帳號:guest(18.118.0.248)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張庭熏
作者(外文):Chang, Ting Hsun
論文名稱(中文):超奈米微晶鑽石薄膜之混成結構應用於增強場發射元件穩定性之研究
論文名稱(外文):Investigations on the Stability Enhancement of the Field Emission Device Based on Hybrid Nanostructures of Ultrananocrystalline Diamond Films
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan Hwa
口試委員(中文):林諭男
李紫原
張立
陳盈潔
口試委員(外文):Lin, I Nan
Lee, Chi Young
Chang, Li
Chen, Ying Chieh
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031830
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:179
中文關鍵詞:複合式鑽石薄膜微波電漿輔助化學氣相法奈米複合碳材三極式場發射電晶體
外文關鍵詞:hybrid granular structured diamondmicrowave plasma enhanced chemical vapor depositiondiamond-graphite nano-carbon compositetriode vacuum field emission transistor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
本研究發展出簡單且高再現性的製程提升鑽石的場發射特性及穩定性,我們發展出三種方式來達成:第一,利用矽基板當基底,製作矽尖端結構並沉積複合式鑽石薄膜(奈米微晶鑽石薄膜/超奈米微晶鑽石薄膜)。第二,結合奈米碳管和鑽石薄膜,不僅降低起始電場且提升場發射的電流密度,穩定性測試也提升此碳材料的使用壽命。第三,利用高導電率之鑽石薄膜,進一步修飾超奈米微晶鑽石薄膜於奈米碳管之微結構,使之形成高導電率的針狀結構薄膜,且增進場發射特性。其相關的可能機制也將被探討。
本研究一主題旨在探討提升場發射特性之發射源之製程。為了製備場發射源,我們藉由兩段式微波電漿輔助化學氣相法沉積複合式鑽石薄膜於矽金字塔模版。從穿透式電子顯微鏡影像圖顯示此複合式鑽石薄膜之組成為存在大量的石墨相於大顆鑽石晶粒周圍且小顆的鑽石晶粒圍繞於晶界附近。因此說明此複合式鑽石薄膜擁有良好的場發射特性,其主要由獨特的薄膜微結構所貢獻。
本研究另一主題為結合奈米碳管與鑽石薄膜用以增進場發射穩定性探討其微結構和表面形貌。利用複合式鑽石薄膜沉積於預鍍奈米鑽石顆粒之奈米碳管-矽基底,不僅延長奈米碳管為基底的使用壽命且提升了場發射性質。其奈米碳管扮演的角色為抑制了鑽石薄膜與矽基底之界面的非晶碳形成,且有效的使矽基底之電子穿越過界面到鑽石薄膜;複合式鑽石薄膜富含小鑽石晶粒和石墨相。綜合這兩項因素,此複合式鑽石薄膜/奈米碳管之發射源有助於增強場發射特性。
本研究最後發展出高導電奈米微晶鑽石薄膜與奈米碳管結合之“奈米複合碳材”場發射材料,方法之一是奈米碳管之改質,以便在其上以甲烷/氮氣電漿成長具有針狀結構之高導電奈米微晶鑽石薄膜;方法之二是利用低溫偏壓輔助法在甲烷/氮氣電漿後處理製程將超奈米微晶鑽石薄膜/奈米碳管之鑽石晶粒改為針狀奈米晶,大幅提升發射體之導電性及場發射特性。藉由穿透式電子顯微鏡詳細探討其微結構之變化,並利用此材料製作三極式場發射電晶體。
Growth, microstructure and electron field emission (EFE) characteristics of diamond films were investigated in this research work. A facile and reproducible way was developed to enhance the stability of EFE properties of diamond films. Firstly, hybrid granular structured diamond (HiD) films, which were nanocrystalline diamond/ultrananocrystalline diamond (UNCD) films, were coated on Si tips by a two-step microwave plasma enhanced chemical vapor deposition (MPE-CVD) process to synthesize the high performance EFE emitters. Secondly, the integration of the diamond films with high robustness and the carbon nanotubes (CNTs) with marvelous EFE properties that yielded highly stable electron sources was demonstrated. Lastly, high conductivity diamond-graphite nano-carbon composite (DGC) films were utilized to modify the granular structure of UNCD/CNTs films to form needle-like diamond grains encased in nano-graphitic layers, which possess high conductivity and improve EFE properties. The feasible mechanisms will be discussed.
In the development of the nano-EFE emitters via the preparation of HiD on Si tip templates using a two-step MPE-CVD process, the mechanism which improved EFE properties were investigated. The superior EFE properties of the HiD films can be attributed to the formation of unique granular structure of the films. The transmission electron microscopic investigations revealed that the HiD films consisted of abundant graphitic phases, which were located at the periphery of large diamond aggregates and at the boundaries between the ultra-small diamond grains.
The development of the CNTs-based EFE emitters, the enhanced lifetime stability for the CNTs by coating HiD films on nanodiamond particulates decorated CNTs/Si-based emitters using a two-step MPE-CVD process was reported, overcoming the drawback of short lifetime of the CNTs-based EFE-emitters. The use of CNTs effectively suppresses the presence of amorphous carbon in the diamond-to-Si interface that enhances the transport of electrons from Si, across the interface, to diamond. The two-step MPE-CVD process results in the coalescence of the small grains in UNCD films and the formation of abundant graphitic phases in these films. All these factors contribute toward the enhancement on the EFE process for the HiD/CNTs/Si-based emitters.
Finally, we integrated high conductivity DGC films and CNTs and demonstrated the potential applications for EFE emitters as well as triode vacuum field emission transistor. The growth of high conductivity DGC films on CNTs were achieved by (i) strengthening the CNTs for directly growth of DGC films on CNTs in CH4/N2 plasma and (ii) lower growth temperature for DGC films by bias-enhanced plasma post-treatment process.
中文摘要………………………………………………………………………………I
Abstract……………………………………………………………………………..III
Acknowledgement…………………………………………………………………V
Outline………………………………………………………………………............VI
Table List…………………………………….……………………………...……….X
Figure List…………………………………………………………………..............XI
Acronyms and abbreviations………………………………………...…………..XXI
Chapter 1 Overview
1.1 Background………………………………………………………………………1
1.2 Motivation………………………………………………………………………..2
1.3 Organization of the thesis…………………………………………………...…..3
Chapter 2 Literature review
2.1 Introduction to diamond films…………………….…..………………….......4
2.1.1 Diamond synthesis…………………………………………………...…..…..7
2.1.2 Diamond nucleation…………………………..………………………...…..10
2.1.3 Growth of UNCD films…...……………………………..…………………..11
2.1.4 Electron field emission theory……………………………..……………….....12
2.1.5 Electron field emission of diamond films……………………………...……..14
2.1.6 Fabrication of diamond field emitters………………....................................17
2.2 Introduction to CNTs……………………………………………….………...18
2.2.1 CNTs synthesis…………………………..…………………………………....19
2.2.2 Structure of CNTs……………………………………………………………..20
2.2.3 Electron field emission of CNTs……………………………………………...22
2.3 Field emission applications…………………………………………………24
2.4 Aim of this investigation…………………………………………………....25
Chapter 3 Experimental procedures and characterizations
3.1 Fabrication Si-tip structures……………………………...…………………27
3.2 Synthesis of CNTs……………………………………..………...………..27
3.2.1 Synthesis of conventional CNTs………………...……………..……...……….27
3.2.2 Synthesis of strengthen CNTs (s-CNTs)……………..….…………………......28
3.3 Synthesis of diamond films………...…………………………...……………..28
3.3.1 Synthesis of UNCD films……………………...……….………………...…...28
3.3.2 Synthesis of HiD films……………………………………………………..…29
3.3.3 Synthesis of DGC1 films (I): direct CH4/N2 plasma grow on s-CNTs or Si substrate……………………………………………………………...………..29
3.3.4 Synthesis of DGC2 films (II): plasma post-treatment (ppt) of UNCD film...29
3.4 Characterization of diamond films………...…………………........................30
3.4.1 Field emission scanning electron microscope (FESEM)……………………30
3.4.2 Raman spectroscopy…………………………………………………………..30
3.4.3 X-ray photoemission spectroscopy (XPS)……………………………………31
3.4.4 Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy……...…31
3.4.5 Transmission electron microscope (TEM)……………………………………31
3.4.6 Electron field emission and microplasma measurement……………………33
Chapter 4 Enhancing the electron field emission and plasma illumination behavior using hybrid diamond emitters
4.1 Research background…………………………………….…………...……….35
4.2 Results and discussion………...………………….………….………………...37
4.2.1 The characteristics of UNCD films grown on Si-tip arrays…….…………......37
4.2.2 The characteristics of HiD films grown on Si-tip arrays…….........................48
4.2.3 TEM microstructure investigation……………………………………………..53
4.3 Summary………………………….……………………………………….…...57
Chapter 5 Role of carbon nanotube interlayer in enhancing the electron field emission behavior of ultrananocrystalline diamond films
5.1 Research background…….…………………………………………...……….58
5.2 Results and discussion (I)---Diamond coated CNTs…….…………...………60
5.2.1 Materials characterization……………………………………..…..……….....60
5.2.2 TEM microstructure investigation………………..……………………...…...65
5.2.3 Electron field emission and plasma illumination studies……………………..69
5.2.4 Summary………………….……………..………………………………..…..77
5.3 Results and discussion (II)---Diamond coated CNTs/Si-tip arrays…….…78
5.3.1 Materials characterization…………………………..…………..………...…78
5.3.2 Electron field emission and plasma illumination studies..….……...…………81
5.3.3 TEM microstructure investigation………………………………...……..….88
5.3.4 Summary…………………….………………………………………...……...95
Chapter 6 High stability electron field emitters synthesized via the combination of carbon nanotubes and diamond-graphite nano-carbon composite films
6.1 Research background…………..…………………..…………………….…....97
6.2 Results and discussion (I)---Strengthening the CNTs for growing DGC1 on CNTs……………………………………….………………………………….100
6.2.1 Characterizations of s-CNTs nanostructures……………………………...…100
6.2.2 Characterizations of Diamond Films Grown on s-CNTs…………………....106
6.2.3 TEM microstructure investigation……………………….…………….…....110
6.2.4 Electron field emission and plasma illumination studies…............................118
6.2.5 Summary……………………….…………………………………...…….....128
6.3 Results and discussion (II)---Plasma post-treatment of UNCD films for growing DGC2 on CNTs………………………...…………………………...128
6.3.1 Materials characterizations………..…………………………………………128
6.3.2 TEM microstructure investigation…….……………………………….……132
6.3.3 Electron field emission study………………….………….…………………136
6.3.4 Summary…………………………………………………………….………137
Chapter 7 The applications of high conductivity and superior electron field emission materials for flexible EFE emitters and triode vacuum field emission transistor
7.1 Research background………………………….……………………………..139
7.2 Results and discussion…………………..………………………………..…142
7.2.1 Characterization and analysis of the DGC2 films for flexible EFE emitters...142
7.2.2 Characterization and analysis of the diamond/CNTs-based triode VFE transistor………..…………………………………………………………147
7.3 Summary……………………………...………………..……..………………151
Chapter 8 Conclusions and perspective
8.1 Conclusions………………………………………………………………….153
8.2 Perspective……………………………………………………………….154
References………………………………………………………………………….156
Publications………………………………………………………………………..178
[1] Oganov, A. R.; Hemley, R. J.; Hazen, R. M.; Jones, A. P. Structure, Bonding, and Mineralogy of Carbon at Extreme Conditions. Rev. Mineral. Geochem. 2013, 75, 47-77.
[2] Pierson, H. O. Handbook of Carbon, Graphite, Diamond and Fullerenes. Noyes Publications, New York, 1993.
[3] Umehara, Y.; Murai, S.; Koide, Y.; Murakami, M. Effects of sp2/sp3 Bonding Ratios on Field Emission Properties of Diamond-Like carbon Films Grown by Microwave Plasma Cchemical Vapor Deposition. Diamond Relat. Mater. 2002, 11, 1429-1435.
[4] Choi, W. B.; Chung, D. S.; Kang, J. H.; Kim, H. Y.; Jin, Y. W.; Han, I. T.; Lee, Y. H.; Jung, J. E.; Lee, N. S.; Park, G. S.; Kim, J. M. Fully Sealed, High-Brightness Carbon-Nanotube Field-Emission Display. Appl. Phys. Lett. 1999, 75, 3129-3131.
[5] Sugie, H.; Tanemura, M.; Filip, V.; Iwata, K.; Takahashi, K.; Okuyama, F. Carbon Nanotubes as Electron Source in an X-Ray Tube. Appl. Phys. Lett. 2001, 78, 2578-2580.
[6] Groning, P.; Ruf fieux, P.; Schlapbach, L.; Gröning, O. Carbon Nanotubes for Cold Electron Sources. Adv. Eng. Mater. 2003, 5, 541-550.
[7] Zhu, W.; Kochanski, G. P.; Jin, S. Low-Field Electron Emission from Undoped Nanostructured Diamond. Science 1998, 282, 1471-1473.
[8] Tzeng, Y. F.; Lee, Y. C.; Lee, C. Y.; Chiu, H. T.; Lin, I. N. Electron Field Emission Properties on UNCD Coated Si-Nanowires. Diamond Relat. Mater. 2008, 17, 753-757.
[9] She, J. C.; Deng, S. Z.; Xu, N. S.; Yao, R. H.; Cheng, J. Fabrication of Vertically Aligned Si Nanowires and Their Application in a Gated Field Emission Device. Appl. Phys. Lett. 2006, 88, 013112.
[10] Cheng, H. F.; Horng, C. C.; Chiang, H. Y.; Chen, H. C.; Lin, I. N. Modification on the Microstructure of Ultrananocrystalline Diamond Films for Enhancing Their Electron Field Emission Properties via a Two-Step Microwave Plasma Enhanced Chemical Vapor Deposition Process. J. Phys. Chem. C 2011, 115, 13894-13900.
[11] Wang, S.; Swain, G. M. Spatially Heterogeneous Electrical and Electrochemical Properties of Hydrogen-Terminated Boron-Doped Nanocrystalline Diamond Thin Film Deposited from an Argon-Rich CH4/H2/Ar/B2H6 Source Gas Mixture. J. Phys. Chem. C 2007, 111, 3986-3995.
[12] Chen, L. J.; Liu, C. C.; Tai, N. H.; Lee, C. Y.; Fang, W.; Lin; I. N. Effects of Tungsten Metal Coatings on Enhancing the Characteristics of Ultrananocrystalline Diamond Films. J. Phys. Chem. C 2008, 112, 3759-3765.
[13] Antolini, E. Carbon Supports for Low-Temperature Fuel Cell Catalysts. Appl. Catal., B 2009, 88, 1-24.
[14] Cunci, L.; Cabrera, C. R. Preparation and Electrochemistry of Boron-Doped Diamond Nanoparticles on Glassy Carbon Electrodes. Electrochem. Solid-State Lett. 2011, 14, 17-19.
[15] Liu, H.; Dandy, D. S. Diamond Chemical Vapor Deposition, Nucleation and Early Growth. Noyes Publications, New York, 1995.
[16] Barnard, A. S. The Diamond Formula. Butterworth Heinemann, Oxford, 2000.
[17] Bundy, F. P.; Hall, H. T.; Strong, H. M.; Wentorf, R. H. Man-Made Diamonds. Nature 1955, 176, 51-55.
[18] Field, J. E. The Properties of Natural and Synthetic Diamond. Academic Press, London, 1992.
[19] Cowan, G.; Dunnington, B.; Holtzman, A. Process for Synthesizing Diamond, US Patent 3401019, 1968.
[20] Davis, R. F. Diamond Films and Coatings. Noyes Publications, New Jersey, 1993.
[21] Shiomi, H. Diamond Active Electronic Devices. Diamond Films Handbook, Eds. Asmussen, J.; Reinhard, D. K. Marcel Dekker Inc., New York, 2002, 579-605.
[22] Yan, C.; Mao, H.; Li, W.; Qian, J.; Zhao, Y.; Hemley, R. J. Ultrahard Diamond Single Crystals from Chemical Vapor Deposition. Phys. Status Solidi A 2004, 201, 25-27.
[23] Xiao, X.; Birrell, J.; Gerbi, J. E.; Auciello, O.; Carlisle, J. A. Low Temperature Growth of Ultrananocrystalline Diamond. J. Appl. Phys. 2004, 96, 2232-2239.
[24] Pradhan, D.; Lin, I. N. Effect of Titanium Powder Assisted Surface Pretreatment Process on The Nucleation Enhancement and Surface Roughness of Ultrananocrystalline Diamond Thin Films. Appl. Surf. Sci. 2009, 255, 6907-6913.
[25] Sekaric, L.; Parpia, J. M.; Craighead, H. G.; Feygelson, T.; Houston, B. H.; Butler, J. E. Nanomechanical Resonant Structures in Nanocrystalline Diamond. Appl. Phys. Lett. 2002, 81, 4455-4457.
[26] Yugo, S.; Kanai, T.; Kimura, T.; Muto, T. Generation of Diamond Nuclei by Electric field in Plasma Chemical Vapor Deposition, Appl. Phys. Lett. 1991, 58, 1036-1038.
[27] Stoner, B. R.; Glass, J. T. Textured Diamond Growth on (100) β-SiC via Microwave Plasma Chemical Vapor Deposition. Appl. Phys. Lett. 1992, 60, 698-700.
[28] Lee, D. G.; Singh, R. K. Synthesis of (111) Oriented Diamond Thin Films by Electrophoretic Deposition Process. Appl. Phys. Lett. 1997, 70, 1542-1544.
[29] Gruen, D. M. Nanocrystalline Diamond Film. Annu. Rev. Mater. Sci. 1999, 29, 211-259.
[30] Gruen, D. M.; Liu, S. Z,; Krauss, A. R.; Luo, J. S.; Pan, X. Z. Fullerenes as Precursors for Diamond Film Growth without Hydrogen or Oxygen Additions. Appl. Phys. Lett. 1994, 64, 1502-1504.
[31] Gruen, D. M.; Pan, X. Z.; Krauss, A. R.; Liu, S. Z.; Luo, J. S.; Foster, C. M. Deposition and Characterization of Nanocrystalline Diamond Films. J. Vac. Sci. Technol. A 1994, 12, 1491-1495.
[32] Zhou, D.; McCauley, T. G.; Qin, L. C.; Krauss, A. R.; Gruen, D. M. Synthesis of Nanocrystalline Diamond Thin Films from an Ar–CH4 Microwave Plasma. J. Appl. Phys. 1998, 83, 540-543.
[33] Fowler, R. H.; Nordhlim, L. W. Electron Emission in Intense Electric Fields. Proc. Roy. Soc. London, Ser A 1928, 119, 173.
[34] Cheng, Y.; Zhou, O. Electron Field Emission from Carbon Nanotubes. C. R. Physique 2003, 4, 1021-1033.
[35] Zhu, W.; Kochanski, G. P.; Jin, S.; Seibles, L. Defect‐Enhanced Electron Field Emission from Chemical Vapor Deposited Diamond. J. Appl. Phys. 1995, 78, 2707-2711.
[36] Talin, A. A.; Pan, L. S.; McCarty, K. F.; Doerr, H. J.; Bunshah, R. F. The Relationship between the Spatially Resolved Field Emission Characteristics and the Raman Spectra of a Nanocrystalline Diamond Cold Cathode. Appl. Phys. Lett. 1996, 69, 3842-3844.
[37] Chen, Y. C.; Cheng, A. J.; Clark, M.; Liu, Y. K.; Tzeng, Y. Effects of Post-deposition Heat Treatment and Hydrogenation on Electrical Conductivity of Nanodiamond Films. Diamond Relat. Mater. 2006, 15, 440-443.
[38] Lin, I. N.; Chen, Y. H.; Cheng, H. F. Modification of Emission Properties of Diamond Films due to Surface Treatment Process. Diamond Relat. Mater. 2000, 9, 1574-1581.
[39] Hong, D.; Aslam, D. Technology and Characterization of Diamond Field Emitter Structures. IEEE Trans. Electron Devices 1998, 45, 977-985.
[40] Xu, N. S.; She, J. C.; Huq, S. E.; Chen, J.; Deng, S. Z.; Chen, J. Microfabrication and Characterization of Gated Amorphous Diamond-Based Field Emission Electron Sources. Ultramicroscopy 2001, 89, 111-118.
[41] Show, Y.; Matsukawa, T.; Iwase, M.; Izumi, T. Effects of Defects Introduced by Nitrogen Doping on Electron Emission from Diamond Films. Mater. Chem. Phys. 2001, 72, 201-203.
[42] Park, K. H.; Lee, S.; Song, K. H.; Park, J. I.; Park, K. J.; Han, S. Y.; Na, S. J.; Lee, N. Y.; Koh, K. H. Field Emission Characteristics of Defective Diamond Films. J. Vac. Sic. Technol. B 1998, 16, 724-728.
[43] Robertson, J. Mechanisms of Electron Field Emission from Diamond, Diamond-Like Carbon, and Nanostructured Carbon. J. Vac. Sci. Technol. B 1999, 17, 659-665.
[44] Kang, W. P.; Wisitsora-at, A.; Davidson, J. L.; Kerns, D. V.; Li, Q.; Xu, J. F.; Kim, C. K. Effect of sp2 Content and Tip Treatment and the Field Emission of Micropatterned Tipal Diamond Tips. J. Vac. Sci. Technol. B 1998, 16, 684-688.
[45] Fallon, P. J.; Brown, L. M. Analysis of Chemical-Vapour-Deposited Diamond Grain Boundaries Using Transmission Electron Microscopy and Parallel Electron Energy Loss Spectroscopy in a Scanning Transmission Electron Microscope. Diamond Relat. Mater. 1993, 2, 1004-1011.
[46] Okano, K.; Koizumi, S.; Silva, S. R. P.; Amaratunga, G. A. J. Low-Threshold Cold Cathodes Made of Nitrogen-doped Chemical-Vapour-Deposited Diamond. Nature 1996, 381, 140-141.
[47] Okano, K.; Kiyota, H.; Iwasaki, T.; Nakamura, Y.; Akiba, Y.; Kurosu, T.; Iida, M.; Nakamura, T. Synthesis of n-Type Semiconducting Diamond Film using Diphosphorus Pentaoxide as the Doping Source. Appl. Phys. A 1990, 51, 344-346.
[48] Xu, N. S.; She, J. C.; Chen, J.; Deng, S. Z.; Chen, J. Microfabrication and Characterization of an Array of Diode Electron Source Using Amorphous Diamond Thin Films. Appl. Phys. Lett. 2000, 77, 2921-2923.
[49] Chen, J.; Deng, S. Z.; Chen, J.; Xu, N. S. Substrate Nanoprotrusions and Their Effect on Field Electron Emission from Amorphous-diamond Films. Appl. Phys. Lett. 2002, 80, 4030-4032.
[50] Wisitsora-at, A.; Kang, W. P.; Davidson, J. L.; Kerns, D. V. A Study of Diamond Field Emission Using Micro-patterned Monolithic Diamond Tips with Different sp2 Contents. Appl. Phys. Lett. 1997, 71, 3394-3396.
[51] Hsu, S. H.; Kang, W. P.; Wisitsora-at, A.; Davidson, J. L. Nitrogen-incorporated Nanodiamond Vacuum Field Emission Transistor with Vertically Configured Self-aligning Gate. Diamond Relat. Mater. 2012, 22, 142-146.
[52] Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56-58.
[53] Ebbesen, T. W.; Ajayan, P. M. Large-scale Synthesis of Carbon Nanotubes. Nature 1992, 358, 220-222.
[54] Berber, S.; Kwon, Y. K.; Tomanek, D. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 2000, 84, 4613-4616.
[55] Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 1997, 277, 1971-1975.
[56] Krishnan, A.; Dujardin, E.; Ebbensen, T. W.; Yianilos, P. N.; Treacy, M. M. J. Young’s modulus of single-walled nanotubes. Phys. Rev. B 1998, 58, 14013-14019.
[57] Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. S. F.; Ruoff, R. S. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes under Tensile Load. Science 2000, 287, 637-640.
[58] Qian, D.; Dickey, E. C.; Andrew, R.; Rantell, T. Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites. Appl. Phys. Lett. 2000, 76, 2868-2870.
[59] Shaffer, M. S. P.; Windle, A. H. Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites. Adv. Mater. 1999, 11, 937-941.
[60] Schadler, L. S.; Giannaris, S. C.; Ajayan, P. M. Load Transfer in Carbon Nanotube Epoxy Composites. Appl. Phys. Lett. 1998, 73, 3842-3844.
[61] Iijima, S.; Ichihashi, T. Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature 1993, 363, 603-605.
[62] Bethune, D. S.; Klang, C. H.; De Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls. Nature 1993, 363, 605-607.
[63] Fan, S. S.; Chapline, M. G.; Franlin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science 1999, 5401, 512-514.
[64] Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K. A.; et al. Gas-Phase Catalytic Growth of Single-Walled Carbon Nanotubes from Carbon Monoxide. Chem. Phys. Lett. 1999, 313, 91-97.
[65] Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Electronic Structure of Chiral Graphene Tubules. Appl. Phys. Lett. 1992, 60, 2204-2206.
[66] Bonard, J. M.; Kind, H.; Stöckli, T.; Nilsson, L. O. Field Emission from Carbon Nanotubes: The First Five Years. Solid State Electron. 2001, 45, 893-914.
[67] Thostenson, E. T.; Ren, Z.; Chou, T. W. Advances in The Science and Technology of Carbon Nanotubes and Their Composites: a Review. Compos. Sci. Technol. 2001, 61, 1899-1912.
[68] Bonard, J. M.; Croci, M.; Klinke, C.; Kurt, R.; Noury, O.; Weiss, N. Carbon Nanotube Films as Electron Field Emitters. Carbon 2002, 40, 1715-1728.
[69] Zhu, W.; Bower, C.; Kochanski, G. P.; Jin, S. Electron Field Emission from Nanostructured Diamond and Carbon Nanotubes. Solid-State Electron. 2001, 45, 921-928.
[70] Lee, N. S.; Chung, D. S.; Kang, J. H.; Kim, H. Y.;Park, S. H.; Jin, Y. W.; Choi,Y. S.; Han, I. T.; Park, N. S.; Yun, M. J.; Jung, J. E.; Lee, C. J.; You, J. H.; Jo, S. H.; Lee,C. G.; Kim, J. M. Carbon Nanotube-Based Field-Emission Displays for Large-Area and Full-Color Applications. Jpn. J. Appl. Phys. 2000, 39, 7154-7158.
[71] Saito, Y.; Uemura, S.; Hamaguchi, K. Cathode Ray Tube Lighting Elements with Carbon Nanotube Field Emitters. Jpn. J. Appl. Phys. 1998, 37, 346-348.
[72] Jensen, K. L. Field Emitter Arrays for Plasma and Microwave Source Applications. Phys. Plasma 1999, 6, 2241-2253.
[73] Becker, K. H.; Schoenbach, K. H.; Eden, J. G. Microplasmas and Applications. J. Phys. D: Appl. Phys. 2006, 39, 55-70.
[74] Schoenbach, K. H.; Verhappen, R.; Tessnow, T.; Peterkin, P. F.; Byszewski, W. Microhollow Cathode Discharges. Appl. Phys. Lett. 1996, 68, 13-15.
[75] Frame, J. W.; Wheeler, D. J.; DeTemple, T. A.; Eden, J. G. Microdischarge Devices Fabricated in Silicon. Appl. Phys. Lett. 1997, 71, 1165-1167.
[76] Park, S. J.; Eden, J. G. Micron Diameter Microdischarge Devices: Atomic Ion and Molecular Emission at above Atmospheric Pressures. Appl. Phys. Lett. 2002, 81, 4127, 13-30.
[77] Penache, C.; Miclea, M.; Bräuning-Demian, A.; Hohn, O.; Schössler, S.; Jahnke, T.; Niemax, K.; Schmidt-Böcking, H. Characterization of a High-pressure Microdischarge Using Diode Laser Atomic Absorption Spectroscopy. Plasma Sources Sci. Technol. 2002, 11, 476-483.
[78] S. J. Park,; J. Chen,; C. J. Wagner,; N. P. Ostrom,; C. Liu,; and J. G. Eden, Microdischarge Arrays: a New Family of Photonic Devices. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 139-147.
[79] Park, S. J.; Eden, J. G.; Chen, J.; Liu, C. Microdischarge Devices with 10 or 30 μm Square Silicon Cathode Cavities: Pd Scaling and Production of the XeO Excimer. Appl. Phys. Lett. 2004, 85, 4869-4871.
[80] Park, S. J.; Chen, K. F.; Ostrom, N. P.; Eden, J. G. 40000 Pixel Arrays of AC-excited Silicon Microcavity Plasma Devices. Appl. Phys. Lett. 2005, 86, 111501-111503.
[81] Chen, K. F.; Ostrom, N. P.; Park, S. J.; Eden, J. G. One Quarter Million (500×500) Pixel Arrays of Silicon Microcavity Plasma Devices: Luminous Efficacy above 6 Lumens/watt with Ne/50% Xe Mixtures and a Green Phosphor. Appl. Phys. Lett. 2006, 88, 061121.
[82] Mitea, S.; Zeleznik, M.; Bowden, M. D.; May, P. W.; Fox, N. A.; Hart, J. N.; Fowler, C.; Stevens, R.; Braithwaite, N. StJ. Generation of Microdischarges in Diamond Substrates. Plasma Sources Sci. Technol. 2012, 21, 022001.
[83] Carlisle, J. A.; Auciello, O. Ultrananocrystalline Diamond Properties and Applications in Biomedical Devices. Electrochem. Soc. Interface 2003, 28-31.
[84] Chakrabarti, K.; Chakrabarrti, R.; Chattopadhyay, K. K.; Chaudhrui, S.; Pal, A. K. Nano-Diamond Films Produced from CVD of Camphor. Diamond Relat. Mater. 1998, 7, 845-852.
[85] Ralchenko, V.; Karabutov, A.; Vlasov, I.; Frolov, V.; Konov, V.; Gordeev, S.; Zhukov, S.; Dementjev, A. Diamond–Carbon Nanocomposites: Applications for Diamond Film Deposition and Field Electron Emission. Diamond Relat. Mater. 1999, 8, 1496-1501.
[86] Wang, S. G.; Zhan, Q.; Yoon, S. F.; Ahn, J.; Wang, Q.; Zhou, Q.; Yang, D. J. Electron Field Emission Properties of Nano-, Submicro- and Micro-Diamond Films. Phys. Status Solidi A 2002, 193, 546-551.
[87] Mortet, V.; Elmazria, O.; Nesladek, M.; Assouar, M. B.; Vanhoyland, G.; D'Haen, J.; Olieslaeger, M. D.; Alnot, P. Surface Acoustic Wave Propagation in Aluminum Nitride-unpolished Freestanding Diamond Structures. Appl. Phys. Lett. 2002, 81, 1720-1722.
[88] Pradhan, D.; Lin, I. N. Grain-Size-Dependent Diamond−Nondiamond Composite Films: Characterization and Field-Emission Properties. ACS Appl. Mater. Interfaces, 2009, 1, 1444-1450.
[89] Thomas, J. P.; Chen, H. C.; Tseng, S. H.; Wu, H. C.; Lee, C. Y.; Cheng, H. F.; Tai, N. H.; Lin, I. N. Preferentially Grown Ultranano c-Diamond and n-Diamond Grains on Silicon Nanoneedles from Energetic Species with Enhanced Field-Emission Properties. ACS Appl. Mater. Interfaces 2012, 4, 5103-5108.
[90] Thomas, J. P.; Chen, H. C.; Tai, N. H.; Lin, I. N. Freestanding Ultrananocrystalline Diamond Films with Homojunction Insulating Layer on Conducting Layer and Their High Electron Field Emission Properties. ACS Appl. Mater. Interfaces 2011, 3, 4007-4013.
[91] Tzeng, Y. F.; Lee, Y. C.; Lee, C. Y.; Lin, I. N.; Chiu, H. T. On the Enhancement of Field Emission Performance of Ultrananocrystalline Diamond Coated Nanoemitters. Appl. Phys. Lett. 2007, 91, 063117.
[92] Chang, T. H.; Panda, K.; Panigrahi, B. K.; Lou, S. C.; Chen, C. L.; Chan, H. C.; Lin, I. N.; Tai, N. H. Electrophoresis of Nanodiamond on the Growth of Ultrananocrystalline Diamond Films on Silicon Nanowires and the Enhancement of the Electron Field Emission Properties. J. Phys. Chem. C 2012, 116, 19867-19876.
[93] Michler, J.; Von Kaenel, Y.; J. Stiegler,; Blank, E. Complementary Application of Electron Microscopy and Micro-raman Spectroscopy for Microstructure, Stress, and Bonding Defect Investigation of Heteroepitaxial Chemical Vapor Deposited Diamond Films. J. Appl. Phys. 1998, 81, 187.
[94] Ferrari, A. C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 61, 14095-14107.
[95] Z. Sun, J. R. Shi, B. K. Tay and S. P. Lau. UV Raman Characteristics of Nanocrystalline Diamond Films with Different Grain Size. Diamond Relat. Mater. 2000, 9, 1979-1983.
[96] Ferrari, A. C.; Robertson, J. Origin of the 1150 cm-1 Raman Mode in Nanocrystalline Diamond. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 63, 121405.
[97] Chapman, B. Glow Discharge Processes: Sputtering and Plasma Etching. John Wiley & Sons, New York, 1980.
[98] Lin, I. N.; Chen, H. C.; Wang, C. S.; Lee, Y. R.; Lee, C. Y. Nanocrystalline Diamond Microstructures from Ar/H2/CH4-plasma Chemical Vapour Deposition. CrystEngComm 2011, 13, 6082-6089.
[99] Sankaran, K. J.; Panda, K.; Sundaravel, B.; Chen, H. C.; Lin, I. N.; Lee, C. Y.; Tai, N. H. Engineering the Interface Characteristics of Ultrananocrystalline Diamond Films Grown on Au-Coated Si Substrates. ACS Appl. Mater. Interfaces 2012, 4, 4169-4176.
[100] Huang, C. S.; Yeh, C. Y.; Chang, Y. H.; Hsieh, Y. M.; Ku, C. Y.; Lai, Q. T. Field Emission Properties of CNT−ZnO Composite Materials. Diamond Relat. Mater. 2009, 18, 452-456.
[101] DeHeer, W. A.; Châtelain, A.; Ugarte, D. A Carbon Nanotube Field-Emission Electron Source. Science 1995, 270, 1179-1180.
[102] Lysenkov, D.; Muller, G. Field Emission Measurement Techniques for the Optimisation of Carbon Nanotube Cathodes. Int. J. Nanotechnol. 2005, 2, 239-254.
[103] Dean, K. A.; Burgin, T. P.; Chalamala, B. R. Evaporation of Carbon Nanotubes during Electron Field Emission. Appl. Phys. Lett. 2001, 79, 1873-1875.
[104] Dean, K. A.; Chalamala, B. R. The Environmental Stability of Field Emission from Single-Walled Carbon Nanotubes. Appl. Phys. Lett. 1999, 75, 3017-3019.
[105] Green, J. M.; Dong, L.; Gutu, T.; Jiao, J.; Conley, J. F.; Ono, J. Y. ZnO-Nanoparticle-Coated Carbon Nanotubes Demonstrating Enhanced Electron Field-Emission Properties. J. Appl. Phys. 2006, 99, 094308.
[106] Sharma, H.; Kaushik, V.; Girdhar, P.; Singh, V. N.; Shukla, A. K.; Vankar, V. D. Enhanced Electron Emission from Titanium Coated Multiwalled Carbon Nanotubes. Thin Solid Films 2010, 518, 6915-6920.
[107] Zou, Y.; May, P. W.; Vieira, S. M. C.; Fox, N. A. Field Emission from Diamond-Coated Multiwalled Carbon Nanotube “Teepee” Structures. J. Appl. Phys. 2012, 112, 044903.
[108] Fiori, A.; Orlanducci, S.; Sessa, V.; Tamburri, E.; Toschi, F.; Terranova, M. L.; Ciorba, A.; Rossi, M.; Lucci, M.; Barnard, A. S. Hybrid Carbon Nanotube/Nanodiamond Structures as Electron Emitters for Cold Cathodes. J. Nanosci. Nanotechnol. 2008, 8, 1989-1993.
[109] Lee, D. H.; Lee, J. A.; Lee, W. J.; Choi, D. S.; Lee, W. J.; Kim, S. O. Facile Fabrication and Field Emission of Metal-Particle-Decorated Vertical N-Doped Carbon Nanotube/Graphene Hybrid Films. J. Phys. Chem. C 2010, 114, 21184-21189.
[110] Mauricio Rosolen, J.; Tronto, S.; Marchesin, M. S.; Almeida, E. C.; Ferreira, N. G.; Patrick Poá, C. H.; Silva, S.; Ravi, P. Electron Field Emission from Composite Electrodes of Carbon Nanotubes-Boron-Doped Diamond and Carbon Felts. Appl. Phys. Lett. 2006, 88, 083116.
[111] Varshney, D.; Ahmadi, M.; Guinel, M. J. F.; Weiner, B. R.; Morell, G. Single-Step Route to Diamond-Nanotube Composite. Nanoscale Res. Lett. 2012, 7, 535.
[112] Sankaran, K. J.; Srinivasu, K.; Chen, H. C.; Dong, C. L.; Leou, K. C.; Lee, C. Y.; Tai, N. H.; Lin, I. N. Improvement in Plasma Illumination Properties of Ultrananocrystalline Diamond Films by Grain Boundary Engineering. J. Appl. Phys. 2013, 114, 054304.
[113] Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Powers, M. J.; Cuomo, J. J.; Nemanich, R. J.; Dreifus, D. L. Electron Emission Measurements from CVD Diamond Surfaces. Diamond Relat. Mater. 1996, 5, 802-806.
[114] Sowers, A. T.; Ward, B. L.; English, S. L.; Nemanich, R. J. Field Emission Properties of Nitrogen-Doped Diamond Films. J. Appl. Phys. 1999, 86, 3973-3982.
[115] Shankar, N.; Glumac, N. G.; Yu, M. F.; Vanka, S. P. Growth of Nanodiamond/Carbon-Nanotube Composites with Hot Filament Chemical Vapor Deposition. Diamond Relat. Mater. 2008, 17, 79-83.
[116] Sun, L. T.; Gong, J. L.; Zhu, Z. Y.; Zhu, D. Z.; He, S. X.; Wang, Z. X.; Chen, Y.; Hu, G. Nanocrystalline Diamond from Carbon Nanotubes. Appl. Phys. Lett. 2004, 84, 2901-2903.
[117] Xiao, X. C.; Elam, J. W.; Trasobares, S.; Auciello, O.; Carlisle, J. A. Synthesis of a Self-Assembled Hybrid of Ultrananocrystalline Diamond and Carbon Nanotubes. Adv. Mater. 2005, 17, 1496-1500.
[118] Wang, C. S.; Chen, H. C.; Cheng, H. F.; Lin, I. N. Synthesis of Diamond using Ultra-Nanocrystalline Diamonds as Seeding Layer and Their Electron Field Emission Properties. Diamond Relat. Mater. 2009, 18, 136-140.
[119] Cheng, H. F.; Chiang, H. Y.; Horng, C. C.; Chen, H. C.; Wang, C. S.; Lin, I. N. Enhanced Electron Field Emission Properties by Tuning the Microstructure of Ultrananocrystalline Diamond Film. J. Appl. Phys. 2011, 109, 033711.
[120] Konyashin, I.; Zern, A.; Mayer, J.; Aldinger, F.; Babaev, V.; Khvostov, V.; Guseva, M. A New Carbon Modification: ‘n-diamond’ or Face-Centred Cubic Carbon? Diamond Relat. Mater. 2001, 10, 99-102.
[121] Konyashin, I.; Khvostov, V.; Babaev, V.; Guseva, M.; Mayer, J.; Sirenko, A. A New Hard Allotropic Form of Carbon: Dream or Reality? Int. J. Refract. Met. Hard Mater. 2006, 24, 17-23.
[122] Prawer, S.; Peng, J. L.; Orwa, J. O.; McCallum, J. C.; Jamieson, D. N.; Bursill, L. A. Size Dependence of Structural Stability in Nanocrystalline Diamond. Phys. Rev. B 2000, 62, 16360-16363.
[123] Arenal, R.; Bruno, P.; Miller, D. J.; Bleuel, M.; Lal, J.; Gruen, D. M. Diamond Nanowires and the Insulator-Metal Transition in Ultrananocrystalline Diamond Films. Phys. Rev. B 2007, 75, 195431.
[124] Kovarik, P.; Bourdon, E. B. D.; Prince, R. H. Electron-Energy-Loss Characterization of Laser-Deposited a-C, a-C:H, and Diamond Films. Phys. Rev. B 1993, 48, 12123-12129.
[125] Raizer, Y. P.; Allen, J. E.; Kisin, V. I. Gas Discharge Physics. Springer-Verlag Publications, New York, 1991.
[126] Chen, H. C.; Sankaran, K. J.; Lou, S. C.; Lin, L. J.; Tai, N. H.; Lee, C. Y.; Lin, I. N. Using an Au Interlayer to Enhance Electron Field Emission Properties of Ultrananocrystalline Diamond Films. J. Appl. Phys. 2012, 112, 103711.
[127] Chang, T. H.; Lou, S. C.; Chen, H. C.; Chen, C. L.; Lee, C. Y.; Tai, N. H.; Lin, I. N. Enhancing the Plasma Illumination Behaviour of Microplasma Devices using Microcrystalline/Ultrananocrystalline Hybrid Diamond Materials as Cathodes. Nanoscale 2013, 5, 7467-7475.
[128] Chen, S. S.; Chen, H. C.; Wang, W. C.; Lee, C. Y.; Lin, I. N.; Guo, J.; Chang, C. L. Effects of High Energy Au-Ion Irradiation on the Microstructure of Diamond Films. J. Appl. Phys. 2013, 113, No. 113704.
[129] Wu, Z. S.; Pei, S.; Ren, W.; Tang, D.; Gao, L.; Liu, B.; Li, F.; Liu, C.; Cheng, H. M. Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition. Adv. Mater. 2009, 21, 1756-1760.
[130] Zhu, M. Y.; Outlaw, R. A.; Bagge-Hansen, M.; Chen, H. J.; Manos, D. M. Enhanced Field Emission of Vertically Oriented Carbon Nanosheets Synthesized by C2H2/H2 Plasma Enhanced CVD. Carbon 2011, 49, 2526-2531.
[131] Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S. Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. Science 1999, 286, 1127-1129.
[132] Lee, Y. H.; Jang, Y. T.; Kim, D. H.; Ahn, J. H.; Ju, B. K. Realization of Gated Field Emitters for Electrophotonic Applications Using Carbon Nanotube Line Emitters Directly Grown into Submicrometer Holes. Adv. Mater. 2001, 13, 479-482.
[133] Yu, K.; Zhang, Y. S.; Xu, F.; Li, Q.; Zhu, Z. Q.; Wan, Q. Significant Improvement of Field Emission by Depositing Zinc Oxide Nanostructures on Screen-Printed Carbon Nanotube Films. Appl. Phys. Lett. 2006, 88, 153123.
[134] Varshney, D.; Sumant, A. V.; Resto, O.; Mendoza, F.; Quintero, K. P.; Ahmadi, M.; Weiner, B. R.; Morell, G. Single-Step Route to Hierarchical Flower-Like Carbon Nanotube Clusters Decorated with Ultrananocrystalline Diamond. Carbon 2013, 63, 253-262.
[135] Su, C. Y.; Juang, Z. Y.; Chen, Y. L.; Leou, K. C.; Tsai, C. H. The Field Emission Characteristics of Carbon Nanotubes Coated by Boron Nitride Film. Diamond Relat. Mater. 2007, 16, 1393-1397.
[136] May, P. W.; Höhn, S.; Ashfold, M. N. R.; Wang, W. N.; Fox, N. A.; Davis, T. J.; Steeds, J. W. Field Emission from Chemical Vapor Deposited Diamond and Diamond-Like Carbon Films: Investigations of Surface Damage and Conduction Mechanisms. J. Appl. Phys. 1998, 84, 1618-1625.
[137] Chang, T. H.; Kunuku, S.; Hong, Y. J.; Leou, K. C.; Yew, T. R.; Tai, N. H.; Lin, I. N. Enhancement on the Stability of Electron Field Emission Behavior and the Related Microplasma Devices of Carbon Nanotubes by Coating Diamond Films. ACS Appl. Mater. Interfaces 2014, 6, 11589-11597.
[138] Sankaran, K. J.; Lin, Y. F.; Jian, W. B.; Chen, H. C.; Panda, K.; Sundaravel, B.; Dong, C. L.; Tai, N. H.; Lin, I. N. Structural and Electrical Properties of Conducting Diamond Nanowires. ACS Appl. Mater. Interfaces 2013, 5, 1294-1301.
[139] Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett. 2010, 10, 751-758.
[140] Ni, Z. H.; Fan, H. M.; Fan, X. F.; Wang, H. M.; Sheng, Z.; Feng, Y. P.; Wu, Y. H.; Shen, Z. X. High Temperature Raman Spectroscopy Studies of Carbon Nanowalls. J. Raman Spectrosc. 2007, 38, 1449-1453.
[141] Kurita, S.; Yoshimura, A.; Kawamoto, H.; Uchida, T.; Kojima, K.; Tachibana, M.; Molina-Morales, P.; Nakai, H. Raman Spectra of Carbon Nanowalls Grown by Plasma-Enhanced Chemical Vapor Deposition. J. Appl. Phys. 2005, 97, 104320.
[142] Estrade-Szwarckopf, H. XPS Photoemission in Carbonaceous Materials: A ‘‘Defect’’ Peak Beside The Graphitic Asymmetric Peak. Carbon 2004, 42, 1713-1721.
[143] Batson, P. E. Carbon 1s Near-Edge-Absorption Fine-Structure in Graphite. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 48, 2608-2610.
[144] Bruhwiler, P. A.; Maxwell, A. J.; Puglia, C.; Nilsson, A.; Anderson, S.; Martensson, N. π* and σ* Excitons in C-1s Absorption of Graphite. Phys. Rev. Lett. 1995, 74, 614-617.
[145] Abbas, M.; Wu, Z. Y.; Zhong, J.; Ibrahim, K.; Fiori, A.; Orlanducci, S.; Sessa, V.; Terranova, M. L.; Davoli, I. X-ray Absorption and Photoelectron Spectroscopy Studies on Graphite and Single-Walled Carbon Nanotubes: Oxygen Effect. Appl. Phys. Lett. 2005, 87, 051923.
[146] Maillard-Schaller, E.; Kuettel, O. M.; Diederich, L.; Schlapbach, L.; Zhirnov, V. V.; Belobrov, P. I. Surface Properties of Nanodiamond Films Deposited by Electrophoresis on Si(100). Diamond Relat. Mater. 1999, 8, 805-808.
[147] Arenal, R.; Montagnac, G.; Bruno, P.; Gruen, D. M. Multi Wavelength Raman Spectroscopy of Diamond Nanowires Present in n-Type Ultrananocrystalline Films. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76, 245316.
[148] Chen, Y. C.; Tai, N. H.; Lin, I. N. Substrate Temperature Effects on The Electron Field Emission Properties of Nitrogen Doped Ultrananocrystalline Diamond. Diamond Relat. Mater. 2008, 17, 457-461.
[149] Joseph, P. T.; Tai, N. H.; Chen, C. H.; Niu, H.; Cheng, H. F.; Pong, W. F.; Lin, I. N. On the Mechanism of Enhancement on Electron Field Emission Properties for Ultrananocrystalline Diamond Films due to Ion Implantation. J. Phys. D: Appl. Phys. 2009, 42, 105403.
[150] Coffman, F. L.; Cao, R.; Pianetta, P. A.; Kapoor, S.; Kelly, M.; Terminello, L. J. Near-Edge X-ray Absorption of Carbon Materials for Determining Bond Hybridization in Mixed sp2/sp3 Bonded Materials. Appl. Phys. Lett. 1996, 69, 568-570.
[151] Lin, C. R.; Liao, W. H.; Wei, D. H.; Chang, C. K.; Fang, W. C.; Chen, C. L.; Dong, C. L.; Chen, J. L.; Guo, J. H. Improvement on the Synthesis Technique of Ultrananocrystalline Diamond Films by Using Microwave Plasma Jet chemical Vapor Deposition. J. Cryst. Growth 2011, 326, 212-217.
[152] Dato, A.; Radmilovic, V.; Lee, Z.; Philips, J.; Frenklach, M. Substrate-Free Gas-Phase Synthesis of Graphene Sheets. Nano Lett. 2008, 8, 2012-2016.
[153] Berger, S. D.; McKenzie, D. R.; Martin, P. J. EELS Analysis of Vacuum Arc-Deposited Diamond-Like Films. Philos. Mag. Lett. 1988, 57, 285-290.
[154] Duarte-Moller, A.; Espinosa-Magana, F.; Martinez-Sanchez, R.; Avalos-Borja, M.; Hirata, G. A.; Cota-Araiza, L. Study of Different Forms of Carbon by Analytical Electron Microscopy. J. Electron Spectrosc. Relat. Phenom. 1999, 104, 61-66.
[155] Chu, P. K.; Li, L. Characterization of Amorphous and Nanocrystalline Carbon Films. Mater. Chem. Phys. 2006, 96, 253-277.
[156] Wang, Y.; Hoffman, R. W.; Angus; John, C. Electron Energy-Loss Spectral Analysis of Diamond and Diamond-Like Carbon Films. J. Vac. Sci. Technol. A 1990, 8, 2226-2230.
[157] Liu, J.; Zhirnov, V. V.; Myers, A. F.; Wojak, G. J.; Choi, W. B.; Hren, J. J.; Wolter, S. D.; McClure, M. T.; Stoner, B. R.; Glass, J. T. Field Emission Characteristics of Diamond Coated Silicon Field Emitters. J. Vac. Sci. Technol. B: Microelectron. Process. Phenom. 1995, 13, 422-426.
[158] Gautier, L. A.; Borgne, V. Le.; Delegan, N.; Pandiyan, R.; Khakani, M. A. El. Field Electron Emission Enhancement of Graphenated MWCNTs Emitters Following Their Decoration with Au Nanoparticles by a Pulsed Laser Ablation Process. Nanotechnology 2015, 26, 045706.
[159] Kunuku, S.; Sankaran, K. J.; Dong, C. L.; Tai, N. H.; Leou, K. C.; Lin, I. N. Development of Long Lifetime Cathode Materials for Microplasma Application. RSC Adv. 2014, 4, 47865-47875.
[160] Palomino, J.; Varshney, D.; Resto, O.; Weiner, B. R.; Morell, G. Ultrananocrystalline Diamond-Decorated Silicon Nanowire Field Emitters. ACS Appl. Mater. Interfaces 2014, 6, 13815-13822.
[161] Varshney, D.; Weiner, B. R.; Morell, G. Growth and Field Emission Study of A Monolithic Carbon Nanotube/Diamond Composite. Carbon 2010, 48, 3353-3358.
[162] Zanin, H.; May, P. W.; Hamanaka, M. H. M. O.; Corat, E. J. Field Emission from Hybrid Diamond-like Carbon and Carbon Nanotube Composite Structures. ACS Appl. Mater. Interfaces 2013, 5, 12238-12243.
[163] Suzuki, K.; Matsumoto, H.; Minagawa, M.; Tanioka, A.; Hayashi, Y.; Fukuzono, K.; Amaratunga, G. A. Carbon Nanotubes on Carbon Fabrics for Flexible Field Emitter Arrays. Appl. Phys. Lett. 2008, 93, 053107.
[164] Lee, O. J.; Lee, K. H. Fabrication of Flexible Field Emitter Arrays of Carbon Nanotubes using Self-Assembly Monolayers. Appl. Phys. Lett. 2003, 82, 3770-3772.
[165] Yoon, B. J.; Hong, E. H.; Jee, S. E.; Yoon, D. M.; Shim, D. S.; Son, G. Y.; Lee, Y. J.; Lee, K. H.; Kim, H. S.; Park, C. G. Fabrication of Flexible Carbon Nanotube Field Emitter Arrays by Direct Microwave Irradiation on Organic Polymer Substrate. J. Am. Chem. Soc. 2005, 127, 8234-8235.
[166] Sim, H. S.; Lau, S. P.; Yang, H. Y.; Ang, L. K.; Tanemura, M.; Yamaguchi, K. Reliable and Flexible Carbon-Nanofiber-Based All-Plastic Field Emission Devices. Appl. Phys. Lett. 2007, 90, 143103.
[167] Ghosh, P.; Yusop, M. Z.; Satoh, S.; Subramanian, M.; Hayashi, A.; Hayashi, Y.; Tanemura, M. Transparent and Flexible Field Electron Emitters Based on the Conical Nanocarbon Structures. J. Am. Chem. Soc. 2010, 132, 4034-4035.
[168] Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-Based Liquid Crystal Device. Nano Lett. 2008, 8, 1704-1708.
[169] Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706-710.
[170] Verma, V. P.; Das, S.; Lahiri, I.; Choi, W. Large-Area Graphene on Polymer Film for Flexible and Transparent Anode in Field Emission Device. Appl. Phys. Lett. 2010, 96, 203108.
[171] Lahiri, I.; Verma, V. P.; Choi, W. An All-Graphene Based Transparent and Flexible Field Emission Device. Carbon 2011, 49, 1614-1619.
[172] Wang, J.; Chen, G.; Chatrathi, M. P.; Fujishima, A.; Tryk, Donald A.; Shin, D. Microchip Capillary Electrophoresis Coupled with a Boron-Doped Diamond Electrode-Based Electrochemical Detector. Anal. Chem. 2003, 75, 935-939.
[173] Shenderova, O.; Brenner, D.; Ruoff, R. S. Would Diamond Nanorods Be Stronger than Fullerene Nanotubes? Nano Lett. 2003, 3, 805-809.
[174] Brodie, I.; Schwoebel, P. R. Vacuum Microelectronic Devices. Proc. IEEE 1994, 82, 1006-1034.
[175] Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science 1999, 283, 512-514.
[176] Lee, J.; Jung, Y.; Song, J.; Kim, J. S.; Lee, G. W.; Jeong, H. J.; Jeong, Y. High-Performance Field Emission from a Carbon Nanotube Carpet. Carbon 2012, 50, 3889-3896.
[177] Lee, Y. D.; Cho, W. S.; Kim, Y. C.; Ju, B. K. Field Emission of Ribonucleic Acid–Carbon Nanotube Films Prepared by Electrophoretic Deposition. Carbon 2012, 50, 845-850.
[178] Huang, C. K.; Ou, Y.; Bie, Y.; Zhao, Q.; Yu, D. Well-aligned Graphene Arrays for Field Emission Displays. Appl. Phys. Lett. 2011, 98, 263104.
[179] Palnitkar, U. A.; Kashid, R. V.; More, M. A.; Joag, D. S.; Panchakarla, L. S.; Rao, C. N. R. Remarkably Low Turn-on Field Emission in Undoped, Nitrogen-doped, and Boron-doped Graphene. Appl. Phys. Lett. 2010, 97, 063102.
[180] Yamaguchi, H.; Murakami, K.; Eda, G.; Fujita, T.; Guan, P.; Wang, W.; Gong, C.; Boisse, J.; Miller, S.; Acik, M.; Cho, K.; Chabal, Y. J.; Chen, M.; Wakaya, F.; Takai, M.; Chhowalla, M. Field Emission from Atomically Thin Edges of Reduced Graphene Oxide. ACS Nano 2011, 5, 4945-4952.
[181] Ye, D.; Moussa, S.; Ferguson, J. D.; Baski, A. A.; El-Shall, M. S. Highly Efficient Electron Field Emission from Graphene Oxide Sheets Supported by Nickel Nanotip Arrays. Nano Lett. 2012, 12, 1265-1268.
[182] Wang, S.; Wang, J.; Miraldo, P.; Zhu, M.; Outlaw, R.; Hou, K.; Zhao, X.; Holloway, B. C.; Manos, D.; Tyler, T.; Shenderova, O.; Ray, M.; Dalton, J.; McGuire, G. High Field Emission Reproducibility and Stability of Carbon Nanosheets and Nanosheet-Based Backgated Triode Emission Devices. Appl. Phys. Lett. 2006, 89, 183103-183106.
[183] Gu, G. R.; Ito, T. Field Emission Characteristics of Thin-Metal-Coated Nano-Sheet Carbon Films. Appl. Surf. Sci. 2011, 257, 2455-2460.
[184] Carey, J. D.; Forrest, R. D.; Silva, S. R. P. Origin of Electric Field Enhancement in Field Emission from Amorphous Carbon Thin Films. Appl. Phys. Lett. 2001, 78, 2339-2341.
[185] Ilie, A.; Ferrari, A. C.; Yagi, T.; Rodil, S. E.; Robertson, J.; Barborini, E.; Milani, P. Role of sp2 Phase in Field Emission from Nanostructured Carbons. J. Appl. Phys. 2001, 90, 2024-2032.
[186] Wisitsora-at, A.; Kang, W. P.; Davidson, J. L.; Kerns, D. V.; Fisher, T. Diamond Field-emission Triode with Low Gate Turn-on Voltage and High Gain. J. Vac. Sci. Technol. B 2003, 21, 614-617.
[187] Wisitsora-at, A.; Kang, W. P.; Davidson, J. L.; Li, C.; Kerns, D. V.; Howell, M. Modeling of The Transistor Characteristics of a Monolithic Diamond Vacuum Triode. J. Vac. Sci. Technol. B. 2003, 21, 1665-1670.
[188] Orvis, W. J.; McConaghy, C. F.; Ciarlo, D. R.; Yee, J. H.; Hee, E. W. Modeling and Fabricating Micro-cavity Integrated Vacuum Tubes. IEEE Trans. Electron Devices 1989, 36, 2651-2658.
[189] Neidert, R. E.; Phillips, P. M.; Smith, S. T.; Spindt, C. A. Field Emission Triodes. IEEE Trans. Electron Devices 1991, 38, 661-665.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *