帳號:guest(18.223.203.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):趙康如
作者(外文):Chao, Kang-Ju
論文名稱(中文):碳修飾與石墨烯量子點於光催化分解水產氫之研究
論文名稱(外文):Application of Carbon Decoration and Graphene Quantum Dots in Hydrogen Generation through Photocatalytic Water Splitting
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):衛子健
簡淑華
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032506
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:76
中文關鍵詞:光催化產氫二氧化鈦碳修飾石墨烯量子點
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1434
  • 評分評分:*****
  • 下載下載:33
  • 收藏收藏:0
光催化分解水產氫反應利用入射光的能量,光觸媒產生電子電洞對,遷移至表面,分別產生氧化與還原反應,使水分解為氫氣與氧氣,此反應具環境親和性,但效率不高是主要問題。若是能將電子電洞對有效的分離,將可以改善反應速率。
一般而言,可以使用白金等金屬複合在光觸媒表面,因其具有電子的收集作用,可促使電子電洞對分離,進而提升光觸媒效率達一個數量級,但是貴重金屬地球存量低、價格昂貴。本研究,期望使用碳材達到電子電洞對分離的效果。
本研究中,使用商用二氧化鈦光觸媒P25作為主要材料,加入少量的己二酸,共同高溫氮氣煅燒,將己二酸根分子碳化附著於二氧化鈦光觸媒表面,形成碳包覆之二氧化鈦(P25/C)。首先利用元素分析儀發現碳含量與加入之碳量大致相同,以X光粉末繞射儀分析產物晶相,發現製程並沒有對晶型造成顯著影響,藉由紫外光/可見光吸收光譜儀、X射線光電子能譜儀發現碳並沒有摻雜進入P25晶格內部,由螢光放光圖譜中可觀察到電子電洞對分離的增加。
光觸媒產氫研究為內照式反應系統,其中使用甲醇為系統中的犧牲劑,於400W 高壓汞燈照射下進行反應。發現碳修飾可作為助觸媒的角色,效能達P25光觸媒之3-4倍,產氫效率最高可達24.8 mmol/h‧g,且碳含量有一最佳值為1 wt%。另外在沒有加入甲醇犧牲試劑的情況下,P25/C光觸媒效率可達到479.8
μmol/h‧g。
另一方面,自從石墨烯材料問世之後,隨即掀起研究熱潮,石墨烯2D結構具備高導電度、高比表面積、高電子移動率等優點。石墨烯氧化物大小約為10 nm以下,測量出可吸收波長約300 nm,為紫外光波段,並具有螢光放光之特性,此為具有半導體特性之石墨烯量子點。本研究首先將石墨烯氧化物量子點用於光催化產氫。使用碳纖維為起始材料在120℃溫度條件下,製備出石墨烯氧化物量子點之均勻分散水溶液,由穿透式電子顯微鏡分析尺寸約在3-6 nm之間,原子力顯微鏡結果顯示石墨烯氧化物量子點具有1-2個原子厚度,在不含有犧牲試劑的情況下,於400 W高壓汞燈照射下進行反應,發現具有產氫能力,光照時產氫速率約為11 μmol/hr,在還原完成之後,石墨烯量子點產氫之活性漸漸下降,可產氫照光時間約為14小時。且在照光之後,溶液的顏色明顯從橘黃色變為透明。高解析電子能譜儀分析顯示,在照光的過程之中,含氧官能基會大幅減少,顯示有光還原的作用,與溶液顏色的變化相符。由紫外光/可見光吸收光譜儀以及光激發螢光頻譜分析,發現石墨烯氧化物而在不具有含氧化官能基情況下,半導體特性大幅減少,故不能持續產生電子電洞對用以還原水產生氫氣。
Abstract
Semiconductor photocatalysts, possessing suitable band gaps, are able to absorb solar energy and generate electron/hole pairs. When the electron/hole pairs successfully migrate to the surfaces of the photocatalyst, they may reduce and oxidize water to generate hydrogen and oxygen, respectively. This is a green process but it suffers from low efficiencies. If we are able to reduce the electron-hole recombination, the photocatalytic efficiency would be improved.
A simple carbon decoration, involving only immersion in adipic acid followed by calcination in N2 atmosphere, was developed to prepare thin carbon layer decorated TiO2 nanoparticles. The thin carbon layer was in tight contact with the TiO2 domain and served as an electron trapping centre to improve charge separations necessary for enhancement in photocatalytic water splitting performance of the TiO2 nanoparticles. With an optimal carbon loading of 0.3 wt%, a four-fold improvement was achieved for hydrogen production as compared with that achieved by pristine TiO2 nanoparticles. This simple carbon decoration provides a promising low-cost alternative to traditional Pt-decoration approaches for enhancing hydrogen productions from photocatalytic water splitting.
The second part of the thesis concerns the preparation of graphene oxide quantum dots and their application in photocatalytic water splitting. Graphene, a single layer of graphite, has the characteristics of high conductivities, high surface areas, and high electron mobilities. It has been shown that graphene oxides with a size below 10 nm can absorb UV lights shorter than 300 nm and exhibit significant photoluminescent emissions, implying the semiconductor features of the graphene oxide quantum dots.
In this work, graphene oxide quantum dots were applied for photocatalytic hydrogen production for the first time. Well dispersed graphene oxide quantum dots in aqueous solution were prepared from carbon fibers under 120℃ heat treatment. According to HRTEM analyses, the size of the graphene oxide quantum dots was about 3 to 6 nm. From the AFM analyses, these graphene oxide quantum dots were with a thickness of 1 to 2 atomic layers. Without use of any sacrificial reagent, the graphene oxide quantum dots showed the ability of hydrogen production with a rate of 11μmol/hr under irradiation of a 400 W high-pressure mercury lamp. During the reaction, the oxygen-containing functional groups of the graphene oxide quantum dots were gradually reduced, leading to formation of graphene quantum dots. The activity of the graphene oxide quantum dots gradually decreased with increasing irradiation time. The hydrogen evolution ceased after 14 hours. The color of the graphene oxide quantum dot suspension turned transparent from orange during the reaction. According to the high resolution X-ray photoelectron spectroscopy, the oxygen-containing functional groups of the graphene oxide quantum dots were significantly reduced after exposing the suspension to the light source, which indicates the photo-reduction of the graphene oxide quantum dots. From the UV-visible and photoluminescence spectra, the reduced graphene quantum dots lost their semiconductor features.
總目錄
摘要 I
圖目錄 III
表目錄 VII
第一章 緒論 1
1-1前言 1
1-2 Honda-Fujishima effect 2
1-3光催化水分解原理 3
1-4 電子電洞對的分離 6
1-4-1 犧牲試劑的作用 6
1-4-2 助觸媒的使用 7
1-4-3 不同能隙半導體異質接面(heterojunction) 8
1-5 光催化水分解裝置 9
1-6 研究動機 10
第二章 文獻回顧 11
2-1 助觸媒的負載與功用 11
2-1二氧化鈦光觸媒之碳修飾 13
2-3石墨烯氧化物產氫反應 22
2-4 石墨烯氧化物量子點製作及特性 27
第三章 實驗方法與儀器原理 34
3-1 實驗藥品 34
3-2 儀器與實驗設備 36
3-3光觸媒製備 40
3-4 石墨烯氧化物量子點製備 41
3-5 分析儀器原理簡介 42
3-6光觸媒產氫儀器設置與分析 44
3-6-1 懸浮式光照反應器 46
4-1 碳修飾二氧化鈦光觸媒 49
4-1-1 碳材之選用 49
4-1-2 碳材二氧化鈦複合物基本物性鑑定 50
4-1-3 碳材之助觸媒效應 55
4-2石墨烯氧化物量子點分析與產氫應用 59
4-2-1石墨烯氧化物量子點基本物性鑑定 59
4-2-1鹽類離子產氫空白實驗 63
4-2-2石墨烯氧化物量子點產氫分析 64
第五章 結論 68
第六章 參考文獻 70
[1] 曲新生, 陳發林, 呂錫民, 產氫與儲氫技術, ed. 龐君豪. 2007: 五南圖書出版股份有限公司.
[2] 李敦鈁, 鄭菁, 陳新益, 鄒志剛. 光催化分解水體系和材料研究. 化學進展 2007;4期.
[3] 張嘉修. 生質氫能. 科學發展 2009;433:32-35.
[4] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37-39.
[5] Galinska A, Walendziewski J. Photocatalytic water splitting over Pt-TiO2 in the presence of sacificial reacgent. Energy & Fuels 2005;19:1143-1147.
[6] Noda Y, Lee B, Domen K, Kondo JN. Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation. Chemistry of Materials 2008;20(16):5361-5367.
[7] Mills A, Hunte SL. An overview of semiconductor photocatalysis. J photochem photobiol A chem 1997;108:1-35.
[8] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 2009;38(1):253-78.
[9] Gratzel M. Photoelectrochemical cells. Nature 2001;414:338-344.
[10] Matsuoka M, Kitano M, Takeuchi M, Tsujimaru K, Anpo M, Thomas JM. Photocatalysis for new energy production. Catalysis Today 2007;122(1-2):51-61.
[11] Kudo A. Photocatalyst materials for water splitting. Catalysis Surveys from Asia 2003;7(1):31-38.
[12] Lv H, Ma L, Zeng P, Ke D, Peng T. Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. J Mater Chem 2010;20(18):3665.
[13] Lin CC, Wei TY, Lee KT, Lu SY. Titania and Pt/titania aerogels as superior mesoporous structures for photocatalytic water splitting. J Mater Chem 2011;21(34):12668.
[14] Ng J, Xu S, Zhang X, Yang HY, Sun DD. Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Adv Funct Mater 2010;20(24):4287-4294.
[15] Ingram DB, Linic S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 2011;133(14):5202-5.
[16] Roy P, Das C, Lee K, Hahn R, Ruff T, Moll M, et al. Oxide nanotubes on Ti−Ru Alloys: strongly enhanced and stable photoelectrochemical activity for water splitting. J Am Chem Soc 2011;133(15):5629-5631.
[17] Komarneni S, Li D, Newalkar B, Katsuki H, Bhalla AS. Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 2002;18(No. 15):5959-5962.
[18] Lin HY, Yang HC, Wang WL. Synthesis of mesoporous Nb2O5 photocatalysts with Pt, Au, Cu and NiO cocatalyst for water splitting. Catalysis Today 2011;174(1):106-113.
[19] Ikuma Y, Bessho H. Effect of Pt concentration on the production of hydrogen by a TiO2 photocatalyst. Inter J Hydrogen Energy 2007;32(14):2689-2692.
[20] Murdoch M, Waterhouse GI, Nadeem MA, Metson JB, Keane MA, Howe RF, et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nature Chemistry 2011;3(6):489-92.
[21] Leary R, Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011;49(3):741-772.
[22] Wang GJ, Lee MW, Chen YH. A TiO2/CNT coaxial structure and standing CNT array laminated photocatalyst to enhance the photolysis efficiency of TiO2. photochem photobiology 2008;84:1493-1499.
[23] Inagaki M. Carbon coating for enhancing the functionalities of materials. Carbon 2012;50(9):3247-3266.
[24] Hsu YC, Lin HC, Lue CW, Liao YT, Yang CM. A novel synthesis of carbon-coated anatase nanocrystals showing high adsorption capacity and photocatalytic activity. Appl Catal B 2009;89(3-4):309-314.
[25] Zhang Y, Zhang P, Huo Y, Zhang D, Li G, Li H. Ethanol supercritical route for fabricating bimodal carbon modified mesoporous TiO2 with enhanced photocatalytic capability in degrading phenol. Appl Catal B 2012;115-116:236-244.
[26] Jia L, Wang DH, Huang YX, Xu AW, Yu HQ. Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. J Phys Chem C 2011;115(23):11466-11473.
[27] Khalid NR, Hong Z, Ahmed E, Zhang Y, Chan H, Ahmad M. Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light. Appl Surface Science 2012;258(15):5827-5834.
[28] Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, et al. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 2011;133(28):10878-84.
[29] Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 2011;133(29):11054-7.
[30] Li N, Ma Y, Wang B, Huang Y, Wu Y, Yang X, et al. Synthesis of semiconducting SWNTs by arc discharge and their enhancement of water splitting performance with TiO2 photocatalyst. Carbon 2011;49(15):5132-5141.
[31] Li N, Liu G, Zhen C, Li F, Zhang L, Cheng H-M. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv Funct Mater 2011;21(9):1717-1722.
[32] Kim Hi, Moon GH, Monllor-Satoca D, Park Y, Choi W. Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet. J Phy Chem C 2012;116(1):1535-1543.
[33] Matos J, Marino T, Molinari R, García H. Hydrogen photoproduction under visible irradiation of Au–TiO2/activated carbon. Appl Catal A Gen 2012;417-418:263-272.
[34] Cheng P, Yang Z, Wang H, Cheng W, Chen M, Shangguan W, et al. TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int J Hydrogen Energy 2012;37(3):2224-2230.
[35] Zhang X, Sun Y, Cui X, Jiang Z. A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. Inter J Hydrogen Energy 2012;37(1):811-815.
[36] Li H, Zhang X, Cui X, Lin Y. TiO2 Nanotubes/MWCNTs nanocomposite photocatalysts: synthesis, characterization and photocatalytic hydrogen evolution under UV-vis light illumination. J Nanoscience and Nanotechnology 2012;12(3):1806-1811.
[37] Zhang XY, Li HP, Cui XL, Lin Y. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 2010;20(14):2801.
[38] Yeh TF, Syu JM, Cheng C, Chang TH, Teng H. Graphite oxide as a photocatalyst for hydrogen production from water. Adv Funct Mater 2010;20(14):2255-2262.
[39] Yeh TF, Chen SJ, Yeh CS, Teng H. Tuning the electronic structure of graphite oxide through ammonia treatment for photocatalytic generation of H2 and O2 from water splitting. J Phys Chem C 2013;117(13):6516-6524.
[40] Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, et al. Graphene quantum dots derived from carbon fibers. Nano Lett 2012;12(2):844-9.

[41] Jin SH, Kim DH, Jun GH, Hong SH, Jeon S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS nano 2013;7(2):1239-1245.
[42] Zhu H, Zhang W, Zhang K, Wang S. Dual-emission of a fluorescent graphene oxide-quantum dot nanohybrid for sensitive and selective visual sensor applications based on ratiometric fluorescence. Nanotechnology 2012;23(31):315502.
[43] Qin X, Lu W, Asiri AM, Al-Youbibc AO, Sun X. Green lowcost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst. Catal Sci Tech 2013;3:1027-1035.
[44] Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 2010;22(6):734-8.
[45] Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 2012;22(14):2971-2979.
[46] Li Q, Zhang S, Dai L, Li LS. Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J Am Chem Soc 2012;134(46):18932-5.
[47] Zhao R, Wang J, Yang M, Liu Z, Liu Z. Graphene quantum dots embedded in a hexagonal BN sheet: identical influences of zigzag/armchair edges. Phys Chem Chem Phys 2013;15(3):803-6.
[48] Li M, Wu W, Ren W, Cheng H-M, Tang N, Zhong W, et al. Synthesis and upconversion luminescence of N-doped graphene quantum dots. Appl Phys Lett 2012;101(10):103107.
[49] Shen J, Zhu Y, Yang X, Zong J, Zhang J, Li C. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J Chem 2012;36(1):97.
[50] Liao DL, Wu GS, Liaoa BQ. Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Colloids Surf, A 2009;348:270-275.
[51] Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett 2003;32(8):772-773.
[52] Cong Y, Li X, Qin Y, Dong Z, Yuan G, Cui Z, et al. Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl Cata B 2011;107(1-2):128-134.
[53] Lee S, Yun CY, Hahn MS, Lee J, Yi J. Synthesis and characterization of carbon-doped titania as a visible-light-sensitive photocatalyst. Korean J chem eng 2008;25(4):892-896.
[54] Zhang H, Lv X,Li Y,Wang Y ,Li J. P25-graphene composite as a high performance photocatalyst. ACS nano 2010;4.
[55] Chen L, Chen F, Shi Y, Zhang J. Preparation and visible light photocatalytic activity of a graphite-like carbonaceous surface modified TiO2 photocatalyst. J Phy Chem C 2012;116(15):8579-8586.
[56] Zhao L, Chen X, Wang X, Zhang Y, Wei W, Sun Y, et al. One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv Mater 2010;22(30):3317-21.
[57] Wang DH, Jia L, Wu XL, Lu LQ, Xu AW. One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 2012;4(2):576-84.
[58] Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater 2010;20(23):4175-4181.
[59] Zhou W, Liu H, Wang J, Liu D, Du G, Cui J. Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl Mater Inter 2010;2(8):2385-92.

[60] Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 2012;134(1):15-8.
[61] Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Advances 2012;2(7):2717.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *