chen JP. 2011. Osteogenesis of Adipose-Derived Stem Cells on Three-Dimensional, Macroporous Gelatin–Hyaluronic Acid Cryogels. Biomedical Engineering: Applications, Basis and Communications 23(02):127-133.
Uygun BE, Stojsih SE, Matthew HW. 2009. Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells. Tissue Eng Part A 15(11):3499-512.
Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D. 2009. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 27(5):307-14.
Wang YK, Chen CS. 2013. Cell adhesion and mechanical stimulation in the regulation of mesenchymal stem cell differentiation. J Cell Mol Med.
Welzel PB, Grimmer M, Renneberg C, Naujox L, Zschoche S, Freudenberg U, Werner C. 2012. Macroporous StarPEG-Heparin Cryogels. Biomacromolecules 13(8):2349-58.
Yu C, Young S, Russo V, Amsden BG, Flynn LE. 2013. Techniques for the Isolation of High-Quality RNA from Cells Encapsulated in Chitosan Hydrogels. Tissue Eng Part C Methods.
Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. 2008. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26(6):664-75.
Zuk PA. 2010. The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 21(11):1783-7.
(此全文未開放授權)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *