帳號:guest(3.147.6.243)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林偉桀
作者(外文):Lin, Wei-Chieh
論文名稱(中文):溶液製程與激態-基態複合物之有機發光元件研究
論文名稱(外文):Device Engineering for Solution-processed and Excimer-based Organic Light-emitting Diodes
指導教授(中文):林皓武
指導教授(外文):Lin, Hao-Wu
口試委員(中文):鄭建鴻
汪根欉
吳志毅
陳學仕
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031811
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:152
中文關鍵詞:有機發光二極體
外文關鍵詞:OLED
相關次數:
  • 推薦推薦:0
  • 點閱點閱:498
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文研究以溶液製程有機發光二極體以及以真空蒸鍍製程製備之激態-
基態複合物有機發光二極體之元件結構對其元件表現之影響。
首先,第一部份簡介有機發光二極體發展,接著介紹溶液製程有機發光二極
體發展現況與高效率螢光有機發光二極體。
論文的第二部份,將針對溶液製程有機發光二極體中之各種性質,包括材料
溶解度、載子傳輸、薄膜形態、元件表現等進行系統性的研究。在第二章至第六
章,我們探討溶液製程電洞注入層、施子-受子結構、施子-受子-施子結構之雙
極性之主體材料、雙主體材料系統、以及光萃取技術。利用溶液製程電洞注入層、
施子-受子結構、施子-受子-施子結構之雙極性之主體材料,製備了高效率的紅、
綠、藍、以及白光有機發光二極體。而利用雙主體材料系統,於發光層中可以提
供良好的載子平衡。最後利用光萃取技術能夠將侷限於基板以及波導膜態內的光
萃取出,功率效率最大增益為3.3 倍。
論文的第三部份,將兩個新穎的激態-基態材料以蒸鍍製程製備有機發光二
極體,第七章中討論了光物理、時間解析結果、激子能量轉換、遲螢光放光特性
以及元件表現,元件外部量子效率可達6.1%,此效率遠高於傳統螢光有機發光
二極體傳統理論值。
In this thesis, I focus on the device engineering and photophysical study of
solution-processed and excimer-based organic light-emitting diodes (OLEDs).
In the first part of this thesis, I reviewed the development of OLEDs, followed by
recent progress of solution-processed OLEDs and efficient fluorescent OLEDs by
harvesting both singlet and triplet excitons.
In the second part, I systematically studied the properties of solution-processed
OLEDs, such as solubility of materials, carrier transporting characteristic, thin-film
morphology, and device performance. From chapter 2 to chapter 6, the
solution-processed hole-injection layer, donor (D)-acceptor (A), D-A-D structure
bipolar host materials, the mixed-host system, and light-extraction techniques were
investigated. Utilizing solution-processed hole-injection, D-A, and D-A-D bipolar
host materials, the red, green, blue, and white OLEDs were fabricated and the devices
showed decent performance. The mixed-host system realized a desirable carrier
balance in the emission layer for solution-processed OLEDs. In chapter 6, the trapped
photons in the wave-guided and substrate modes were extracted effectively by using
the light extraction techniques. A 3.3-fold enhancement of the power efficiency was
found.
In the third part, two excimer (exciplex) materials were employed in vacuum
deposited OELDs. Chapter 7 described the investigations of time-resolved
photophysics, the observation of up-conversion of excitons, characteristics of delayed
fluorescent emission, and device performances. Efficient device was realized with
external quantum efficiency of 6.1%, which was higher than that of a conventional
fluorescent OLED.
Contents
中文摘要......................................................................................................................... i
Abstract .......................................................................................................................... ii
Contents ....................................................................................................................... iii
List of Figures .............................................................................................................. vii
List of Tables ................................................................................................................. xi
Chapter 1. Introduction ............................................................................................ 1
1-1 Overview of Organic Light-Emitting Diodes ............................................ 1
1-2 Working Principles of Organic Light-Emitting Diodes ............................. 2
1-3 Development of Solution-processed Organic Light-Emitting Diodes ....... 3
1-4 Development of Triplet Exciton Harvesting by Fluorescent Organic
Light-Emitting Diodes ........................................................................................... 4
1-5 Thesis Organization ................................................................................... 5
1-6 Figures........................................................................................................ 7
Chapter 2. Solution-processed hexaazatriphenylene hexacarbonitrile as an
universal hole injection layer for organic light-emitting diodes .................................... 8
2-1 Introduction ................................................................................................ 8
2-2 Experimental ............................................................................................ 10
2-2-1. Device fabrication ........................................................................ 10
2-2-2. Measurements .............................................................................. 11
2-3 Result and Discussion .............................................................................. 13
2-3-1. Solubility test ............................................................................... 13
2-3-2. UPS measurement ........................................................................ 14
2-3-3. OLEDs characteristics ................................................................. 15
2-4 Conclusions .............................................................................................. 17
iv
2-5 Figures...................................................................................................... 18
2-6 Tables ....................................................................................................... 26
Chapter 3. Efficient solution-processed green and white phosphorescence organic
light-emitting diodes based on bipolar host materials ................................................. 29
3-1 Introduction .............................................................................................. 29
3-2 Experimental ............................................................................................ 31
3-2-1. Device fabrication ........................................................................ 31
3-2-2. Thin film and device characterization.......................................... 32
3-3 Result and discussion ............................................................................... 33
3-4 Conclusion ............................................................................................... 39
3-5 Figures...................................................................................................... 40
3-6 Tables ....................................................................................................... 49
Chapter 4. Bipolar Host Containing Carbazole/Dibenzothiophene for Efficient
Solution-Processed Blue and White Phosphorescent OLEDs ..................................... 51
4-1 Introduction .............................................................................................. 51
4-2 Experimental ............................................................................................ 54
4-2-1. Thin film and device fabrication .................................................. 54
4-2-2. Time of flight (TOF) measurement .............................................. 55
4-2-3. Thin film and device characterization.......................................... 56
4-3 Result and Discussion .............................................................................. 57
4-4 Conclusion ............................................................................................... 61
4-5 Figures...................................................................................................... 62
4-6 Tables ....................................................................................................... 72
Chapter 5. Highly Efficient Solution-Processed Blue and White Phosphorescent
OLEDs using Approach of Mixed-hosts System ......................................................... 74
v
5-1 Introductions ............................................................................................ 74
5-2 Experimental ............................................................................................ 76
5-2-1. Thin film and device fabrication .................................................. 76
5-2-2. Device characterization ................................................................ 76
5-3 Result and Discussion .............................................................................. 78
5-4 Conclusions .............................................................................................. 82
5-5 Figures...................................................................................................... 83
5-6 Tables ....................................................................................................... 99
Chapter 6. Solution-Processed Organic Light-Emitting Diodes with a Power
Efficacy Exceeding 100 lm/W using Multiple Light Extraction Approaches ........... 102
6-1 Introduction ............................................................................................ 102
6-2 Experimental .......................................................................................... 105
6-2-1. Electromagnetic OLED device simulations ............................... 105
6-2-2. Haze measurement ..................................................................... 105
6-2-3. Device fabrication ...................................................................... 105
6-2-4. Measurements ............................................................................ 107
6-3 Result and Discussion ............................................................................ 108
6-3-1. Electromagnetic simulation of OLED devices .......................... 108
6-3-2. Light extraction techniques ........................................................ 108
6-3-3. Characteristics of the OLEDs .................................................... 110
6-4 Conclusion ............................................................................................. 113
6-5 Figures.................................................................................................... 114
6-6 Tables ..................................................................................................... 121
Chapter 7. The Efficient Fluorescent OLEDs by Harvesting Triplet excitons using
Excimer materials ...................................................................................................... 122
vi
7-1 Introduction ............................................................................................ 122
7-2 Experimental .......................................................................................... 123
7-2-1. Device fabrication ...................................................................... 123
7-2-2. Thin film and device characterization........................................ 124
7-3 Result and Discussion ............................................................................ 125
7-4 Conclusion ............................................................................................. 129
7-5 Figures.................................................................................................... 130
7-6 Tables ..................................................................................................... 139
Chapter 8. Summary and Outlooks...................................................................... 140
Reference ................................................................................................................... 143
Reference
[1] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R.
H. Friend, P. L. Burns, A. B. Holmes, Nature 347 (1990) 539.
[2] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson,
S. R. Forrest, Nature 395 (1998) 151.
[3] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo,
Nature 459 (2009) 234.
[4] M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys. 38 (1963) 2042.
[5] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 51 (1987) 913.
[6] A. R. Duggal, J. J. Shiang, C. M. Heller, D. F. Foust, Appl. Phys. Lett. 80
(2002) 3470.
[7] J. Huang, G. Li, E. Wu, Q. Xu, Y. Yang, Adv. Mater. 18 (2006) 114.
[8] F. C. Krebs, Org. Electron. 10 (2009) 761.
[9] A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Chem. Rev.
110 (2010) 3.
[10] C.-Y. Chen, H.-W. Chang, Y.-F. Chang, B.-J. Chang, Y.-S. Lin, P.-S. Jian, H.-C.
Yeh, H.-T. Chien, E.-C. Chen, Y.-C. Chao, H.-F. Meng, H.-W. Zan, H.-W. Lin,
S.-F. Horng, Y.-J. Cheng, F.-W. Yen, I. F. Lin, H.-Y. Yang, K.-J. Huang, M.-R.
Tseng, J. Appl. Phys. 110 (2011) 094501.
[11] M. C. Gather, A. Köhnen, K. Meerholz, Adv. Mater. 23 (2011) 233.
[12] T. Winkler, H. Schmidt, H. Flugge, F. Nikolayzik, I. Baumann, S. Schmale, T.
Weimann, P. Hinze, H. H. Johannes, T. Rabe, S. Hamwi, T. Riedl, W.
Kowalsky, Org. Electron. 12 (2011) 1612.
[13] A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A.
Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, N.
Rutherford, Appl. Phys. Lett. 83 (2003) 413.
[14] G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E. Thompson, Opt. Lett.
22 (1997) 172.
[15] R. H. Partridge, Polymer 24 (1983) 733.
[16] R. H. Partridge, Polymer 24 (1983) 739.
[17] R. H. Partridge, Polymer 24 (1983) 748.
[18] R. H. Partridge, Polymer 24 (1983) 755.
[19] J. Kido, H. Shionoya, K. Nagai, Appl. Phys. Lett. 67 (1995) 2281.
[20] C.-H. Chien, L.-R. Kung, C.-H. Wu, C.-F. Shu, S.-Y. Chang, Y. Chi, J. Mater.
Chem. 18 (2008) 3461.
[21] H. Y. Oh, C. Kulshreshtha, J. H. Kwon, S. Lee, Org. Electron. 11 (2010) 1624.
144
[22] S. Gong, Q. Fu, Q. Wang, C. Yang, C. Zhong, J. Qin, D. Ma, Adv. Mater. 23
(2011) 4956.
[23] W. Jiang, L. Duan, J. Qiao, G. F. Dong, L. D. Wang, Y. Qiu, Org Lett 13 (2011)
3146.
[24] J. Liu, L. Li, C. Gong, Z. Yu, Q. Pei, J. Mater. Chem. 21 (2011) 9772.
[25] J. Chen, C. Shi, Q. Fu, F. Zhao, Y. Hu, Y. Feng, D. Ma, J. Mater. Chem. 22
(2012) 5164.
[26] K. S. Yook, J. Y. Lee, J. Mater. Chem. 22 (2012) 14546.
[27] C. W. Lee, J. Y. Lee, Adv. Mater. 25 (2013) 596.
[28] M. C. Gather, R. Jin, J. de Mello, D. D. C. Bradley, K. Meerholz, Appl. Phys.
B 95 (2009) 113.
[29] L. Hou, L. Duan, J. Qiao, D. Zhang, G. Dong, L. Wang, Y. Qiu, Org. Electron.
11 (2010) 1344.
[30] K. H. Kim, J. Y. Lee, T. J. Park, W. S. Jeon, G. P. Kennedy, J. H. Kwon, Synth.
Met. 160 (2010) 631.
[31] R. Pode, S. J. Lee, S. H. Jin, S. Kim, J. H. Kwon, J. Phys. D-Appl. Phys. 43
(2010).
[32] C.-C. Lee, C.-H. Yuan, S.-W. Liu, L.-A. Liu, Y.-S. Chen, Display Technology,
Journal of 7 (2011) 636.
[33] Y. J. Doh, J. S. Park, W. S. Jeon, R. Pode, J. H. Kwon, Org. Electron. 13 (2012)
586.
[34] Q. Fu, J. S. Chen, C. S. Shi, D. G. Ma, ACS Appl. Mater. Interfaces 4 (2012)
6579.
[35] N. J. Lee, D. H. Lee, D. W. Kim, J. H. Lee, S. H. Cho, W. S. Jeon, J. H. Kwon,
M. C. Suh, Dyes Pigments 95 (2012) 221.
[36] X. Zhang, Z. Wu, B. Jiao, D. Wang, D. Wang, X. Hou, W. Huang, J. Lumin.
132 (2012) 697.
[37] Q. Fu, J. Chen, H. Zhang, C. Shi, D. Ma, Opt. Express 21 (2013) 11078.
[38] S.-W. Liu, Y.-T. Chang, C.-C. Lee, C.-H. Yuan, L.-A. Liu, Y.-S. Chen, C.-F.
Lin, C.-I. Wu, C.-T. Chen, Jpn. J. Appl. Phys. 52 (2013) 012101.
[39] Y. H. Niu, M. S. Liu, J. W. Ka, J. Bardeker, M. T. Zin, R. Schofield, Y. Chi, A.
K. Y. Jen, Adv. Mater. 19 (2007) 300.
[40] F. Huang, Y. J. Cheng, Y. Zhang, M. S. Liu, A. K. Y. Jen, J. Mater. Chem. 18
(2008) 4495.
[41] C.-Y. Lin, Y.-C. Lin, W.-Y. Hung, K.-T. Wong, R. C. Kwong, S. C. Xia, Y.-H.
Chen, C.-I. Wu, J. Mater. Chem. 19 (2009) 3618.
[42] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys. 90
(2001) 5048.
145
[43] H. Yersin, W. J. Finkenzeller, Triplet Emitters for Organic Light-Emitting
Diodes: Basic Properties, in: Highly Efficient OLEDs with Phosphorescent
Materials, Wiley-VCH Verlag GmbH & Co. KGaA, 2008, pp. 1.
[44] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photon. 8
(2014) 326.
[45] S. Wu, M. Aonuma, Q. Zhang, S. Huang, T. Nakagawa, K. Kuwabara, C.
Adachi, J. Mater. Chem. C 2 (2014) 421.
[46] G. Méhes, K. Goushi, W. J. Potscavage Jr, C. Adachi, Org. Electron. 15 (2014)
2027.
[47] S. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang, C. Adachi, Angew. Chem. Int. Ed.
53 (2014) 6402.
[48] H. Nakanotani, K. Masui, J. Nishide, T. Shibata, C. Adachi, Sci. Rep. 3 (2013).
[49] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi, J. Am.
Chem. Soc. 134 (2012) 14706.
[50] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492 (2012)
234.
[51] H. Tanaka, K. Shizu, H. Miyazaki, C. Adachi, Chem. Commun. 48 (2012)
11392.
[52] T. Nakagawa, S.-Y. Ku, K.-T. Wong, C. Adachi, Chem. Commun. 48 (2012)
9580.
[53] G. Méhes, H. Nomura, Q. Zhang, T. Nakagawa, C. Adachi, Angew. Chem. Int.
Ed. 51 (2012) 11311.
[54] A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C. Adachi,
Appl. Phys. Lett. 98 (2011).
[55] J. Li, H. Nomura, H. Miyazaki, C. Adachi, Chem. Commun. 50 (2014) 6174.
[56] D. Graves, V. Jankus, F. B. Dias, A. Monkman, Adv. Funct. Mater. 24 (2014)
2343.
[57] V. Jankus, C.-J. Chiang, F. Dias, A. P. Monkman, Adv. Mater. 25 (2013) 1455.
[58] W.-Y. Hung, G.-C. Fang, Y.-C. Chang, T.-Y. Kuo, P.-T. Chou, S.-W. Lin, K.-T.
Wong, ACS Appl. Mater. Interfaces 5 (2013) 6826.
[59] M. Mazzeo, D. Pisignano, F. Della Sala, J. Thompson, R. I. R. Blyth, G. Gigli,
R. Cingolani, G. Sotgiu, G. Barbarella, Appl. Phys. Lett. 82 (2003) 334.
[60] V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I. Djurovich, B. W.
D'Andrade, C. Adachi, S. R. Forrest, M. E. Thompson, New J Chem 26 (2002)
1171.
[61] J. Thompson, R. I. R. Blyth, M. Mazzeo, M. Anni, G. Gigli, R. Cingolani,
Appl. Phys. Lett. 79 (2001) 560.
[62] J.-Y. Hu, Y.-J. Pu, Y. Yamashita, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, J.
146
Kido, J. Mater. Chem. C 1 (2013) 3871.
[63] D. Thirion, M. Romain, J. Rault-Berthelot, C. Poriel, J. Mater. Chem. 22
(2012) 7149.
[64] J. Y. Hu, Y. J. Pu, G. Nakata, S. Kawata, H. Sasabe, J. Kido, Chem. Commun.
48 (2012) 8434.
[65] S. T. Hoffmann, P. Schrögel, M. Rothmann, R. Q. Albuquerque, P. Strohriegl,
A. Köhler, J. Phys. Chem. B 115 (2010) 414.
[66] E. L. Williams, K. Haavisto, J. Li, G. E. Jabbour, Adv. Mater. 19 (2007) 197.
[67] J. Kalinowski, M. Cocchi, D. Virgili, V. Fattori, J. A. G. Williams, Adv. Mater.
19 (2007) 4000.
[68] K.-Y. Lai, T.-M. Chu, F. C.-N. Hong, A. Elangovan, K.-M. Kao, S.-W. Yang,
T.-I. Ho, Surf. Coat. Technol. 200 (2006) 3283.
[69] P.-Y. Chou, H.-H. Chou, Y.-H. Chen, T.-H. Su, C.-Y. Liao, H.-W. Lin, W.-C.
Lin, H.-Y. Yen, I.-C. Chen, C.-H. Cheng, Chem. Commun. 50 (2014) 6869.
[70] H. Fukagawa, T. Shimizu, N. Ohbe, S. Tokito, K. Tokumaru, H. Fujikake, Org.
Electron. 13 (2012) 1197.
[71] S. M. King, M. Cass, M. Pintani, C. Coward, F. B. Dias, A. P. Monkman, M.
Roberts, J. Appl. Phys. 109 (2011).
[72] D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, J. P. Spindler, J. Appl. Phys. 106
(2009).
[73] C. Ganzorig, M. Fujihira, Appl. Phys. Lett. 81 (2002) 3137.
[74] L. D. Hou, L. A. Duan, J. A. Qiao, D. Q. Zhang, G. F. Dong, L. D. Wang, Y.
Qiu, Org. Electron. 11 (2010) 1344.
[75] B. H. Zhang, G. P. Tan, C. S. Lam, B. Yao, C. L. Ho, L. H. Liu, Z. Y. Xie, W. Y.
Wong, J. Q. Ding, L. X. Wang, Adv. Mater. 24 (2012) 1873.
[76] R. J. Wang, D. Liu, R. Zhang, L. J. Deng, J. Y. Li, J. Mater. Chem. 22 (2012)
1411.
[77] D. W. Li, L. J. Guo, Appl. Phys. Lett. 88 (2006) 063513.
[78] W. S. Chung, H. Lee, W. Lee, M. J. Ko, N. G. Park, B. K. Ju, K. Kim, Org.
Electron. 11 (2010) 521.
[79] J. S. Kim, P. K. H. Ho, C. E. Murphy, A. Seeley, I. Grizzi, J. H. Burroughes, R.
H. Friend, Chem. Phys. Lett. 386 (2004) 2.
[80] J. S. Kim, R. H. Friend, I. Grizzi, J. H. Burroughes, Appl. Phys. Lett. 87 (2005)
023506.
[81] K. H. Yim, R. Friend, J. S. Kim, J. Chem. Phys. 124 (2006) 184706.
[82] M. P. de Jong, L. J. van Ijzendoorn, M. J. A. de Voigt, Appl. Phys. Lett. 77
(2000) 2255.
[83] Y. M. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger,
147
Nat. Mater. 11 (2012) 44.
[84] J. Subbiah, P. M. Beaujuge, K. R. Choudhury, S. Ellinger, J. R. Reynolds, F.
So, Org. Electron. 11 (2010) 955.
[85] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong,
Appl. Phys. Lett. 93 (2008) 221107.
[86] H. Choi, B. Kim, M. J. Ko, D. K. Lee, H. Kim, S. H. Kim, K. Kim, Org.
Electron. 13 (2012) 959.
[87] S. S. Li, K. H. Tu, C. C. Lin, C. W. Chen, M. Chhowalla, ACS Nano 4 (2010)
3169.
[88] J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B.
C. Ku, S. I. Na, Adv. Mater. 23 (2011) 4923.
[89] B.-S. Du, J.-L. Liao, M.-H. Huang, C.-H. Lin, H.-W. Lin, Y. Chi, H.-A. Pan,
G.-L. Fan, K.-T. Wong, G.-H. Lee, P.-T. Chou, Adv. Funct. Mater. 22 (2012)
3491.
[90] M. Cai, T. Xiao, E. Hellerich, Y. Chen, R. Shinar, J. Shinar, Adv. Mater. 23
(2011) 3590.
[91] R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, M.
E. Thompson, Appl. Phys. Lett. 82 (2003) 2422.
[92] C. I. Wu, C. T. Lin, Y. H. Chen, M. H. Chen, Y. J. Lu, C. C. Wu, Appl. Phys.
Lett. 88 (2006) 152104.
[93] D. Liu, M. Fina, Z. Chen, X. Chen, G. Liu, S. Johnson, S. S. Mao, Appl. Phys.
Lett. 91 (2007) 093514.
[94] T. Earmme, E. Ahmed, S. A. Jenekhe, Adv. Mater. 22 (2010) 4744.
[95] T. Earmme, S. A. Jenekhe, J. Mater. Chem. 22 (2012) 4660.
[96] Y. K. Kim, J. W. Kim, Y. Park, Appl. Phys. Lett. 94 (2009) 063305.
[97] C. E. Small, S.-W. Tsang, J. Kido, S. K. So, F. So, Adv. Funct. Mater. 22 (2012)
3261.
[98] S. M. Park, Y. H. Kim, Y. Yi, H. Y. Oh, J. W. Kim, Appl. Phys. Lett. 97 (2010)
063308.
[99] K. S. Yook, S. O. Jeon, J. Y. Lee, Thin Solid Films 517 (2009) 6109.
[100] S. J. Su, T. Chiba, T. Takeda, J. Kido, Adv. Mater. 20 (2008) 2125.
[101] W.-C. Lin, W.-C. Huang, M.-H. Huang, C.-C. Fan, H.-W. Lin, L.-Y. Chen,
Y.-W. Liu, J.-S. Lin, T.-C. Chao, M.-R. Tseng, J. Mater. Chem. C 1 (2013)
6835.
[102] T. Yu-Sheng, C. Apisit, J. Fuh-Shyang, H. Lin-Ann, O. Chih-Yuan, Jpn. J.
Appl. Phys. 52 (2013) 04CK03.
[103] B. Huang, W. Jiang, J. Tang, X. Ban, R. Zhu, H. Xu, W. Yang, Y. Sun, Dyes
Pigments 101 (2014) 9.
148
[104] H. Xia, M. Li, D. Lu, C. B. Zhang, W. J. Xie, X. D. Liu, B. Yang, Y. G. Ma,
Adv. Funct. Mater. 17 (2007) 1757.
[105] J. Lee, N. Chopra, S.-H. Eom, Y. Zheng, J. Xue, F. So, J. Shi, Appl. Phys. Lett.
93 (2008).
[106] S.-Y. Ku, W.-Y. Hung, C.-W. Chen, S.-W. Yang, E. Mondal, Y. Chi, K.-T.
Wong, Chem. Asian J. 7 (2012) 133.
[107] M.-S. Lin, S.-J. Yang, H.-W. Chang, Y.-H. Huang, Y.-T. Tsai, C.-C. Wu, S.-H.
Chou, E. Mondal, K.-T. Wong, J. Mater. Chem. 22 (2012) 16114.
[108] M.-Y. Lai, C.-H. Chen, W.-S. Huang, J. T. Lin, T.-H. Ke, L.-Y. Chen, M.-H.
Tsai, C.-C. Wu, Angew. Chem. 120 (2008) 591.
[109] S. Gong, Y. Zhao, C. Yang, C. Zhong, J. Qin, D. Ma, J. Phys. Chem. C 114
(2010) 5193.
[110] Z. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto, T. Kajita,
M.-a. Kakimoto, Adv. Funct. Mater. 18 (2008) 584.
[111] M. R. Zhu, T. L. Ye, X. He, X. S. Cao, C. Zhong, D. G. Ma, J. G. Qin, C. L.
Yang, J. Mater. Chem. 21 (2011) 9326.
[112] X. Lin, S. Yagai, A. Kitamura, D. R. Hwang, S. Y. Park, Y. S. Park, J. J. Kim, T.
Karatsu, Synth. Met. 162 (2012) 303.
[113] E. Mondal, W.-Y. Hung, Y.-H. Chen, M.-H. Cheng, K.-T. Wong, Chem. Eur. J.
19 (2013) 10563.
[114] E. Mondal, W.-Y. Hung, H.-C. Dai, K.-T. Wong, Adv. Funct. Mater. 23 (2013)
3096.
[115] H.-W. Lin, W.-C. Lin, J.-H. Chang, C.-I. Wu, Org. Electron. 14 (2013) 1204.
[116] R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, M.
E. Thompson, Appl. Phys. Lett. 82 (2003) 2422.
[117] D. Tanaka, Y. Agata, T. Takeda, S. Watanabe, J. Kido, Jpn. J. Appl. Phys. 46
L117.
[118] Y. L. Chang, Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, Z. H. Lu, Org.
Electron. 13 (2012) 925.
[119] Y. Noguchi, Y. Miyazaki, Y. Tanaka, N. Sato, Y. Nakayama, T. D. Schmidt, W.
Brütting, H. Ishii, J. Appl. Phys. 111 (2012).
[120] Z. B. Wang, M. G. Helander, Z. W. Liu, M. T. Greiner, J. Qiu, Z. H. Lu, Appl.
Phys. Lett. 96 (2010) 043303.
[121] Y.-F. Chang, Y.-C. Chiu, H.-C. Yeh, H.-W. Chang, C.-Y. Chen, H.-F. Meng,
H.-W. Lin, H.-L. Huang, T.-C. Chao, M.-R. Tseng, H.-W. Zan, S.-F. Horng,
Org. Electron. 13 (2012) 2149.
[122] W. Jiang, J. Tang, X. Ban, Y. Sun, L. Duan, Y. Qiu, Org Lett (2014).
[123] H. Huang, Q. Fu, B. Pan, S. Q. Zhuang, L. Wang, J. S. Chen, D. G. Ma, C. L.
149
Yang, Org Lett 14 (2012) 4786.
[124] J. Y. Li, T. Zhang, Y. J. Liang, R. X. Yang, Adv. Funct. Mater. 23 (2013) 619.
[125] W. Yang, X. Ban, Y. Chen, H. Xu, B. Huang, W. Jiang, Y. Dai, Y. Sun, Opt.
Mater. 35 (2013) 2201.
[126] X. Ban, H. Xu, G. Yuan, W. Jiang, B. Huang, Y. Sun, Org. Electron. 15 (2014)
1678.
[127] J. Tang, Y. Chen, L. Cong, B. Lin, Y. Sun, Tetrahedron 70 (2014) 3847.
[128] N. Aizawa, Y. J. Pu, H. Sasabe, J. Kido, Org. Electron. 13 (2012) 2235.
[129] S. Tokito, T. Iijima, T. Tsuzuki, F. Sato, Appl. Phys. Lett. 83 (2003) 2459.
[130] Y. R. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, S. R. Forrest,
Nature 440 (2006) 908.
[131] C.-H. Lin, Y.-Y. Chang, J.-Y. Hung, C.-Y. Lin, Y. Chi, M.-W. Chung, C.-L. Lin,
P.-T. Chou, G.-H. Lee, C.-H. Chang, W.-C. Lin, Angew. Chem.-Int. Edit. 50
(2011) 3182.
[132] C. Y. Kim, D. G. Ha, H. H. Kang, H. J. Yun, S. K. Kwon, J. J. Kim, Y. H. Kim,
J. Mater. Chem. 22 (2012) 22721.
[133] C.-H. Lin, C.-W. Hsu, J.-L. Liao, Y.-M. Cheng, -. Y. Chi, T.-Y. Lin, M.-W.
Chung, P.-T. Chou, G.-H. Lee, C.-H. Chang, C.-Y. Shih, C.-L. Ho, J. Mater.
Chem. 22 (2012) 10684.
[134] S. Lee, D. Limbach, K. H. Kim, S. J. Yoo, Y. S. Park, J. J. Kim, Org. Electron.
14 (2013) 1856.
[135] H. Sasabe, J. Kido, J. Mater. Chem. C 1 (2013) 1699.
[136] J.-Y. Hung, C.-H. Lin, Y. Chi, M.-W. Chung, Y.-J. Chen, G.-H. Lee, P.-T. Chou,
C.-C. Chen, C.-C. Wu, J. Mater. Chem. 20 (2010) 7682.
[137] W. Jiang, Z. J. Ge, P. Y. Cai, B. Huang, Y. Q. Dai, Y. M. Sun, J. Qiao, L. D.
Wang, L. Duan, Y. Qiu, J. Mater. Chem. 22 (2012) 12016.
[138] M.-T. Kao, W.-Y. Hung, Z.-H. Tsai, H.-W. You, H.-F. Chen, Y. Chi, K.-T.
Wong, J. Mater. Chem. 21 (2011) 1846.
[139] C.-H. Yang, Y.-M. Cheng, Y. Chi, C.-J. Hsu, F.-C. Fang, K.-T. Wong, P.-T.
Chou, C.-H. Chang, M.-H. Tsai, C.-C. Wu, Angew. Chem.-Int. Edit. 46 (2007)
2418.
[140] C.-H. Chang, C.-C. Chen, C.-C. Wu, C.-H. Yang, Y. Chi, Org. Electron. 10
(2009) 1364.
[141] C.-H. Chang, K.-C. Tien, C.-C. Chen, M.-S. Lin, H.-C. Cheng, S.-H. Liu, C.-C.
Wu, J.-Y. Hung, Y.-C. Chiu, Y. Chi, Org. Electron. 11 (2010) 412.
[142] L.-S. Cui, S.-C. Dong, Y. Liu, Q. Li, Z.-Q. Jiang, L.-S. Liao, J. Mater. Chem.
C 1 (2013) 3967.
[143] Z. Y. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto, T. Kajita,
150
M. A. Kakimoto, Adv. Funct. Mater. 18 (2008) 584.
[144] Z. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyarnoto, T. Kajita, M.
A. Kakimoto, Chem. Mater 20 (2008) 2532.
[145] T. H. Huang, W. T. Whang, J. Y. Shen, Y. S. Wen, J. T. Lin, T. H. Ke, L. Y.
Chen, C. C. Wu, Adv. Funct. Mater. 16 (2006) 1449.
[146] U. S. Bhansali, E. Polikarpov, J. S. Swensen, W. H. Chen, H. P. Jia, D. J.
Gaspar, B. E. Gnade, A. B. Padmaperuma, M. A. Omary, Appl. Phys. Lett. 95
(2009) 23304.
[147] D. Kim, S. Salman, V. Coropceanu, E. Salomon, A. B. Padmaperuma, L. S.
Sapochak, A. Kahn, J.-L. Brédas, Chem. Mater 22 (2009) 247.
[148] M.-T. Lee, J.-S. Lin, M.-T. Chu, M.-R. Tseng, Appl. Phys. Lett. 94 (2009)
083506.
[149] R. Grisorio, G. Melcarne, G. P. Suranna, P. Mastrorilli, C. F. Nobile, P. Cosma,
P. Fini, S. Colella, E. Fabiano, M. Piacenza, F. Della Sala, G. Ciccarella, M.
Mazzeo, G. Gigli, J. Mater. Chem. 20 (2010) 1012.
[150] S. H. Jeong, J. Y. Lee, J. Mater. Chem. 21 (2011) 14604.
[151] L. S. Sapochak, A. B. Padmaperuma, P. A. Vecchi, X. Cai, P. E. Burrows, in:
SPIE, 2007, pp. 665506.
[152] X. Cai, A. B. Padmaperuma, L. S. Sapochak, P. A. Vecchi, P. E. Burrows, Appl.
Phys. Lett. 92 (2008) 083308.
[153] H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N.
Langer, O. Molt, E. Fuchs, C. Lennartz, J. Kido, Adv. Mater. 22 (2010) 5003.
[154] M.-T. Wu, S.-J. Yeh, C.-T. Chen, H. Murayama, T. Tsuboi, W.-S. Li, I. Chao,
S.-W. Liu, J.-K. Wang, Adv. Funct. Mater. 17 (2007) 1887.
[155] M.-H. Tsai, H.-W. Lin, H.-C. Su, T.-H. Ke, C.-C. Wu, F.-C. Fang, Y.-L. Liao,
K.-T. Wong, C.-I. Wu, Adv. Mater. 18 (2006) 1216.
[156] H.-H. Chou, C.-H. Cheng, Adv. Mater. 22 (2010) 2468.
[157] J. J. Park, T. J. Park, W. S. Jeon, R. Pode, J. Jang, J. H. Kwon, E. S. Yu, M. Y.
Chae, Org. Electron. 10 (2009) 189.
[158] K.-T. Wong, Y.-Y. Chien, R.-T. Chen, C.-F. Wang, Y.-T. Lin, H.-H. Chiang,
P.-Y. Hsieh, C.-C. Wu, C.-H. Chou, Y.-O. Su, G.-H. Lee, S.-M. Peng, J. Am.
Chem. Soc. 124 (2002) 11576.
[159] Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson,
S. Wang, Z. W. Liu, Z. H. Lu, Nat. Photonics 5 (2011) 753.
[160] J.-S. Lin, M.-T. Lee, M.-T. Chu, M.-R. Tseng, SID Symposium Digest of
Technical Papers 42 (2011) 1787.
[161] W. D. Gill, J. Appl. Phys. 43 (1972) 5033.
[162] L. B. Schein, Philosophical Magazine Part B 65 (1992) 795.
151
[163] H. Bassler, Phys. Status Solidi B-Basic Res. 175 (1993) 15.
[164] G. G. Malliaras, Y. Shen, D. H. Dunlap, H. Murata, Z. H. Kafafi, Appl. Phys.
Lett. 79 (2001) 2582.
[165] C. Cai, S. J. Su, T. Chiba, H. Sasabe, Y. J. Pu, K. Nakayama, J. Kido, Org.
Electron. 12 (2011) 843.
[166] V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, S. R. Forrest,
Physical Review B 58 (1998) 3730.
[167] C. F. Madigan, M. H. Lu, J. C. Sturm, Appl. Phys. Lett. 76 (2000) 1650.
[168] J. J. Shiang, T. J. Faircloth, A. R. Duggal, J. Appl. Phys. 95 (2004) 2889.
[169] B. W. D'Andrade, J. J. Brown, Appl. Phys. Lett. 88 (2006).
[170] S. L. M. van Mensfoort, M. Carvelli, M. Megens, D. Wehenkel, M. Bartyzel,
H. Greiner, R. A. J. Janssen, R. Coehoorn, Nat. Photonics 4 (2010) 329.
[171] W. H. Koo, F. Araoka, K. Ishikawa, S. M. Jeong, S. Nishimura, T. Toyooka, H.
Takezoe, Appl. Phys. Express 4 (2011).
[172] W. H. Koo, W. Youn, P. F. Zhu, X. H. Li, N. Tansu, F. So, Adv. Funct. Mater.
22 (2012) 3454.
[173] B. J. Scholz, J. Frischeisen, A. Jaeger, D. S. Setz, T. C. G. Reusch, W. Brutting,
Opt. Express 20 (2012) A205.
[174] C. Zhong, C. Duan, F. Huang, H. Wu, Y. Cao, Chem. Mater 23 (2010) 326.
[175] G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, J. Salbeck,
Appl. Phys. Lett. 85 (2004) 3911.
[176] N. Matsumoto, M. Nishiyama, C. Adachi, J. Phys. Chem. C 112 (2008) 7735.
[177] N. Matsumoto, C. Adachi, J. Phys. Chem. C 114 (2010) 4652.
[178] D. Zhao, F. Zhang, C. Xu, J. Sun, S. Song, Z. Xu, X. Sun, Appl. Surf. Sci. 254
(2008) 3548.
[179] S. J. Farley, D. L. Rochester, A. L. Thompson, J. A. K. Howard, J. A. G.
Williams, Inorg. Chem. 44 (2005) 9690.
[180] G. Kenichi, Y. Kou, S. Keigo, A. Chihaya, Nat. Photonics 6 (2012) 253.
[181] Y. H. Son, M. J. Park, Y. J. Kim, J. H. Yang, J. S. Park, J. H. Kwon, Org.
Electron. 14 (2013) 1183.
[182] K. H. Kim, Y. S. Seo, D. G. Moon, Synth. Met. 189 (2014) 157.
[183] Y. Liu, L. S. Cui, M. F. Xu, X. B. Shi, D. Y. Zhou, Z. K. Wang, Z. Q. Jiang, L.
S. Liao, J. Mater. Chem. C 2 (2014) 2488.
[184] K.-C. Tien, M.-S. Lin, Y.-H. Lin, C.-H. Tsai, M.-H. Shiu, M.-C. Wei, H.-C.
Cheng, C.-L. Lin, H.-W. Lin, C.-C. Wu, Org. Electron. 11 (2010) 397.
[185] S.-Y. Kim, J.-J. Kim, Org. Electron. 11 (2010) 1010.
[186] C.-L. Lin, T.-Y. Cho, C.-H. Chang, C.-C. Wu, Appl. Phys. Lett. 88 (2006)
081114.
152
[187] A. Chutinan, K. Ishihara, T. Asano, M. Fujita, S. Noda, Org. Electron. 6 (2005)
3.
[188] G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E.
Thompson, Opt. Lett. 22 (1997) 396.
[189] Y. Sun, S. R. Forrest, Nat. Photon. 2 (2008) 483.
[190] H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim,
Y.-I. Park, J.-W. Park, Y. R. Do, Org. Electron. 11 (2010) 137.
[191] S. Möller, S. R. Forrest, J. Appl. Phys. 91 (2002) 3324.
[192] Y. Sun, S. R. Forrest, J. Appl. Phys. 100 (2006) 073106.
[193] M. Thomschke, S. Reineke, B. Lüssem, K. Leo, Nano Lett. 12 (2011) 424.
[194] Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi,
H.-B. Sun, Org. Electron. 12 (2011) 1927.
[195] S. Mladenovski, K. Neyts, D. Pavicic, A. Werner, C. Rothe, Opt. Express 17
(2009) 7562.
[196] T. Nakamura, N. Tsutsumi, N. Juni, H. Fujii, J. Appl. Phys. 97 (2005).
[197] Y. Sun, S. R. Forrest, J. Appl. Phys. 100 (2006).
[198] F. Galeotti, W. Mróz, G. Scavia, C. Botta, Org. Electron. 14 (2013) 212.
[199] Y.-H. Ho, K.-Y. Chen, K.-Y. Peng, M.-C. Tsai, W.-C. Tian, P.-K. Wei, Opt.
Express 21 (2013) 8535.
[200] S. Lee, E. Wrzesniewski, W. Cao, J. Xue, E. P. Douglas, J Disp Technol 9
(2013) 497.
[201] S. Chen, W. Qin, Z. Zhao, B. Z. Tang, H.-S. Kwok, J. Mater. Chem. 22 (2012)
13386.
[202] H.-N. Lee, H. Cho, Electron. Mater. Lett. 9 (2013) 49.
[203] S. A. Choulis, V.-E. Choong, M. K. Mathai, F. So, Appl. Phys. Lett. 87 (2005)
113503.
[204] X. Yang, D. C. Müller, D. Neher, K. Meerholz, Adv. Mater. 18 (2006) 948.
[205] M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature 403 (2000) 750.
[206] W.-C. Wu, H.-C. Yeh, L.-H. Chan, C.-T. Chen, Adv. Mater. 14 (2002) 1072.
[207] A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C. Adachi,
Appl. Phys. Lett. 98 (2011) 083302.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *