帳號:guest(18.226.96.155)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳子和
作者(外文):Wu, Tzu Ho
論文名稱(中文):水相超級電容器之操作電壓最適化與過渡金屬氧化物及氫氧化物的充放電機制探討
論文名稱(外文):Optimising cell voltage and understanding charge storage mechanism of transition metal oxides and hydroxides for aqueous supercapacitors
指導教授(中文):胡啟章
Hardwick, Laurence
指導教授(外文):Hu, Chi Chang
Hardwick, Laurence
口試委員(中文):萬其超
溫添進
鄧熙聖
衛子健
Cowan, Alexander
口試委員(外文):Wan, Chi Chao
Wen, Ten Chin
Teng, Hsis Heng
Wei, Tzu Chien
Cowan, Alexander
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032504
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:225
中文關鍵詞:超級電容器水相操作電壓過渡金屬氧化物過渡金屬氫氧化物
外文關鍵詞:Supercapacitorsaqueouscell voltagetransition metal oxidestransition metal hydroxides
相關次數:
  • 推薦推薦:0
  • 點閱點閱:167
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文針對水相超級電容器之操作電壓最適化與過渡金屬氧化物及氫氧化物的充放電機制進行探討。第一部分探討最適化水相對稱型及非對稱型電化學電容器的方法。第四章以商用活性碳為電極材料,探討電極材料的開路電壓對於對稱型電化學電容器操作電壓的影響,並且指出符合正負極電荷平衡的對稱型電化學電容器才能夠有效地運用電極材料的穩定電化學電容電位窗。此外,藉由諸多電化學分析方式,例如:循環伏安法、定電流充放電法、電化學阻抗頻譜,以及電感電容電阻表分析,本研究提出有效評估對稱型電化學電容器的最佳操作電位之方法。以此電荷平衡為基礎,無論其電化學活性物質與電解液,此一評估方法適用於所有對稱型電化學電容器。非電荷平衡的對稱型電化學電容器擁有較低的比能量,彰顯出正負極電荷平衡的重要性。第五章則是以電化學活化法得到的錳氧化物當正極搭配微波水熱法還原的石墨烯為負極的非對稱型電化學電容器,根據第四章的電化學分析方法,有效地制訂出非對稱型電化學電容器的最佳上限操作電壓之準則。藉由了解非對稱型電化學電容器的上限操作電壓,將對於其儲存能量與充放電壽命有相當大的幫助。此外,釕氧化物與石墨烯的非對稱型電化學電容器也適用於此準則,為此準則提供了確效性。
本論文的第二部分則是針對水相電化學電容器常用的過渡金屬氧化物與氫氧化物,進行其充放電機制的探討。第六章針對硫酸鈉水溶液中進行電化學活化的錳氧化物進行深入探討,主要運用臨場拉曼來分析電化學活化過程中錳氧化物的結構改變,搭配粉體X光繞射、X光電子能譜儀與掃描式與穿透式電子顯微鏡,對於錳氧化物的物化性質於電化學活化前後有更完整的分析。由於電化學活化後的錳氧化物不具有規則排列的層狀結構,其充放電機制為氧化還原反應於錳氧化物的表面活性位置,與陽離子遷入結構無關。第七章則是探討氫氧化鎳於不同電解液中的電化學行為,運用電化學石英微天秤和臨場拉曼來探討氫氧化鎳的充放電機制,並且根據電化學的數據來進行密度泛函理論模擬,其結果提供氫氧化鎳於充放電過程中成分變化的資訊,有助於全盤地了解氫氧化鎳在不同電解液中的充放電機制。在氫氧化鋰的溶液中進行充放電,鋰離子進出氫氧化鎳的結構並不會改變結構中水份含量。但若是在氫氧化鈉及氫氧化鉀中進行充電,陽離子進入氫氧化鎳的結構會導致結構中原有的水分子離開;而在放電過程中,水分子卻無法完全可逆地回到氫氧化鎳的結構中。氫氧化鎳結構中的水份含量是氫氧化鎳相轉換的關鍵,其行為受到電解液中的鹼金族元素所影響。
This study focuses on aqueous electrochemical capacitors (ECs) for optimising the cell voltage and understanding the charge storage mechanism of transition metal oxides and hydroxides. The first part discusses how to optimise cell voltage of symmetric and asymmetric ECs. In Chapter 4, a commercial activated carbon (ACS–679) was employed as an electroactive material to demonstrate the necessity of charge–balanced condition of aqueous symmetric ECs in order to improve the utilisation of electrochemically stable potential window of electroactive material. Besides, the effect of stable open–circuit potential on electroactive materials is also addressed here. The concept is on the basis of electrochemical charge–balance principle, therefore, it is believed to be applicable to all the symmetric ECs no matter what kind of material is used as electroactive material. The charge–balanced electric double–layer capacitors (EDLCs) was assembled to evaluate the acceptable cell voltage by means of electrochemical analyses, including cyclic voltammogram, constant current charge–discharge, electrochemical impedance spectroscopy and inductance–capacitance–resistance meter measurements. Moreover, charge–unbalanced EDLCs were used to demonstrate the necessity of charge balance in symmetric ECs since those exhibit lower cell voltage and specific energy compared with the charge–balanced case. Similarly, in Chapter 5, asymmetric ECs consisting of reduce graphene oxide and manganese oxide (RGO//MnOx) were employed as an example to establish criteria for determining the highest acceptable cell voltage of asymmetric ECs with excellent reversibility and capacitor−like behaviour. It is very useful to evaluate the practical specific energy of asymmetric ECs by understanding the highest acceptable cell voltage. Besides, RGO//RuO2 was also demonstrated to verify the validity of the proposed criteria.
The second part probes the charge storage mechanism of transition metal oxides and hydroxides in aqueous ECs. In Chapter 6, a wide–ranging study on electrochemical activation from Mn3O4 to MnO2 in 0.5 M Na2SO4 medium were presented, which includes in operando monitoring of the structural evolution during the activation process via in situ Raman microscopy. Other advanced material characterisation techniques, such as powder X–ray diffraction, X–ray photoelectron spectroscopy, scanning electron and transmission electron microscopy, were also applied to analyse the as–prepared and activated MnOx. Due to the structural disordering of electrochemically activated birnessite−MnO2 and residual Mn3O4, the charge storage is attributable to the redox reaction between Mn(III) and Mn(IV) at outer surface active sites, rather than cations and/or protons intercalation into layer structures. In Chapter 7, the redox behaviours of γ−NiOOH/α−Ni(OH)2 in various electrolytes (LiOH, NaOH, KOH, CsOH and NH4OH) are discussed. The charge storage mechanism of γ−NiOOH/α−Ni(OH)2 was studied by means of EQCM and in situ Raman microscopy. Moreover, the computational simulation (DFT+U) based on EQCM results gives a better idea on the compositional changes in the first few potential cycles. The insertion/removal of Li+ does not alter the content of water inside the structure, while the insertion of Na+ and K+ leads to a significant removal of water. The removed water molecules cannot be reversibly re−inserted back into the nickel structure, leading to the loss of water molecules in Ni(OH)2 structure during charge–discharge process. The capability to retain water molecules inside the Ni(OH)2 is crucial for the stability of γ−NiOOH/α−Ni(OH)2 redox reaction.
Chapter 1 1
Introduction and Objective 1
Chapter 2 7
Literature Review 7
2.1 Aqueous Electric Double–Layer Capacitors (EDLCs) 7
2.2 Manganese Oxide Pseudocapacitors 14
2.3 Carbon//Manganese Oxide Aqueous Asymmetric ECs 29
2.4 Charge Storage Mechanisms of Manganese Oxides 35
2.5 Raman Spectroscopic Applications 50
2.6 Electrochemically Activated Manganese Oxide 57
2.7 Redox Mechanism of NiOOH/Ni(OH)2 62
Chapter 3 69
Experimental Methods 69
3.1 Chemicals and Instruments 69
3.1.1 Chemicals 69
3.1.2 Instruments 71
3.2 Experimental 72
3.2.1 Preparation of Graphene Oxide 72
3.2.2 Preparation of Manganese Oxide 72
3.2.3 Microwave–Assisted Hydrothermal Reduction of Graphene Oxide 73
3.2.4 Graphite Substrate Pretreatment 73
3.2.5 Electrodeposition of Ni(OH)2 74
3.3 Electrochemical Analyses 74
3.3.1 Cyclic Voltammetry (CV) 76
3.3.2 Chronopotentiometry (CP) 78
3.3.3 Electrochemical Impedance Spectroscopy (EIS) 80
3.3.4 Inductance–Capacitance–Resistance Meter (LCR) 82
3.3.5 Electrochemical Quartz Crystal Microbalance (EQCM) 83
3.4 Textural Analysis 84
3.4.1 X–ray Diffraction (XRD) 84
3.4.2 Scanning Electron Microscopy (SEM) 85
3.4.3 Transmission Electron Microscopy (TEM) 85
3.4.4 Nitrogen Adsorption/desorption Isotherms 86
3.4.5 Raman Spectroscopy 87
3.4.6 X–ray Photoelectron Spectroscopy (XPS) 91
3.4.7 X–ray Absorption Spectroscopy (XAS) 92
Chapter 4 93
Important Parameters Affecting the Cell Voltage of Aqueous Electric double–Layer Capacitors (EDLCs) 93
4.1 Motivation 93
4.2 Open–circuit Potential Effect on EDLCs 94
4.3 Establish Criteria for Aqueous EDLCs 98
4.4 Necessity of Charge Balance in EDLCs 109
4.5 Overall Capacitive Performances of Charge–balanced and –unbalanced EDLCs 118
4.6 Conclusion 122
Chapter 5 124
Criteria for Appointing the Highest Acceptable Cell Voltage of RGO//MnOx Asymmetric ECs 124
5.1 Motivation 124
5.2 Establish Criteria for RGO//MnOx Asymmetric ECs by Electrochemical Methods 125
5.3 Criteria Validation by RGO//RuO2 Asymmetric ECs 134
5.4 Conclusions 137
Chapter 6 138
Charge Storage Mechanism of Electrochemically Activated Manganese Oxide Composites 138
6.1 Motivation 138
6.2 Chemical Synthesised As–prepared MnOx 139
6.3 Electrochemical Activation Process of MnOx 145
6.4 Charge Storage Mechanism of Electrochemically Activated MnOx 156
6.5 Conclusions 164
Chapter 7 165
A New Redox Mechanism of Ni(OH)2 and Its Phase Transformation 165
7.1 Motivation 165
7.2 Electrochemical Behaviours of Ni(OH)2 166
7.3 In situ Raman Spectroscopic Studies of Ni(OH)2 177
7.4 The Proposed New Redox Mechanism of Ni(OH)2 183
7.5 Conclusions 187
Chapter 8 189
Summary and Future Works 189
References 193
Appendix 205
Acronyms 219
Curriculum Vitae 222

1. P. Simon, Y. Gogotsi and B. Dunn, Science, 343, 1210 (2014).
2. Y. Gogotsi and P. Simon, Science, 334, 917 (2011).
3. R. Kötz and M. Carlen, Electrochimica Acta 45, 2483 (2000).
4. A. Burke, Journal of Power Sources, 91, 37 (2000).
5. M. Winter and R. J. Brodd, Chemical Reviews, 104, 4245 (2004).
6. J. M. Miller and A. F. Burke, Electrochemical Society Interface, 17, 53 (2008).
7. J. H. Chae and G. Z. Chen, Electrochimica Acta, 86, 248 (2012).
8. B. E. Conway, Electrochemical Supercapacitorss: Scientific Fundamentals and Technological Applications, Kluwer–Plenum Pub. Co., New York (1999).
9. C. C. Hu, K. H. Chang, M. C. Lin and Y. T. Wu, Nano letters, 6, 2690 (2006).
10. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li and F. Wei, Advanced Functional Materials, 21, 2366 (2011).
11. C. Peng, S. Zhang, X. Zhou and G. Z. Chen, Energy & Environmental Science, 3, 1499 (2010).
12. K. H. Chang, C. C. Hu, C. M. Huang, Y. L. Liu and C. I. Chang, Journal of Power Sources, 196, 2387 (2011).
13. C. C. Hu, J. C. Chen and K. H. Chang, Journal of Power Sources, 221, 128 (2013).
14. T. Cottineau, M. Toupin, T. Delahaye, T. Brousse and D. Bélanger, Applied Physics A, 82, 599 (2005).
15. D. Cericola and R. Kötz, Electrochimica Acta, 72, 1 (2012).
16. V. Khomenko, E. Raymundo–Piñero and F. Béguin, Journal of Power Sources, 153, 183 (2006).
17. Y. Dai, K. Wang and J. Xie, Applied Physics Letters, 90, 104102 (2007).
18. K. W. Nam and K. B. Kim, Journal of The Electrochemical Society, 153, A81 (2006).
19. D. P. Dubal, D. S. Dhawale, R. R. Salunkhe and C. D. Lokhande, Journal of Alloys and Compounds, 496, 370 (2010).
20. S. Komaba, T. Tsuchikawa, A. Ogata, N. Yabuuchi, D. Nakagawa and M. Tomita, Electrochimica Acta, 59, 455 (2012).
21. C. C. Hu, C. Y. Hung, K. H. Chang and Y. L. Yang, Journal of Power Sources, 196, 847 (2011).
22. C. C. Hu, Y. T. Wu and K. H. Chang, Chemistry of Materials, 20, 2890 (2008).
23. C. Chen, Y. Lyu, C. Su, H. Lin and C. Lin, Surface and Coatings Technology, 202, 1277 (2007).
24. T. H. Wu, Y. H. Chu, C. C. Hu and L. J. Hardwick, Electrochemistry Communications, 27, 81 (2013).
25. P. V. Kamath, M. Dixit, L. Indira, A. K. Shukla, V. G. Kumar and N. Munichandraiah, Journal of The Electrochemical Society, 141, 2956 (1994).
26. H. Chen, J. M. Wang, T. Pan, Y. L. Zhao, J. Q. Zhang and C. N. Cao, Journal of Power Sources, 143, 243 (2005).
27. B. Li, H. Cao, J. Shao, H. Zheng, Y. Lu, J. Yin and M. Qu, Chemical Communications, 47, 3159 (2011).
28. C. C. Hu and C. Y. Cheng, Electrochemical and Solid–State Letters, 5, A43 (2002).
29. Z. Tang, C. H. Tang and H. Gong, Advanced Functional Materials, 22, 1272 (2012).
30. H. Wang, H. S. Casalongue, Y. Liang and H. Dai, Journal of the American Chemical Society, 132, 7472 (2010).
31. J. C. Chen and C. C. Hu, Thesis (2013).
32. Y. H. Lee, K. H. Chang and C. C. Hu, Journal of Power Sources, 227, 300 (2013).
33. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon, 45, 1558 (2007).
34. H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi and Y. H. Lee, Advanced Functional Materials, 19, 1987 (2009).
35. M. J. Fernández–Merino, L. Guardia, J. I. Paredes, S. Villar–Rodil, P. Solís–Fernández, A. Martínez–Alonso and J. M. D. Tascón, The Journal of Physical Chemistry C, 114, 6426 (2010).
36. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen, ACS Nano, 2, 463 (2008).
37. W. Chen, L. Yan and P. R. Bangal, Carbon, 48, 1146 (2010).
38. M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano letters, 8, 3498 (2008).
39. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, The Journal of Physical Chemistry C, 113, 13103 (2009).
40. J. R. Miller, R. A. Outlaw and B. C. Holloway, Electrochimica Acta, 56, 10443 (2011).
41. S. Y. Yang, K. H. Chang, H. W. Tien, Y. F. Lee, S. M. Li, Y. S. Wang, J. Y. Wang, C. C. M. Ma and C. C. Hu, Journal of Materials Chemistry, 21, 2374 (2011).
42. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, Science, 332, 1537 (2011).
43. C. Bouchelta, M. S. Medjram, O. Bertrand and J.–P. Bellat, Journal of Analytical and Applied Pyrolysis, 82, 70 (2008).
44. K. Fic, G. Lota, M. Meller and E. Frackowiak, Energy & Environmental Science, 5, 5842 (2012).
45. F. C. Wu, R. L. Tseng, C. C. Hu and C. C. Wang, Journal of Power Sources, 138, 351 (2004).
46. E. Frackowiak, Physical Chemistry Chemical Physics, 9, 1774 (2007).
47. E. Frackowiak and F. Béguin, Carbon, 39, 937 (2001).
48. J. Lee, J. Kim and T. Hyeon, Advanced Materials, 18, 2073 (2006).
49. K. Jurewicz, C. Vix–Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, J. Patarin and F. Béguin, Journal of Physics and Chemistry of Solids, 65, 287 (2004).
50. A. B. Fuertes, G. Lota, T. A. Centeno and E. Frackowiak, Electrochimica Acta, 50, 2799 (2005).
51. J. Li, X. Wang, Q. Huang, S. Gamboa and P. J. Sebastian, Journal of Power Sources, 158, 784 (2006).
52. W. Li, G. Reichenauer and J. Fricke, Carbon, 40, 2955 (2002).
53. C. Merlet, B. Rotenberg, P. A. Madden, P. L. Taberna, P. Simon, Y. Gogotsi and M. Salanne, Nature materials, 11, 306 (2012).
54. Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer, B. Yi, H. C. Foley and M. W. Barsoum, Nature materials, 2, 591 (2003).
55. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon and P. L. Taberna, Science, 313, 1760 (2006).
56. D. Qu and H. Shi, Journal of Power Sources, 74, 99 (1998).
57. C. Vix–Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier and F. Béguin, Carbon, 43, 1293 (2005).
58. X. Yang, Y. S. He, G. Jiang, X. Z. Liao and Z. F. Ma, Electrochemistry Communications, 13, 1166 (2011).
59. D. Qu, Journal of Power Sources, 109, 403 (2002).
60. C. C. Hu and Y. H. Huang, Journal of The Electrochemical Society, 146, 2465 (1999).
61. C. C. Hu and C. C. Wang, Journal of The Electrochemical Society, 150, A1079 (2003).
62. H. Y. Lee and J. B. Goodenough, Journal of Solid State Chemistry, 144, 220 (1999).
63. S. C. Pang, M. A. Anderson and T. W. Chapman, Journal of The Electrochemical Society, 147, 444 (2000).
64. H. Jiang, T. Zhao, C. Li and J. Ma, Journal of Materials Chemistry, 21, 3818 (2011).
65. S. K. Meher, P. Justin and G. R. Rao, ACS applied materials & interfaces, 3, 2063 (2011).
66. V. Gupta, T. Kusahara, H. Toyama, S. Gupta and N. Miura, Electrochemistry Communications, 9, 2315 (2007).
67. L. Cao, F. Xu, Y. Y. Liang and H. L. Li, Advanced Materials, 16, 1853 (2004).
68. T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu and C. C. Hu, Advanced Materials, 22, 347 (2010).
69. C. T. Hsu and C. C. Hu, Journal of Power Sources, 242, 662 (2013).
70. C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen and X. W. D. Lou, Advanced Functional Materials, 22, 4592 (2012).
71. J. M. Li, K. H. Chang, T. H. Wu and C. C. Hu, Journal of Power Sources, 224, 59 (2013).
72. Z. Chen, Y. Qin, D. Weng, Q. Xiao, Y. Peng, X. Wang, H. Li, F. Wei and Y. Lu, Advanced Functional Materials, 19, 3420 (2009).
73. H. Y. Lee and J. B. Goodenough, Journal of Solid State Chemistry, 148, 81 (1999).
74. W. Shi, J. Zhu, D. H. Sim, Y. Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H. H. Hng and Q. Yan, Journal of Materials Chemistry, 21, 3422 (2011).
75. Q. Qu, S. Yang and X. Feng, Advanced Materials, 23, 5574 (2011).
76. B. Li, H. Cao, J. Shao, M. Qu and J. H. Warner, Journal of Materials Chemistry, 21, 5069 (2011).
77. C. C. Hu, E. Chen and J. Y. Lin, Electrochimica Acta, 47, 2741 (2002).
78. A. Rudge, I. Raistrick, S. Gottesfeld and J. P. Ferraris, Electrochimica Acta, 39, 273 (1994).
79. L. Athouël, F. Moser, R. Dugas, O. Crosnier, D. Bélanger and T. Brousse, The Journal of Physical Chemistry C, 112, 7270 (2008).
80. T. Brousse, P.–L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger and P. Simon, Journal of Power Sources, 173, 633 (2007).
81. T. Brousse, M. Toupin and D. Bélanger, Journal of The Electrochemical Society, 151, A614 (2004).
82. C. C. Hu and T. W. Tsou, Electrochemistry Communications, 4, 105 (2002).
83. M. Toupin, T. Brousse and D. Bélanger, Chemistry of Materials, 14, 3946 (2002).
84. H. Xia, W. Xiao, M. O. Lai and L. Lu, Nanoscale research letters, 4, 1035 (2009).
85. S. W. Zhang and G. Z. Chen, Energy Materials, 3, 186 (2008).
86. M. Toupin, T. Brousse and D. Belanger, Chemistry of Materials, 16, 3184 (2004).
87. Y. S. Chen, C. C. Hu and Y. T. Wu, Journal of Solid State Electrochemistry, 8, 467 (2004).
88. E. Narita and T. Okabe, Bulletin of the Chemical Society of Japan, 53, 525 (1980).
89. H. Unuma, T. Kanehama, K. Yamamoto, K. Watanabe, T. Ogata and M. Sugawara, Journal of Materials Science, 38, 255 (2003).
90. H. P. Stadniychuk, M. A. Anderson and T. W. Chapman, Journal of The Electrochemical Society, 143, 1629 (1996).
91. H. Y. Lee, S. W. Kim and H. Y. Lee, Electrochemical and Solid–State Letters, 4, A19 (2001).
92. M. S. Wu, Applied Physics Letters, 87, 153102 (2005).
93. C. C. Hu and T. W. Tsou, Journal of Power Sources, 115, 179 (2003).
94. C. C. Hu, K. H. Chang, Y. T. Wu, C. Y. Hung, C. C. Lin and Y. T. Tsai, Electrochemistry Communications, 10, 1792 (2008).
95. C. C. Hu and T. W. Tsou, Electrochimica Acta, 47, 3523 (2002).
96. O. Ghodbane, F. Ataherian, N. L. Wu and F. Favier, Journal of Power Sources, 206, 454 (2012).
97. T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier and D. Bélanger, Journal of The Electrochemical Society, 153, A2171 (2006).
98. A. Boisset, L. Athouël, J. Jacquemin, P. Porion, T. Brousse and M. Anouti, The Journal of Physical Chemistry C, 117, 7408 (2013).
99. R. N. Reddy and R. G. Reddy, Journal of Power Sources, 124, 330 (2003).
100. M. S. Wu and P. C. Julia Chiang, Electrochemical and Solid–State Letters, 7, A123 (2004).
101. J. Y. Luo and Y. Y. Xia, Journal of The Electrochemical Society, 154, A987 (2007).
102. J. N. Broughton and M. J. Brett, Electrochimica Acta, 49, 4439 (2004).
103. J. W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M. B. Sassin and O. Crosnier, MRS BULLETIN, 36, 513 (2011).
104. P. Staiti and F. Lufrano, Journal of Power Sources, 187, 284 (2009).
105. P. C. Gao, A. H. Lu and W. C. Li, Journal of Power Sources, 196, 4095 (2011).
106. X. D. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li and J. Shi, Journal of Physical Chemistry B, 110, 6015 (2006).
107. W. Qian, Z. Chen, S. Cottingham, W. A. Merrill, N. A. Swartz, A. M. Goforth, T. L. Clare and J. Jiao, Green Chemistry, 14, 371 (2012).
108. X. Jin, W. Zhou, S. Zhang and G. Z. Chen, Small, 3, 1513 (2007).
109. S. M. Li, Y. S. Wang, S. Y. Yang, C. H. Liu, K. H. Chang, H. W. Tien, N. T. Wen, C. C. M. Ma and C. C. Hu, Journal of Power Sources, 225, 347 (2013).
110. J. Li, X. Wang, Q. Huang, S. Gamboa and P. J. Sebastian, Journal of Power Sources, 160, 1501 (2006).
111. M. Wu, G. A. Snook, G. Z. Chen and D. J. Fray, Electrochemistry Communications, 6, 499 (2004).
112. C. Wan, K. Azumi and H. Konno, Electrochimica Acta, 52, 3061 (2007).
113. S. B. Ma, Y. H. Lee, K. Y. Ahn, C. M. Kim, K. H. Oh and K. B. Kim, Journal of The Electrochemical Society, 153, C27 (2006).
114. P. Simon and Y. Gogotsi, Nature material, 7, 845 (2008).
115. D. Bélanger, T. Brousse and J. W. Long, The Electrochemical Society Interface, 17, 49 (2008).
116. C. H. Liang and C. S. Hwang, Japanese Journal of Applied Physics, 47, 1662 (2008).
117. S. Devaraj and N. Munichandraiah, Journal of The Electrochemical Society, 154, A80 (2007).
118. M. Chigane and M. Ishikawa, Journal of Electroanalytical Society, 147, 2246 (2000).
119. B. Djurfors, J. N. Broughton, M. J. Brett and D. G. Ivey, Acta Materialia, 53, 957 (2005).
120. J. K. Chang, Y. L. Chen and W. T. Tsai, Journal of Power Sources, 135, 344 (2004).
121. J. K. Chang and W. T. Tsai, Journal of The Electrochemical Society, 152, A2063 (2005).
122. B. Liu, P. S. Thomas, A. S. Ray, R. P. Williams and S. W. Donne, Journal of Thermal Analysis and Calorimetry, 88, 177 (2007).
123. R. Ma, Y. Bando, L. Zhang and T. Sasaki, Advanced Materials, 16, 918 (2004).
124. F. Buciuman, F. Patcas, R. Craciun and D. R. T. Zahn, Physical Chemistry Chemical Physics, 1, 185 (1999).
125. M. C. Bernard, A. H. L. Goff and B. V. Thi, Journal of The Electrochemical Society, 140, 3065 (1993).
126. C. Julien and M. Massot, Physical Chemistry Chemical Physics, 4, 4226 (2002).
127. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, TX (1996).
128. W. Wei, X. Cui, W. Chen and D. G. Ivey, Journal of Power Sources, 186, 543 (2009).
129. Y. H. Chu, C. C. Hu and K. H. Chang, Electrochimica Acta, 61, 124 (2012).
130. Y. C. Hsieh, K. T. Lee, Y. P. Lin, N. L. Wu and S. W. Donne, Journal of Power Sources, 177, 660 (2008).
131. S. Komaba, A. Ogata and T. Tsuchikawa, Electrochemistry Communications, 10, 1435 (2008).
132. M. S. Hong, S. H. Lee and S. W. Kim, Electrochemical and Solid–State Letters, 5, A227 (2002).
133. Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu and R. Holze, The Journal of Physical Chemistry C, 113, 14020 (2009).
134. Z. S. Wu, W. Ren, D. W. Wang, B. Li and H. M. Cheng, ACS Nano, 4, 5835 (2010).
135. Q. Qu, L. Li, S. Tian, W. Guo, Y. Wu and R. Holze, Journal of Power Sources, 195, 2789 (2010).
136. Q. T. Qu, Y. Shi, S. Tian, Y. H. Chen, Y. P. Wu and R. Holze, Journal of Power Sources, 194, 1222 (2009).
137. L. Deng, G. Zhu, J. Wang, L. Kang, Z.–H. Liu, Z. Yang and Z. Wang, Journal of Power Sources, 196, 10782 (2011).
138. C. Xu, H. Du, B. Li, F. Kang and Y. Zeng, Journal of The Electrochemical Society, 156, A435 (2009).
139. A. Sumboja, C. Y. Foo, X. Wang and P. S. Lee, Advanced Materials, 25, 2809 (2013).
140. Y. Jin, H. Chen, M. Chen, N. Liu and Q. Li, ACS applied materials & interfaces, 5, 3408 (2013).
141. P. C. Chen, G. S. Shen, Yi, H. Chen and C. Zhou, ACS Nano, 4, 4403 (2010).
142. S. F. Chin, S. C. Pang and M. A. Anderson, Journal of The Electrochemical Society, 149, A379 (2002).
143. S. L. Kuo and N. L. Wu, Journal of The Electrochemical Society, 153, A1317 (2006).
144. K. W. Kim, M. G. Kim and K. B. Kim, Journal of Physical Chemistry C, 111, 749 (2007).
145. J. K. Chang, M. T. Lee and W. T. Tsai, Journal of Power Sources, 166, 590 (2007).
146. Y. K. Hsu, Y. C. Chen, Y. G. Lin, L. C. Chen and K. H. Chen, Chemical Communications, 47, 1252 (2011).
147. D. Chen, D. Ding, X. Li, G. H. Waller, X. Xiong, M. A. El–Sayed and M. Liu, Chemistry of Materials, 27, 6608 (2015).
148. C. Julien, Solid State Ionics, 159, 345 (2003).
149. L. J. Hardwick, P. W. Ruch, M. Hahn, W. Scheifele, R. Kötz and P. Novák, Journal of Physics and Chemistry of Solids, 69, 1232 (2008).
150. L. J. Hardwick, M. Hahn, P. Ruch, M. Holzapfel, W. Scheifele, H. Buqa, F. Krumeich, P. Novák and R. Kötz, Electrochimica Acta, 52, 675 (2006).
151. L. Hardwick, H. Buqa and P. Novak, Solid State Ionics, 177, 2801 (2006).
152. S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev and Y. Gogotsi, Journal of the American Chemical Society, 128, 11635 (2006).
153. G. K. Ramesh and S. Sampath, The Journal of Physical Chemistry C, 113, 7985 (2009).
154. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, Nature nanotechnology, 3, 210 (2008).
155. E. Pollak, B. Geng, K. J. Jeon, I. T. Lucas, T. J. Richardson, F. Wang and R. Kostecki, Nano letters, 10, 3386 (2010).
156. M. Kalbac, H. Farhat, J. Kong, P. Janda, L. Kavan and M. S. Dresselhaus, Nano letters, 11, 1957 (2011).
157. M. Frumar, Z. Polak and Z. Cernosek, Journal of Non–Crystalline Solids, 256&257, 105 (1999).
158. G. Mestl, Journal of Molecular Catalysis A, 158, 45 (2000).
159. M. A. Vuurman and I. E. Wachs, Journal of Physical Chemistry, 96, 5008 (1992).
160. X. Gao, S. R. Bare, B. M. Weckhuysen and I. E. Wachs, Journal of physical Chemistry B, 102, 10842 (1998).
161. G. J. Hutchings, A. Desmartin–Chomel, R. Olier and J. C. Volta, Nature, 368, 41 (1994).
162. J. M. Jehng and I. E. Wachs, Chemistry of Materials, 3, 100 (1991).
163. M. Sun, B. Lan, T. Lin, G. Cheng, F. Ye, L. Yu, X. Cheng and X. Zheng, CrystEngComm, 15, 7010 (2013).
164. C. M. Julien, M. Massot and C. Poinsignon, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60, 689 (2004).
165. Y. Li, J. Wang, Y. Zhang, M. N. Banis, J. Liu, D. Geng, R. Li and X. Sun, Journal of colloid and interface science, 369, 123 (2012).
166. E. Widjaja and J. T. Sampanthar, Analytica chimica acta, 585, 241 (2007).
167. A. Iyer, J. Del–Pilar, C. K. King’ondu, E. Kissel, H. F. Garces, H. Huang, A. M. El–Sawy, P. K. Dutta and S. L. Suib, The Journal of Physical Chemistry C, 116, 6474 (2012).
168. A. Dias, R. G. Sá, M. C. Spitale, M. Athayde and V. S. T. Ciminelli, Materials Research Bulletin, 43, 1528 (2008).
169. J. Zhou, L. Yu, M. Sun, S. Yang, F. Ye, J. He and Z. Hao, Industrial & Engineering Chemistry Research, 52, 9586 (2013).
170. M. Richter, A. Trunschke, U. Bentrup, K. W. Brzezinka, E. Schreier, M. Schneider, M. M. Pohl and R. Fricke, Journal of Catalysis, 206, 98 (2002).
171. G. C. Silva, F. S. Almeida, A. M. Ferreira and V. S. T. Ciminelli, Materials Research, 15, 403 (2012).
172. P. L. Goff, N. Baffier, S. Bach and J. P. Pereira–Ramos, Journal of Materials Chemistry, 4, 875 (1994).
173. B. Djurfors, J. N. Broughton, M. J. Brett and D. G. Ivey, Journal of The Electrochemical Society, 153, A64 (2006).
174. K. E. Toghill, L. Xiao, M. A. Phillips and R. G. Compton, Sensors and Actuators B: Chemical, 147, 642 (2010).
175. K. E. Toghill and R. G. Compton, International Journal of Electrochemical Science, 5, 1246 (2010).
176. G. A. Niklasson and C. G. Granqvist, Journal of Materials Chemistry, 17, 127 (2007).
177. A. I. Inamdar, A. C. Sonavane, S. M. Pawar, Y. Kim, J. H. Kim, P. S. Patil, W. Jung, H. Im, D.–Y. Kim and H. Kim, Applied Surface Science, 257, 9606 (2011).
178. D. Wei, M. R. Scherer, C. Bower, P. Andrew, T. Ryhanen and U. Steiner, Nano letters, 12, 1857 (2012).
179. Q. Wu, L. Jiang, Q. Tang, J. Liu, S. Wang and G. Sun, Electrochimica Acta, 91, 314 (2013).
180. J. Ponce, J. L. Rehspringer, G. Poillerat and J. L. Gautier, Electrochimica Acta, 46, 3373 (2001).
181. V. Rashkova, S. Kitova, I. Konstantinov and T. Vitanov, Electrochimica Acta, 47, 1555 (2002).
182. H. Bode, K. Dehmelt and J. Witte, Electrochimica Acta, 11, 1079 (1966).
183. M. Wehrens–Dijksma and P. H. L. Notten, Electrochimica Acta, 51, 3609 (2006).
184. R. S. McEwen, The Journal of Physical Chemistry, 75, 1782 (1971).
185. D. A. Corrigan and S. L. Knight, Journal of The Electrochemical Society, 136, 613 (1989).
186. R. Barnard, C. F. Randell and F. L. Tye, Journal of Applied Electrochemistry, 10, 109 (1980).
187. P. Oliva, J. Leonardi and J. F. Laurent, Journal of Power Sources, 8, 229 (1982).
188. A. Van der Ven, D. Morgan, Y. S. Meng and G. Ceder, Journal of The Electrochemical Society, 153, A210 (2006).
189. D. S. Hall, D. J. Lockwood, S. Poirier, C. Bock and B. R. MacDougall, ACS applied materials & interfaces, 6, 3141 (2014).
190. M. S. Kim and K. B. Kim, Journal of The Electrochemical Society, 145, 507 (1998).
191. G. T. Cheek and W. E. O'Grady, Journal of Electroanalytical Chemistry, 421, 173 (1997).
192. S. I. Cordoba‐Torresi, C. Gabrielli, A. Hugot‐Le Goff and R. Torresi, Journal of The Electrochemical Society, 138, 1548 (1991).
193. S. Ardizzone, G. Fregonara and S. Trasatti, Electrochimica Acta, 35, 263 (1990).
194. C. C. Hu and C. H. Chu, Journal of Electroanalytical Chemistry, 503, 105 (2001).
195. P. J. Hung, K. H. Chang, Y. F. Lee, C. C. Hu and K. M. Lin, Electrochimica Acta, 55, 6015 (2010).
196. P. W. Ruch, D. Cericola, M. Hahn, R. Kötz and A. Wokaun, Journal of Electroanalytical Chemistry, 636, 128 (2009).
197. D. Yang, R. Wang, M. He, J. Zhang and Z. Liu, The Journal of Physical Chemistry B, 109, 7654 (2005).
198. J. N. Barisci, G. G. Wallace and R. H. Baughman, Journal of Electroanalytical Chemistry, 488, 92 (2000).
199. Q. Gao, L. Demarconnay, E. Raymundo–Piñero and F. Béguin, Energy & Environmental Science, 5, 9611 (2012).
200. Q. Wang, J. Yan, Y. Wang, G. Ning, Z. Fan, T. Wei, J. Cheng, M. Zhang and X. Jing, Carbon, 52, 209 (2013).
201. I. Stepniak and A. Ciszewski, Electrochimica Acta, 56, 2477 (2011).
202. C. T. Hsu, C. C. Hu, T. H. Wu, J. C. Chen and M. Rajkumar, Electrochimica Acta, 146, 759 (2014).
203. C. H. Wang, S. C. Hsu and J. H. Hu, Journal of Power Sources, 249, 1 (2014).
204. M. Kalapsazova, R. Stoyanova, E. Zhecheva, G. Tyuliev and D. Nihtianova, Journal of Materials Chemistry A, 2, 19383 (2014).
205. M. C. Bernard, P. Bernard, M. Keddam, S. Senyarich and H. Takenouti, Electrochimica acta, 41, 91 (1996).
206. A. Delahaye–Vidal, N. Sac–Epée, K. Tekaia–Elhsissen, A. Audemer and M. Figlarz, Solid State Ionics, 84, 239 (1996).
207. Y. L. Lo, S. C. Chou and B. J. Hwang, JOURNAL OF APPLIED ELECTROCHEMISTRY, 26, 733 (1996).
208. J. W. Lee, J. M. Ko and J.–D. Kim, The Journal of Physical Chemistry C, 115, 19445 (2011).
209. R. S. Jayashree and P. V. Kamath, Journal of Applied Electrochemistry, 31, 1315 (2001).
210. M. E. Uñates, M. E. Folquer, J. R. Vilche and A. J. Arvia, Journal of The Electrochemical Society, 139, 2697 (1992).
211. C. C. Hu, K. H. Chang and T. Y. Hsu, Journal of The Electrochemical Society, 155, F196 (2008).
212. J. Maruta, H. Yasuda and M. Yamachi, Journal of Power Sources, 90, 89 (2000).
213. M. S. Kim, T. S. Hwang and K. B. Kim, Journal of The Electrochemical Society, 144, 1537 (1997).
214. E. R. Nightingale Jr., Journal of Physical Chemistry, 63, 1381 (1959).
215. G. A. Snook, A. M. Bond and S. Fletcher, Journal of Electroanalytical Chemistry, 526, 1 (2002).
216. A. Méndez, P. Díaz–Arista, L. Salgado, Y. Meas and G. Trejo, International Journal of Electrochemical Science, 3, 918 (2008).
217. C. Faure, C. Delmas and M. Fouassier, Journal of Power Sources, 35, 279 (1991).
218. R. Kostecki and F. McLarnon, Journal of The Electrochemical Society, 144, 485 (1997).
219. D. S. Hall, D. J. Lockwood, S. Poirier, C. Bock and B. R. MacDougall, The Journal of Physical Chemistry A, 116, 6771 (2012).
220. M. Merrill, M. Worsley, A. Wittstock, J. Biener and M. Stadermann, Journal of Electroanalytical Chemistry, 717–718, 177 (2014).
221. B. S. Yeo and A. T. Bell, The Journal of Physical Chemistry C, 116, 8394 (2012).
222. C. Delmas, Materials Science Forum, 152–153, 131 (1994).
223. M. W. Louie and A. T. Bell, Journal of the American Chemical Society, 135, 12329 (2013).
224. T. H. Wu, I. Scivetti, J. C. Chen, C. T. Hsu, T. Gilberto, C. C. Hu and L. J. Hardwick, under preparation (2016).
225. C. Delmas, Y. Borthomieu and C. Faure, Solid State lonics, 32/33, 104 (1989).
226. J. A. Koza, C. M. Hull, Y.–C. Liu and J. A. Switzer, Chemistry of Materials, 25, 1922 (2013).
227. E. Scavetta, B. Ballarin, C. Corticelli, I. Gualandi, D. Tonelli, V. Prevot, C. Forano and C. Mousty, Journal of Power Sources, 201, 360 (2012).
228. Y. C. Liu, J. A. Koza and J. A. Switzer, Electrochimica Acta, 140, 359 (2014).
229. J. K. Chang, C. M. Wu and I. W. Sun, Journal of Materials Chemistry, 20, 3729 (2010).
230. K. Nakaoka, M. Nakayama and K. Ogura, Journal of The Electrochemical Society, 149, C159 (2002).
231. D. Ghosh, S. Giri and C. K. Das, Environmental Progress & Sustainable Energy, 33, 1059 (2014).
232. Y. F. Yuan, X. H. Xia, J. B. Wu, X. H. Huang, Y. B. Pei, J. L. Yang and S. Y. Guo, Electrochemistry Communications, 13, 1123 (2011).
233. M. Aghazadeh, M. Ghaemi, B. Sabour and S. Dalvand, Journal of Solid State Electrochemistry, 18, 1569 (2014).
234. D. S. Hall, D. J. Lockwood, C. Bock and B. R. MacDougall, Proceedings. Mathematical, physical, and engineering sciences / the Royal Society, 471, 20140792 (2015).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *