|
1. J. I. Umeda, J. Phys. Soc. Japan, vol.16, p.126, (1961). 2. Y. M. Lin and M. S. Dresselhaus, Phys. Rev. B, vol.68, p.075304, (2003). 3. M. Fardy, A. I. Hochbaum, J. Goldberger, M. M. Zhang, and P. Yang, Adv. Mater., vol.19, p.3047, (2007). 4. F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K. H. Lee, and N. V. Myung, Electrochim. Acta, vol.53, p.8103, (2008). 5. D. Parker and D. J. Singh, Phys. Rev. B, vol.82, p.035204, (2010). 6. K. R. Stevens, M. G. Kanatzidis, S. Johnsen and S. N. Girard, Nanoscape, vol.7, p.52, (2010). 7. H. Wang , Y. Pei , A. D. LaLonde , and G. J. Snyder, Adv. Mater., vol.23, p.1366, (2011). 8. S. Chen, K. Cai, and W. Zhao, Physica B, vol.407, p.4154, (2012). 9. U. Gangopadhyay, S. Das, S. Jana, and P. Ghosh, International Journal of Engineering Research and Development, vol.3, p.95, (2012). 10. Y. Lee, S. H. Lo, C. Chen, H. Sun, D. Y. Chung, T. C. Chasapis, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nat. Commun., 5:3640, p.1, (2013). 11. C. L. Chen, H. Wang, Y. Y. Chen, T. Day, and G. J. Snyder, J. Mater. Chem. A, vol.2, p.11171, (2014). 12. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Nature, vol.508, p.373, (2014). 13. H. Kumar and N. Mehta, Mater. Chem. Phys., vol.134, p.834, (2012). 14. H. Kumar, A.Sharma, and N.Mehta, Mater. Lett., vol.121, p.194, (2014). 15. P. Dziawa, B. J. Kowalski, K. Dybko, R. Buczko, A. zczerbakow, M. Szot, E. Łusakowska, T. Balasubramanian, B. M. Wojek, M. H. Berntsen, O. Tjernberg, and T. Story, Nat. Mater., vol.11, p.1023, (2012). 16. C. M. Polley, P. Dziawa, A. Reszka, A. Szczerbakow, R. Minikayev, J. Z. Domagala, S. Safaei, P. Kacman, R. Buczko, J. Adell, M. H. Berntsen, B. M. Wojek, O. Tjernberg, B. J. Kowalski, T. Story, and T. Balasubramanian, Phys. Rev. B, vol.89, p. 075317, (2014). 17. D.M. Rowe, “CRC Handbook of Thermoelectrics”; CRC Press: Boca Raton, FL, (1995). 18. F.J. Disalvo, Science, vol.285, p.703, (1999). 19. D. Kraemer, B. Poudel, H.P. Feng, J.C. Cavlor, B. Yu, X. Yan, Y. Ma, D.Z. Wang, A. Muto, K. McEnaney, M. Chiesa and Z.F. Ren, and G .Chen, Nat. Mater., vol.10, p.532, (2011). 20. S.K. Kang and A.K. Sarkhel, J. Electron. Mater., vol.23, p.701, (1994). 21. S.W. Chen, C.H. Wang, S.K. Lin, and C.N. Chiu, J. Mater. Sci. Mater. Electron., vol.18, p.19, (2007). 22. C. Chen, H.M. Tong, and K.N. Tu, Annu. Rev. Mater. Res., vol.40, p.531, (2010). 23. C.M. Chen and S.W. Chen, J. Appl. Phys., vol.90, p.1208, (2001). 24. J.H. Lau, Microelectron. Int., vol.28, p.8, (2011). 25. Council Directive, Off. J. Eur. Union, L37, p.19, (2003). 26. C. Wei, Y.C. Liu, Z. Gao, J. Wan, and C, Ma, J. Electron. Mater., vol.38, p.345, (2009). 27. C. Wei, Y. Liu, Z. Gao, C. Ma, and J. Wan, J. Alloys Compd., vol.470, p.145, (2009). 28. R.L. Xu, Y.C. Liu, Y.J. Han, C. Wei, X. Wang, and L.M. Yu, J. Mater. Sci. Mater. Electron., vol.20, p.675, (2009). 29. M.S. Yeh, Metall. Mater. Trans. A, vol.34A, p.361, (2003). 30. M.L. Huang and L. Wang, Metall. Mater. Trans. A, vol.36A, p.1439, (2005). 31. T.M. Korhonen and J.K. Kivilaht, J. Electron. Mater., vol.27, p.149, (1998). 32. I. Ohnuma, X.J. Liu, H. Ohtani, and K. Ishida, J. Electron. Mater., vol.28, pp.1164, (1999). 33. I. Ohnuma, Y. Cui, X.J. Liu, Y. Inohana, S. Ishihara, H. Ohtani, R. Kainuma, and K. Ishida, J. Electron. Mater., vol.29, p.1113, (2000). 34. X.J. Liu, Y. Inohana, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida, Z. Moser, W. Gasior, and J. Psrtus, J. Electron. Mater., vol.31, p.1139, (2002). 35. G.P. Vassilev, E.S. Dobrev, and J.C. Tédenac, J. Alloys Compd., vol.399, p.118, (2005). 36. D. Jendrejczyk Handzlik, W. Gierlotka, and K. Fitzner, Int. J. Mater. Res., vol.99, p.1213, (2008). 37. S.W. Chen, W.Y. Lee, C.M. Hsu, C.F. Yang, H.Y. Hsu, and H.J. Wu, Mater. Chem. Phys., vol.128, p.357, (2011). 38. M. McCormack, S. Jin, and G.W. Kammlott, Appl. Phys. Lett., vol.63, p.15, (1993). 39. K.L. Lin and C.L. Shih, J. Electron. Mater., vol.32, p.95, (2003). 40. K.L. Lin and C.L. Shih, J. Electron. Mater., vol.32, p.1496, (2003). 41. T.C. Chang, M.C. Wang, and M.H. Hon, Metall. Mater. Trans. A, vol.36A, p.3019, (2005). 42. G.P. Vassilev, S.K. Evtimova, J.C. Tedenac, and E.S. Dobrev, J. Alloys Compd., vol.334, p.182, (2002). 43. 大谷博司, 宮下正光and 石田清仁,日本金属学会誌, vol.63, p.685, (1999). 44. G.P. Vassilev, E.S. Dobrev, S.K. Evtimova, and J.C. Tédenac, J. Alloys Compd., vol.327, p.285, (2001). 45. C.C. Jao, Y.W. Yen, C.Y. Lin, and C. Lee, Intermetallics, vol.16, p.463, (2008). 46. H. Ohtani, S. Ono, K. Doi, and M. Hasebe, Mater. Trans., vol.45, p.614, (2004). 47. M. McCormack, S. Jin, and H.S. Chen, J. Electron. Mater., vol.123, p.687, (1994). 48. H. Spengler, Metall (Heidelberg), vol.8, p.936, (1954). 49. Y. Xie and Z.Y. Qiao, CALPHAD, vol.25, p.3, (2001). 50. Y. Cui, X.J. Liu, I. Ohnuma, R. Kainuma, H. Ohtani, and K. Ishida, J. Alloys Compd., vol.320, p.234, (2001). 51. Z.Y. Qiao and Y.A. Xie, The Chinese Journal of Nonferrous Metals, vol.14, p.1789, (2004). 52. Z. Mei and J.W. Morris, J. Electron. Mater., vol. 21, p.401, (1992). 53. H. J. Goldsmid, “Applications of thermoelectricity”, Methuen, London, (1960). 54. P. E. Gray, “The dynamic behavior of thermoelectric devices”, The technology press of the MIT, Cambridge, MA, (1960). 55. G.J. Snyder and E.S Toberer, Nat Mater., vol.7, p.105, (2008). 56. T. M. Tritt and M. A. Subramanian., Thermoelectric materials, phenomena, and applications: A bird's eye view. MRS BULLETIN., vol.31, p.188, (2006). 57. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature., vol.413, p.597, (2001). 58. T. Caillat, A. Borshchevsky, and J. P. Fleurial., J. Appl. Phys., vol.80, p.4442, (1996). 59. A. J. Zhou, X. B. Zhao, T. J. Zhu, S. H. Yang, T. Dasgupt, C. Stiewec, R. Hassdorf, and E. Mueller., Mater. Chem. Phys., vol.124, p.1001, (2010). 60. C. J. Vineis , A. Shakouri , A. Majumdar, and M. G. Kanatzidis, Adv. Mater., vol.22, p.3970, (2010). 61. I. Karakaya, and W.T. Thompson, Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, vol.1, p.94, (1990). 62. K.W. Moon, W.J. Boettinger, U.R Kattner., F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater., vol.29, p.1122, (2000). 63. W. Gierlotka, Y.C. Huang, and S.W. Chen, Metall. Mater. Trans. A, vol.39, p.3199, (2008). 64. Rabkin E.I., L.S. Shvindlerman, and B.B. Straumal, J. Less-Common Met., vol.159, p.43, (1990). 65. K.L. Zeisler Mashl and T.A. Lograsso, J. Phase Equilib., vol.16, p.516, (1995). 66. I. Isomaki, M. Hamalainen, W. Gierlotka, B. Onderka, and K. Fitzner, J. Alloys Compd., vol.422, p.173, (2006). 67. B.J. Lee, CALPHAD, vol.20, p.471, (1996). 68. K. Doi, S. Ono, H. Ohtanl, and M. Hasebe, J. Phase Equilib. Diffus., vol.27, p.63, (2006). 69. M.R. Baren, Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, vol.1, p.47, (1990). 70. Z. Bahari, J. Rivet, B. Legendre, and J. Dugué, J. Alloys Compd., vol.289, p.99, (1999). 71. Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X.J. Liu, Y. Inohana, and K. Ishida, J. Electron. Mater., vol.30, p.1120, (2001). 72. E.A. Owen and I.G. Edmunds, J. Inst. Met., vol.63, p.291, (1938). 73. H. Okamoto, Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, vol.1, p.117, (1990). 74. T. Gomez Acebo, CALPHAD., vol.22, p.203, (1998). 75. H. Okamoto, J. Phase Equilib., vol.23, p.454, (2002). 76. F.N. Rhines and A.H. Grobe, Trans. Am. Inst. Min. Metall. Pet. Eng., vol.156, p.253, (1944). 77. J. Dutkiewicz and W. Zakulski, Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, vol.3, p.2316, (1990). 78. Z. Moser, K.L. Komarek, and A. Mikula, Z. Metallkd., vol.67, p.303, (1976). 79. S. Ashtakala, A.D. Pelton, and C.W. Bale, Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, vol.3, p.3009, (1990). 80. B. Lee, C. Oh, and D.N. Lee, J. Alloys Compd., vol.215, p.293, (1994). 81. H. Ohtani, K. Okuda, and K. Ishida, J. Phase Equilib., vol.16, p.416, (1995). 82. M. Schneider and J.C. Guillaume, J. Phys. Chem. Solids, vol.35, p.471, (1974). 83. V.M. Glazov, L.M. Pavlova, and D.S. Gaev, Inorg. Mater., vol.20, p.1268, (1984). 84. K.P. Kotchi, R. Castanet, and J.C. Mathieu, Ann. Chim. (Paris), vol.12, p.1, (1987). 85. J.C. Lin, R.C. Sharma, and Y.A. Chang, Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, vol.3, p.3011, (1990). 86. E. Königsberger, CALPHAD., vol.15, p.69, (1991). 87. M. Wobst, Scr. Metall., vol.5, p.583, (1971). 88. G. Ghosh, H.L. Lukas, and L. Delaey, Z. Metallkd., vol.80, p.663, (1989). 89. H. Okamoto, Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, vol.3, p.3300, (1990). 90. W. Broniewski and L. Sliwowski, Seances Acad. Sci., vol.186, p.1615, (1928). (in French) 91. J.V. Grechnyi and V.N. Ipatova, Dokl. Akad. Nauk SSSR, vol.185, p.1079, (1969). (in Russian) 92. H. Okamoto, Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, vol.3, p.3304, (1990). 93. H. Okamoto, J. Phase Equilib., vol.19, p.292, (1998). 94. M.I. Karakhanova, A.S. Pashinkin, and A.V. Novoselova, Inorg. Mater., vol. 2, p.1012, (1966). 95. A.M. Gas'kov, V.P. Zlomanov, Y.A. Sapozhnikov, and A.V. Novoselova, Moscow Univ. Chem. Bull., vol.23, p.30, (1968). 96. P.K. Kotchi, R. Castanet, and J.C. Mathieu, Z. Metallkd., vol.78, p.714, (1987). (in French) 97. R.C. Sharma, and Y.A. Chang, Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, vol.3, p.3342, (1990). 98. Y. Feutelais, M. Majid, and B. Legendre, J. Phase Equilib., vol.17, p.40, (1996). 99. H. Okamoto, J. Phase Equilib., vol.19, p.293, (1998). 100. E.I. Elagina, Vopr. Metall. Fiz. Poluprovodn., Tr. Soveshch. 4th, p.119, (1963). 101. A. Skowron, F.W. Boswell, J.M. Corbett and N.J. Taylor, J. Solid State Chem., vol.112, p.251, (1994). 102. A. Skowron and I. D. Brown, Acta Cryst., vol.C46, p.2287, (1990). 103. M. Emirdag-Eanes and J. W. Kolis, Z. Anorg. Allg. Chem., vol.628, p.10, (2001). 104. S. Derakhshan, A. Assoud, N. J. Taylor, and H. Kleinke, Intermetallics, vol.12, p.198, (2006). 105. W. Campbell, Metallurgie (Halle), vol.9, p.422, (1912) (in German) 106. K. Iwase and N. Aoki, Kinzoku No Kenkyu, vol.8, 1931, p.253 (in Japanese) 107. F.D. Weaver, J. Inst. Met., vol.56, p.209, (1935). 108. E. Jänecke, Z. Metallkd., vol.30, p.390, (1938). (in German) 109. Kogan V.A. and Semionov A.A., Russ. J. Phys. Chem., vol.37, p.416, (1963). 110. K. Osamura, Bull. Alloy Phase Diagrams, vol.6, p.372, (1985). 111. J.C. Woolley and O. Berolo, Mater. Res. Bull., vol.3, p.445, (1968). 112. A.J. Strauss, Trans. Metall. Soc. AIME, vol.242, p.354, (1968). 113. V.P. Zlomanov, W.B. White, and R. Roy, Metall. Trans., vol.2, p.121, (1971). 114. Z.M. Latypov, V.P. Savel'ev, I.S. Aver'yanov, and A.S. Ul'danov, Inorg. Mater., vol.7, p.1865, (1971). 115. V.P. Zlomanov, W.B. White, and R. Roy, Metall. Trans., vol.2, p.121, (1971). 116. Z.M. Latypov, V.P. Savel'ev, and V.P. Zlomanov, Inorg. Mater., vol.9, p.1273, (1973). 117. V.I. Shtanov, V.P. Zlomanov, and A.V. Novoselova, Inorg. Mater., vol.10, p.191, (1974). 118. V.I. Shtanov, V.P. Zlomanov, and A.V. Novoselova, Inorg. Mater., vol.11, p.301, (1975). 119. V.I. Shtanov, V.P. Zlomanov, A.V. Novoselova, and E.A. Kuliukhina, Dokl. Akad. Nauk SSSR, vol.238, p.116, (1978). 120. S. Dal Corso, B. Liautard, and J.C. Tédenac, J. Phase Equilib., vol.16, p.308, (1995). 121. V.P. Savel'ev, Z.M. Latypov, and V.P. Zlomanov, Russ. J. Inorg. Chem., vol.20, p.1119, (1975). 122. M. Wobst, J. Less-Common Met., vol.14, p.77, (1968). 123. G. G. Gospodinov, I. N. Odin, and A. V. Novoselova, Inorg. Mater., vol.11, p.1033, (1975). 124. M. A. Alidzhanov, M. Z. Alizade and A. P. Gurshumov, Inorg. Mater., vol.21, (1985). 125. P. K. Smith and J.B. Parise, Acta Cryst., vol.B41, p.84, (1985). 126. J. J. van Laar, Z. Phys. Chem-Stoch. Ve., vol.63, p.216, (1908). 127. J. J. van Laar, Z. Phys. Chem-Stoch. Ve., vol.64, p.257, (1908). 128. J. L. Meijering, Philips Res. Rep., vol.18, p. 318, (1963). 129. L. Kaufman and H. Bernstein, “Computer Calculation of Phase Diagrams”, Academic, New York, (1970). 130. H. L. Lukas, J. Weiss and E. T. Henig, Calphad, vol. 6(3), p.229, (1982). 131. T. Maekawa, T. Yokokawa, and K. Niwa, J. Chem. Thermodyn., vol.4, p.873, (1972). 132. B. Predel, J. Piehl, and M.J. Pool, Z Metallkd., vol.66, p.388, (1975). 133. H. Ptlabon, Compt. Rend., vol.142, p.207, (1906). 134. H. Ptlabon, Compt. Rend., vol.153, p.343, (1911). 135. M. Parravano, Gazz. Chim. Ital., vol.43, p.210, (1913). 136. M. Chikashige and M. Fujita, Mem. Coll. Sci., Kyoto Univ., vol.2, p.233, (1917). 137. M. Hansen and K. Anderko, McGraw-Hill Book Company, Inc., New York-Toronto-London, (1958). 138. M. Wobst, Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt, vol.12, p.393, (1970). 139. J.S. Berkes and M.B. Myers, J. Electrochent Soc.: Solid State Science, vol.118, p.1485, (1971). 140. V.M. Glazov, L.M. Pavlova, and D.S. Gaev, Zh. Neorg. Khim., vol.29, p.1079, (1984). 141. Glazov V.M., Kim S.G., and Nurov K.B., Inorg. Mater., vol.26, p.444, (1990). 142. I.S. Baukin, N.I. Gavrilov, and B.T. Kolomiets, Uch. Zap. Azerb. Gos. Univ., Ser. Fiz,-Mat. Nauk, vol.2, p.99, (1963). 143. B.M. Kulwicki, Ph.D. thesis, University of Michigan, Ann Arbor, (1963). 144. V.G. Kuznetsov and K.K. Palkina, Zh. Neorg. Khim., vol.85, p.1204, (1963). 145. K.K. Palkina and V.G. Kuznetsova, Izv. Akad. Nauk SSSR, Neorg. Mater,. vol.1, p.2158, (1965). 146. A.C. Glatz and K.E. Kordo, J. Phys. Chem., vol.70, p.3757, (1966). 147. V.A. Kirkinskii, V.G. Yakushev, and A.P. Ryaposov, Izv. Akad. Nauk SSSR, Neorg. Mater., vol.4, p.613, (1968). 148. R. Blachnik and A. Schneider, Z. Anorg. Allg. Chem., vol.372, p.314, (1970). 149. Blachnik and A. Schneider, J. Chem. Thermodyn., vol.3, p.227, (1971). 150. G.G. Gospodinov and A.S. Pashinkin, lzv. Akad Nauk SSSR, Neorg. Mater., vol.8, p.1848, (1972). 151. G.G. Gospodinov, I.N. Odin and A.V. Novoselova, Izv. Akad. Nauk SSSR, Neorg. Mater., vol.11, p.1211, (1975). 152. S.M. Rasulov and R.A. Medzhidov, Proc. 5th European Conf. on Thermodynamic Properties of Solids, Moscow, 10, (1976). 153. A.P Chernov, G.Z. Vinogradova, I.Z. Babievskaya, A.F. Shelkova, and L.G. Lisovskii, Zh. Neorg. Khim., vol.22, p.198, (1977). 154. The SGTE Substance database, version 1997, SGTE Group, Grenoble, France, (1997). 155. C.P. Wang, X.J. Liu, R.Kainuma, Y. Takaku, I. Ohnuma, and K. Ishida, Metall. Mater. Trans. A, vol.35A, p.1243, (2004). 156. N. Mattern, M. Zinkevich, W. Löser, G. Behr, and J. Acker, J. Phase Equilib. Diff., vol.29, p.141, (2008). 157. A. Munitz, A. Venkert, P. Landau, M.J. Kaufman, and R. Abbaschian, J. Mater. Sci., vol.47, p.7955, (2012). 158. J.-S. Chang, S.-W. Chen, K.-C. Chiu, H.-J. Wu, and J.-J. Chen, Metall. Mater. Trans. A, vol.45(A), p.3728, (2014). 159. S.-W. Chen, J.-S. Chang, S.-M. Tseng, L.-C. Chang, and J.-Y. Lin, J. Alloy. Compd., vol.656, p.58, (2016). 160. A. Bengtson, H.O. Nam, S. Saha, R. Sakidja, and D. Morgan, Comp. Mater. Sci., vol.83 p.362, (2014). 161. H. O. Nam, and D. Morgan, J. Nucl. Mater., vol.465, p.224, (2015). 162. J.-P. Harvey, A.E. Gheribi, and P.D. Asimow, Geochim. Cosmochim. Ac., vol.161, p.146, (2015). 163. J. Han, W.Y. Wang, C. Wang, Y. Wang, X. Liu, and Z.-K. Liu, Fluid Phase Equilibr., vol.360, p.44, (2013). 164. P.E.J. Flewitt and R.K. Wild: “Physical methods for materials characterization.” Institute of Physics Publishing, Bristol, (1994). 165. Pandat: CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI 53719 USA. 166. G. Kresse, and J. Hafner, Phy. Rev. B, vol.47, p.558, (1993). 167. G. Kresse, and J. Furthmu¨ller, Phy. Rev. B, vol.54, p.11169, (1996). 168. G. Kresse, and D. Joubert, Phy. Rev. B, vol.59, p.1758, (1999). 169. S. Nosé, J. Chem. Phys., vol.81, p.511, (1984). 170. F. Kakinuma, Y. Tsuchiya, and K. Suzuki, J. Phys. Soc. Jpn., vol.66, p.3859, (1997). 171. O.F. Devereux, "Topics in metallurgical thermodynamics", Krieger, Melbourne, Florida, (1983). 172. S.C. Jeng and S.W. Chen, Acta Mater., vol.45, p.4887, (1997). 173. W.J. Boettinger, U.R. Kattner, K.W. Moon and J.H. Perepezko, "DTA and heat-flux DSC measurements of alloy melting and freezing", NIST, Washington DC, (2006). 174. H.J. Wu and S.W. Chen, J. Alloys Compd., vol.509, p.656, (2011). 175. S.W. Chen, J.S. Chang, K. Pan, C.M. Hsu, and C.W. Hsu, Metall. Mater. Trans., vol.A44, p.1656, (2013). 176. H.J. Wu, W.J. Foo, W. Gierlotka, S.W. Chen, and G.J. Snyder, Mater. Chem. Phys., vol.141, p.758, (2013). 177. C.Y. Chen, H.J. Wu, and S.W. Chen, J. Alloys Compd., vol.547, p.100, (2013). 178. C.H. Liu, H.J. Wu, and S.W. Chen, Metall. Mater. Trans., vol.A44, p.5424, (2013). 179. S.W. Chen, C.C. Huang, and J.C. Lin, Chem. Eng. Sci., vol.50, p.417, (1995). 180. P. Wynblatt, A. Saúl, and D. Chatain, Acta Mater., vol.46, p.2337, (1998). 181. H.R. Kotadia, J.B. Patel, Z. Fan, E. Doernberg, and R. Schmid-Fetzer, in Aluminum Alloys: Fabrication, Characterization, and Applications, vol II, ed by W. Yin et al. (The Minerals, Metals & Materials Society, Warrendale, PA 2009), p.86. 182. O Redlich, and A.T Kister, Ind. Eng. Chem., vol.40, p.345, (1948).
|