帳號:guest(18.188.28.135)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許家豪
作者(外文):Hsu, Chia-Hao
論文名稱(中文):四元靶材濺鍍銅銦鎵硒薄膜中硒、鈉、鉀之效應
論文名稱(外文):Effects of Se, Na and K on quaternary-sputtered CIGS thin films
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):蘇炎坤
謝漢萍
黃志青
江建志
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031804
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:135
中文關鍵詞:薄膜太陽能電池銅銦鎵硒濺鍍四元靶材
外文關鍵詞:thin-film solar cellsCIGSsputteringquaternary target
相關次數:
  • 推薦推薦:0
  • 點閱點閱:338
  • 評分評分:*****
  • 下載下載:31
  • 收藏收藏:0
以單一靶材濺鍍製作銅銦硒薄膜在超過三十年前即被提出,和目前主流的共蒸鍍法以及合金後硒化法約略同時期開始發展。然而,共蒸鍍法與合金後硒化法在三十年來有長足的演進,兩者都能夠製作元件效率超過 20% 的銅銦鎵硒 (CIGS) 太陽能電池,單一靶材濺鍍製程的進步卻十分有限。

為了有效運用單一 CIGS 靶材濺鍍製程的優點,如大面積均勻、不需使用毒性氣體、不需後硒化等,本論文致力於提升單一四元靶材濺鍍薄膜的元件性能,縮小其與主流製程間的差距。本論文點出此製程的關鍵缺點為硒供給不足,並嘗試以三種方法緩解硒不足以及轉換效率過低的問題:

1. 以濺鍍 Sb2Se3 靶材提升硒供應量:在共蒸鍍與後硒化製程中,硒的供給量可以獨立控制。然而,過量硒供給在四元靶材濺鍍製程中卻難以達成。本論文利用 Sb2Se3 在高溫會分解產生硒蒸氣的特性,成功以濺鍍 Sb2Se3 做為額外硒的來源,並探討在 CIGS 濺鍍的前、中、後三個不同階段提供額外硒供給的效果。以此方法,元件轉換效率成功的提升至 10.4%。

2. 以鈉摻雜減少硒不足時易生成的缺陷:除了藉由提供額外的硒來消除硒不足時產生的缺陷,本研究發現這些缺陷也可以藉由額外的鈉摻雜來消除。這一部分的研究探討鈉摻雜方式對 CIGS 薄膜以及元件電性表現的影響,並以此方法達成 11% 的元件轉換效能。

3. 以鈉、鉀共摻雜更進一步提升元件性能:近期,人們發現鈉鉀共摻雜可以更近一步提升 CIGS 的元件轉換效率,然而其機制仍待探索。本研究的第三部分,探討了鈉、鉀共摻雜對四元靶材濺鍍 CIGS 薄膜之影響,並提出背後可能的機制。藉由鈉、鉀共摻雜,元件效能更進一步提升至 14% 以上,超越了只有一種額外鹼金屬摻雜的元件效能。

本論文提出的方法在不需要後硒硫化、且未做能隙工程的前提下,得到了超過 14% 的元件轉換效能,證實了四元靶材濺鍍足以成為工業生產上可行的製程。現階段,我們仍未看到此製程的限制,並認為在不久的將來可以有更進一步突破。
Depositing CuInSe2 absorbers by sputtering from a single compound target has been proposed over 30 years ago, as old as the current mainstream processes, co-evaporation and post-selenization. Single target sputtering is a simple and straightforward process. Uniform CuInSe2 or Cu(In,Ga)Se2 (CIGS) thin films can be deposited over a large area without the need of toxic gases or post-selenization. However, while both co-evaporation and post-selenization processes have evolved and reached efficiency over 20%, single target sputtering seems to be abandoned, with little progress made in the past thirty years. This dissertation aims to improve the efficiency of the CIGS absorbers deposited by sputtering from a CIGS target in order to fully utilize the advantages of the process. In the dissertation, we point out that the key drawback of the quaternary-sputtering process is the limited Se supply, and several approaches are proposed to resolve the Se deficiency. The first approach is to supply extra Se by sputtering an Sb2Se3 target, which is a stable and up-scalable method to provide extra Se during sputtering. The influences of extra Se supply before, during and after CIGS sputtering are investigated. Secondly, we show that the Se deficiency can also be compensated by extra Na doping, which significantly improves cell efficiency without the need of extra Se supply. Finally, we show that Na and K co-doping further improves the quality of quaternary-sputtered CIGS absorbers, and the possible mechanisms are proposed. With these approaches to minimizing the impact of Se deficiency and improving cell performance, an efficiency of over 14% can be obtained by sputtering from a single CIGS target without post-selenization or introducing compositional grading in the absorbers. The feasibility of the quaternary-sputtering process is proved, and, at the current stage, we do not see any limitation of the quaternary-sputtering process and expect for higher cell efficiency in the near future.
Abstract iii
Acknowledgements vi
Contents vii
List of Figures xi
List of Tables xv
Abbreviations xvii
Symbols xix

1 General introduction 1
1.1 Context and objectives . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Status of photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Photovoltaic industry . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Research and development . . . . . . . . . . . . . . . . . . . 8
2.2 Device structure of CIGS solar cells . . . . . . . . . . . . . . . . . . 10
2.3 Material properties of Cu(In,Ga)Se2 . . . . . . . . . . . . . . . . . . 13
2.3.1 Composition and phases of CIGS . . . . . . . . . . . . . . . 13
2.3.2 Intrinsic defects in CI(G)S . . . . . . . . . . . . . . . . . . . 16
2.3.3 Effect of oxygen . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Effect of Na doping . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Effect of K doping . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Device physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Solar cell operation . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Band diagram and current transport . . . . . . . . . . . . . 26
2.4.3 Band engineering . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Grain boundaries . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Fabrication of Cu(In,Ga)Se2 . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Three-stage co-evaporation process . . . . . . . . . . . . . . 33
2.5.2 Sulfurization after selenization . . . . . . . . . . . . . . . . . 34
2.5.3 One-step sputtering process . . . . . . . . . . . . . . . . . . 36
2.5.4 Other one-step processes . . . . . . . . . . . . . . . . . . . . 38
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Experiment techniques 41
3.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.1 High-vacuum magnetron sputtering system . . . . . . . . . . 41
3.1.2 Evaporators . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Photoluminescence . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Kelvin force microscope . . . . . . . . . . . . . . . . . . . . 44
3.2.3 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.4 Scanning electron microscope . . . . . . . . . . . . . . . . . 47
3.2.5 Surface analysis . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.6 Performance measurement . . . . . . . . . . . . . . . . . . . 49
3.2.7 Capacitance-voltage analysis . . . . . . . . . . . . . . . . . . 50
3.2.8 Admittance . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Excess Se supply for quaternary sputtering process 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Importance of Se supply in quaternary sputtering process . . 59
4.3.2 Co-sputtering of CIGS and Sb2Se3 . . . . . . . . . . . . . . 61
4.3.3 Sequential sputtering of CIGS and Sb2Se3 . . . . . . . . . . 65
4.3.4 On the differences between co-sputtering and sequential sput-
tering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Na-induced efficiency boost for Se-poor CIGS absorbers 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.1 CIGS growth conditions . . . . . . . . . . . . . . . . . . . . 79
5.3.2 PV device characteristics . . . . . . . . . . . . . . . . . . . . 81
5.3.3 CIGS film characteristics . . . . . . . . . . . . . . . . . . . . 82
5.3.4 Transport and defect properties . . . . . . . . . . . . . . . . 85
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Effects of K on quaternary-sputtered CIGS absorbers 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.1 Individual effects of annealing, NaF-PDT and KF-PDT . . . 99
6.3.2 Effects of sequential PDT of NaF and KF . . . . . . . . . . 107
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Conclusions and outlooks 119
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Suggestions for future works . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography 123
[1] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se 2 solar cells with efficiencies up to 22.6%,” physica status solidi (RRL) – Rapid Research Letters, Aug. 2016.
[2] C.-H. Chen, W.-C. Shih, C.-Y. Chien, C.-H. Hsu, Y.-H. Wu, and C.-H. Lai, “A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In,Ga)Se 2 absorbers without extra Se supply,” Solar Energy Materials and Solar Cells, vol. 103, pp. 25–29, Aug. 2012.
[3] P. Mints, in “Global photovoltaic shipments jump 15% in 2014”, http://www.idtechex.com/research/articles/global-photovoltaic-shipments-jump-15-in-2014-00007454.asp?donotredirect=true, Feb. 2015, [Online; accessed 3-March-2015].
[4] S. GmbH, “First Solar announces vigorous outlook,” http://www.pv-magazine.com/news/details/beitrag/first-solar-announces-vigorous-2014-outlook_100014562/, 2013, [Online; accessed 15-Jun-2016].
[5] M. Edgar,“Solar Frontier soars to profitability,” http://www.pv-magazine.com/news/details/beitrag/solar-frontier-soars-to-profitability 100014271/, 2013, [Online; accessed 15-Jun-2016].
[6] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Progress in Photovoltaics: Research and Applications, vol. 24, no. 1, pp. 3–11, 1 1, 2016.
[7] S. Yang, K.-M. Lin, W.-C. Lee, W.-S. Lo, C.-H. Chen, J.-L. Wu, C.-Y. Chiang, C.-H. Wu, Y.-L. Sun, H. Lo, C.-H. Chang, and L. Chu, “Achievement of 16.5% Total Area Efficiency on 1.09m 2 CIGS Modules in TSMC Solar Production Line,” in Proceedings of 42nd IEEE Photovoltaic Specialist Conference, Jun. 2015.
[8] L. Assmann, J. C. Bernede, A. Drici, C. Amory, E. Halgand, and M. Morsli, “Study of the Mo thin films and Mo/CIGS interface properties,” Applied Surface Science, vol. 246, no. 1-3, pp. 159–166, 2005.
[9] R. Caballero, C. A. Kaufmann, T. Eisenbarth, A. Grimm, I. Lauermann, T. Unold, R. Klenk, and H. W. Schock, “Influence of Na on Cu(In,Ga)Se 2 solar cells grown on polyimide substrates at low temperature: Impact on the Cu(In,Ga)Se 2 /Mo interface,” Applied Physics Letters, vol. 96, no. 9, p. 092104, Mar. 2010.
[10] J.-H. Yoon, J.-H. Kim, W. M. Kim, J.-K. Park, Y.-J. Baik, T.-Y. Seong, and J.-h. Jeong, “Electrical properties of CIGS/Mo junctions as a function of MoSe 2 orientation and Na doping,” Progress in Photovoltaics: Research and Applications, vol. 22, no. 1, pp. 90–96, 2014.
[11] T. Tinoco, C. Rinc ́on, M. Quintero, and G. S. P ́erez, “Phase Diagram and Optical Energy Gaps for CuIn y Ga 1-y Se 2 Alloys,” physica status solidi (a), vol. 124, no. 2, pp. 427–434, Apr. 1991.
[12] T. Nakada and A. Kunioka, “Direct evidence of Cd diffusion into Cu(In, Ga)Se 2 thin films during chemical-bath deposition process of CdS films,” Applied Physics Letters, vol. 74, no. 17, pp. 2444–2446, Apr. 1999.
[13] T. Nakada, M. Mizutani, Y. Hagiwara, and A. Kunioka, “High-efficiency Cu(In,Ga)Se 2 thin-film solar cells with a CBD-ZnS buffer layer,” Solar Energy Materials and Solar Cells, vol. 67, no. 1–4, pp. 255–260, Mar. 2001.
[14] D. Hariskos, S. Spiering, and M. Powalla, “Buffer layers in Cu(In,Ga)Se 2 solar cells and modules,” Thin Solid Films, vol. 480–481, pp. 99–109, Jun. 2005.
[15] U. Rau and M. Schmidt, “Electronic properties of ZnO/CdS/Cu(In,Ga)Se 2 solar cells — aspects of heterojunction formation,” Thin Solid Films, vol. 387, no. 1–2, pp. 141–146, May 2001.
[16] P. Jackson, R. Wurz, U. Rau, J. Mattheis, M. Kurth, T. Schl ̈otzer, G. Bilger, and J. H. Werner, “High quality baseline for high efficiency, Cu(In 1-x ,Ga x )Se 2solar cells,” Progress in Photovoltaics: Research and Applications, vol. 15, no. 6, pp. 507–519, 2007.
[17] C.-H. Chen, T.-Y. Lin, C.-H. Hsu, S.-Y. Wei, and C.-H. Lai, “Comprehensive characterization of Cu-rich Cu(In,Ga)Se 2 absorbers prepared by one-step sputtering process,” Thin Solid Films, vol. 535, pp. 122–126, May 2013.
[18] S.-H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe 2 on its electronic, structural, and defect properties,” Applied Physics Letters, vol. 72, no. 24, pp. 3199–3201, Jun. 1998.
[19] I. V. Bodnar, A. P. Bologa, B. V. Korzun, and L. A. Makovetskaya, “Melting temperatures of the A I B III C VI 2 -type (A I -Cu, Ag; B III -Al, Ga, In; C VI -S, Se) compounds and phase diagrams of their solid solutions,” Thermochimica Acta, vol. 93, pp. 685–688, Sep. 1985.
[20] S. Jung, S. Ahn, J. H. Yun, J. Gwak, D. Kim, and K. Yoon, “Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique,” Current Applied Physics, vol. 10, no. 4, pp. 990–996, Jul. 2010.
[21] M. A. Contreras, L. M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voigt, and W. Mannstadt, “Wide bandgap Cu(In,Ga)Se 2 solar cells with improved energy conversion efficiency,” Progress in Photovoltaics: Research and Applications, vol. 20, no. 7, pp. 843–850, 2012.
[22] S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, “Defect physics of the CuInSe 2 chalcopyrite semiconductor,” Physical Review B, vol. 57, no. 16, p. 9642, 1998.
[23] S. Lany and A. Zunger, “Light- and bias-induced metastabilities in Cu(In,Ga)Se 2 based solar cells caused by the (V se -V cu ) vacancy complex,” Journal of Applied Physics, vol. 100, no. 11, p. 113725, 2006.
[24] J. Pohl and K. Albe, “Intrinsic point defects in CuInSe 2 and CuGaSe 2 as seen via screened-exchange hybrid density functional theory,” Physical Review B, vol. 87, no. 24, p. 245203, Jun. 2013.
[25] R. Noufi, R. J. Matson, R. C. Powell, and C. Herrington, “The role of oxygen in CuInSe 2 thin films and CdS/CuInSe 2 devices,” Solar Cells, vol. 16, pp. 479–493, Jan. 1986.
[26] A. Chiril ̆a, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se 2 thin films for high-efficiency solar cells,” Nature Materials, vol. 12, no. 12, pp. 1107–1111, Dec. 2013.
[27] R. Noufi, R. C. Powell, and R. J. Matson, “On the effect of stoichiometry and oxygen on the properties of CuInSe 2 thin films and devices,” Solar Cells, vol. 21, no. 1–4, pp. 55–63, Jul. 1987.
[28] D. Cahen and R. Noufi, “Defect chemical explanation for the effect of air anneal on CdS/CuInSe 2 solar cell performance,” Applied Physics Letters, vol. 54, no. 6, p. 558, Feb. 1989.
[29] M. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, and R. Noufi, “On the role of Na and modifications to Cu(In,Ga)Se 2 absorber materials using thin-MF (M=Na, K, Cs) precursor layers [solar cells],” in Conference Record of the Twenty-Sixth IEEE Photovoltaic Specialists Conference, 1997, pp. 359–362.
[30] D. Rudmann, G. Bilger, M. Kaelin, F. J. Haug, H. Zogg, and A. N. Tiwari, “Effects of NaF coevaporation on structural properties of Cu(In,Ga)Se 2 thin films,” Thin Solid Films, vol. 431-432, pp. 37–40, May 2003.
[31] S. Ishizuka, A. Yamada, M. M. Islam, H. Shibata, P. Fons, T. Sakurai, K. Akimoto, and S. Niki, “Na-induced variations in the structural, optical, and electrical properties of Cu(In,Ga)Se 2 thin films,” Journal of Applied Physics, vol. 106, no. 3, p. 034908, Aug. 2009.
[32] L. Kronik, D. Cahen, and H. W. Schock, “Effects of Sodium on Polycrystalline Cu(In,Ga)Se 2 and Its Solar Cell Performance,” Advanced Materials, vol. 10, no. 1, pp. 31–36, 1998.
[33] S.-H. Wei, S. B. Zhang, and A. Zunger, “Effects of Na on the electrical and structural properties of CuInSe 2 ,” Journal of Applied Physics, vol. 85, no. 10, pp. 7214–7218, May 1999.
[34] K. Granath, M. Bodegard, and L. Stolt, “The effect of NaF on Cu(In, Ga)Se 2 thin film solar cells,” Solar Energy Materials and Solar Cells, vol. 60, no. 3, pp. 279–293, Jan. 2000.
[35] P. Bl ̈osch, S. Nishiwaki, L. Kranz, C. M. Fella, F. Pianezzi, T. J ̈ager, C. Adelhelm, E. Franzke, S. Buecheler, and A. N. Tiwari, “Sodium-doped molybdenum back contact designs for Cu(In,Ga)Se 2 solar cells,” Solar Energy Materials and Solar Cells, vol. 124, pp. 10–16, May 2014.
[36] S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, and S. Niki, “Alkali incorporation control in Cu(In,Ga)Se 2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency,” Applied Physics Letters, vol. 93, no. 12, p. 124105, Sep. 2008.
[37] S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, and S. Niki, “Development of high-efficiency flexible Cu(In,Ga)Se 2 solar cells: A study of alkali doping effects on CIS, CIGS, and CGS using alkali-silicate glass thin layers,” Current Applied Physics, vol. 10, no. 2, Supplement, pp. S154–S156, Mar. 2010.
[38] D. Rudmann, D. Br ́emaud, A. da Cunha, G. Bilger, A. Strohm, M. Kaelin, H. Zogg, and A. Tiwari, “Sodium incorporation strategies for CIGS growth at different temperatures,” Thin Solid Films, vol. 480–481, pp. 55–60, Jun. 2005.
[39] D. Rudmann, D. Br ́emaud, H. Zogg, and A. N. Tiwari, “Na incorporation into Cu(In,Ga)Se 2 for high-efficiency flexible solar cells on polymer foils,” Journal of Applied Physics, vol. 97, no. 8, p. 084903, Apr. 2005.
[40] A. Chiril ̆a, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se 2 solar cells grown on flexible polymer films,” Nature Materials, vol. 10, no. 11, pp. 857–861, Nov. 2011.
[41] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, “Properties of Cu(In,Ga)Se 2 solar cells with new record efficiencies up to 21.7%,” physica status solidi (RRL) – Rapid Research Letters, vol. 9, no. 1, pp. 28–31, Jan. 2015.
[42] L. Mansfield, R. Noufi, C. Muzzillo, C. DeHart, K. Bowers, B. To, J. Pankow, R. Reedy, and K. Ramanathan, “Enhanced Performance in Cu(In,Ga)Se 2 Solar Cells Fabricated by the Two-Step Selenization Process With a Potassium Fluoride Postdeposition Treatment,” IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1650–1654, Nov. 2014.
[43] A. Laemmle, R. Wuerz, and M. Powalla, “Investigation of the effect of potassium on Cu(In,Ga)Se 2 layers and solar cells,” Thin Solid Films, vol. 582, pp. 27–30, May 2015.
[44] F. Pianezzi, P. Reinhard, A. Chiril ̆a, B. Bissig, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells,” Physical Chemistry Chemical Physics, vol. 16, no. 19, pp. 8843–8851, Apr. 2014.
[45] P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, “Compositional investigation of potassium doped Cu(In,Ga)Se 2 solar cells with efficiencies up to 20.8%,” physica status solidi (RRL) – Rapid Research Letters, vol. 8, no. 3, pp. 219–222, Mar. 2014.
[46] P. Reinhard, B. Bissig, F. Pianezzi, E. Avancini, H. Hagendorfer, D. Keller, P. Fuchs, M. D ̈obeli, C. Vigo, P. Crivelli, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Features of KF and NaF Postdeposition Treatments of Cu(In,Ga)Se 2 Absorbers for High Efficiency Thin Film Solar Cells,” Chemistry of Materials, vol. 27, no. 16, pp. 5755–5764, 8 25, 2015.
[47] U. Rau and H. Schock, “Electronic properties of Cu(In,Ga)Se 2 heterojunction solar cells–recent achievements, current understanding, and future challenges,” Applied Physics A: Materials Science & Processing, vol. 69, no. 2, pp. 131–147, 1999.
[48] R. Scheer and H.-W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. John Wiley & Sons, Mar. 2011.
[49] A. Niemegeers, M. Burgelman, and A. D. Vos, “On the CdS/CuInSe 2 conduction band discontinuity,” Applied Physics Letters, vol. 67, no. 6, pp. 843–845, Aug. 1995.
[50] T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, “Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation,” Solar Energy Materials and Solar Cells, vol. 67, no. 1–4, pp. 83–88, Mar. 2001.
[51] T. Minemoto, A. Okamoto, and H. Takakura, “Sputtered ZnO-based buffer layer for band offset control in Cu(In,Ga)Se 2 solar cells,” Thin Solid Films, vol. 519, no. 21, pp. 7568–7571, Aug. 2011.
[52] T. Nakada, M. Hongo, and E. Hayashi, “Band offset of high efficiency CBD-ZnS/CIGS thin film solar cells,” Thin Solid Films, vol. 431–432, pp. 242–248, May 2003.
[53] O. Lundberg, M. Edoff, and L. Stolt, “The effect of Ga-grading in CIGS thin film solar cells,” Thin Solid Films, vol. 480–481, pp. 520–525, Jun. 2005.
[54] R. Herberholz, U. Rau, H. W. Schock, T. Haalboom, T. G ̈odecke, F. Ernst, C. Beilharz, K. W. Benz, and D. Cahen, “Phase segregation, Cu migration and junction formation in Cu(In, Ga)Se 2 ,” The European Physical Journal Applied Physics, vol. 6, no. 02, pp. 131–139, May 1999.
[55] O. Cojocaru-Mir ́edin, P. Choi, R. Wuerz, and D. Raabe, “Atomic-scale distribution of impurities in CuInSe 2 -based thin-film solar cells,” Ultramicroscopy, vol. 111, no. 6, pp. 552–556, May 2011.
[56] O. Cojocaru-Mir ́edin, T. Schwarz, P.-P. Choi, M. Herbig, R. Wuerz, and D. Raabe, “Atom probe tomography studies on the Cu(In,Ga)Se 2 grain boundaries,” Journal of Visualized Experiments: JoVE, no. 74, 2013.
[57] Y. Yan, C.-S. Jiang, R. Noufi, S.-H. Wei, H. R. Moutinho, and M. M. Al-Jassim, “Electrically Benign Behavior of Grain Boundaries in Polycrystalline CuInSe 2 Films,” Physical Review Letters, vol. 99, no. 23, p. 235504, Dec. 2007.
[58] R. Mickelsen and W. Chen, “Methods for forming thin-film heterojunction solar cells from I-III-VI 2 ,” US Patent US 4 335 266 A, Jun., 1982.
[59] I. Repins, M. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe 2 solar cell with 81.2% fill factor,” Progress in Photovoltaics: Research and Applications, vol. 16, no. 3, pp. 235–239, May 2008.
[60] M. A. Contreras, I. Repins, W. K. Metzger, M. Romero, and D. Abou-Ras, “Se activity and its effect on Cu(In,Ga)Se 2 photovoltaic thin films,” physica status solidi (a), vol. 206, no. 5, pp. 1042–1048, 2009.
[61] V. K. Kapur, “Process of forming a compound semiconductive material,” US Patent US4 581 108 A, Apr., 1986.
[62] Y. Nagoya, K. Kushiya, M. Tachiyuki, and O. Yamase, “Role of incorporated sulfur into the surface of Cu(InGa)Se 2 thin-film absorber,” Solar Energy Materials and Solar Cells, vol. 67, no. 1–4, pp. 247–253, Mar. 2001.
[63] T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, “Improved Cu(In,Ga)(S,Se) 2 thin film solar cells by surface sulfurization,” Solar Energy Materials and Solar Cells, vol. 49, no. 1–4, pp. 285–290, Dec. 1997.
[64] D. Ohashi, T. Nakada, and A. Kunioka, “Improved CIGS thin-film solar cells by surface sulfurization using In 2 S 3 and sulfur vapor,” Solar Energy Materials and Solar Cells, vol. 67, no. 1–4, pp. 261–265, Mar. 2001.
[65] K. Kushiya, S. Kuriyagawa, T. Kase, M. Tachiyuki, I. Sugiyama, Y. Satoh, M. Satoh, and H. Takeshita, “The role of Cu(InGa)(SeS) 2 surface layer on a graded band-gap Cu(InGa)Se 2 thin-film solar cell prepared by two-stage method,” in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, May 1996, pp. 989–992.
[66] S. P. Grindle, C. W. Smith, and S. D. Mittleman, “Preparation and properties of CuInS 2 thin films produced by exposing sputtered Cu-In films to an H2S atmosphere,” Applied Physics Letters, vol. 35, no. 1, pp. 24–26, Jul. 1979.
[67] S. Seeger and K. Ellmer, “Reactive magnetron sputtering of CuInS 2 absorbers for thin film solar cells: Problems and prospects,” Thin Solid Films, vol. 517, no. 10, pp. 3143–3147, Mar. 2009.
[68] N.-M. Park, H. S. Lee, D.-H. Cho, Y.-D. Chung, K.-H. Kim, K.-S. Lee, and J. Kim, “Effect of Se flux on CuIn 1-x Ga x Se 2 film in reactive sputtering process,” Progress in Photovoltaics: Research and Applications, vol. 20, no. 7, pp. 899–903, Nov. 2012.
[69] B. Williams, “MiaSol ́e Achieves 15.7% Efficiency with Commercial-Scale CIGS Thin Film Solar Modules — Business Wire,” //www.businesswire.com/news/home/20101202005382/en/MiaSol%C3%A9-Achieves-15.7-Efficiency-Commercial-Scale-CIGS-Thin#.VhIRnt1V3eQ, Dec. 2010, [Online; accessed 5-Oct-2015].
[70] J. H. Shi, Z. Q. Li, D. W. Zhang, Q. Q. Liu, Z. Sun, and S. M. Huang, “Fabrication of Cu(In, Ga)Se 2 thin films by sputtering from a single quaternary chalcogenide target,” Progress in Photovoltaics: Research and Applications, vol. 19, no. 2, pp. 160–164, 2011.
[71] J. Liu, D. Zhuang, H. Luan, M. Cao, M. Xie, and X. Li, “Preparation of Cu(In,Ga)Se 2 thin film by sputtering from Cu(In,Ga)Se 2 quaternary target,” Progress in Natural Science: Materials International, vol. 23, no. 2, pp. 133–138, Apr. 2013.
[72] L. Ouyang, D. Zhuang, M. Zhao, N. Zhang, X. Li, L. Guo, R. Sun, and M. Cao, “Cu(In,Ga)Se 2 solar cell with 16.7% active-area efficiency achieved by sputtering from a quaternary target,” physica status solidi (a), vol. 212, no. 8, pp. 1774–1778, Aug. 2015.
[73] S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se 2 solar cells obtained by low-temperature pulsed electron deposition,” Applied Physics Letters, vol. 101, no. 13, p. 132107, Sep. 2012.
[74] S. Rampino, F. Bissoli, E. Gilioli, and F. Pattini, “Growth of Cu(In,Ga)Se 2 thin films by a novel single-stage route based on pulsed electron deposition,” Progress in Photovoltaics: Research and Applications, vol. 21, no. 4, pp. 588–594, Jun. 2013.
[75] J. Lindahl, U. Zimmermann, P. Szaniawski, T. Torndahl, A. Hultqvist, P. Salome, C. Platzer-Bjorkman, and M. Edoff, “Inline Cu(In,Ga)Se 2 Co-evaporation for High-Efficiency Solar Cells and Modules,” IEEE Journal of Photovoltaics, vol. 3, no. 3, pp. 1100–1105, Jul. 2013.
[76] T. Walter, R. Herberholz, C. M ̈uller, and H. W. Schock, “Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se 2 based heterojunctions,” Journal of Applied Physics, vol. 80, no. 8, pp. 4411–4420, Oct. 1996.
[77] M. Nakamura, N. Yoneyama, K. Horiguchi, Y. Iwata, K. Yamaguchi, H. Sugimoto, and T. Kato, “Recent R&d progress in solar frontier’s small-sized Cu(InGa)(SeS) 2 solar cells,” in Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, Jun. 2014, pp. 0107–0110.
[78] D. Herrmann, P. Kratzert, S. Weeke, M. Zimmer, J. Djordjevic-Reiss, R. Hunger, P. Lindberg, E. Wallin, O. Lundberg, and L. Stolt, “CIGS module manufacturing with high deposition rates and efficiencies,” in Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, Jun. 2014, pp. 2775–2777.
[79] M. Edoff, J. Lindahl, T. Watjen, and T. Nyber, “Gas flow sputtering of Cu(In,Ga)Se 2 for thin film solar cells,” in Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, Jun. 2015, pp. 1–5.
[80] B.-T. Jheng, P.-T. Liu, M.-C. Wu, and H.-P. D. Shieh, “A non-selenization technology by co-sputtering deposition for solar cell applications,” Optics Letters, vol. 37, no. 13, p. 2760, Jul. 2012.
[81] N. Romeo, A. Bosio, D. Menossi, C. Catellani, R. Dharmadasa, and A. Romeo, “High efficiency Cu(In,Ga)Se 2 /CdS thin film solar cells obtained with precursors sputtered from InSe, GaSe and Cu targets,” Thin Solid Films, vol. 535, pp. 88–91, May 2013.
[82] V. Piacente, P. Scardala, and D. Ferro, Total vapour pressure of solid Sb 2 Se 3 ,” Journal of Materials Science Letters, vol. 11, no. 12, pp. 855–857, Jan. 1992.
[83] M. Yuan, D. B. Mitzi, W. Liu, A. J. Kellock, S. J. Chey, and V. R. Deline, “Optimization of CIGS-Based PV Device through Antimony Doping,” Chemistry of Materials, vol. 22, no. 2, pp. 285–287, Jan. 2010.
[84] M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga+In) ratio on MBE grown Cu(In,Ga)Se 2 thin film solar cell,” Journal of Crystal Growth, vol. 311, no. 7, pp. 2212–2214, Mar. 2009.
[85] J.-S. Park, J.-H. Yang, K. Ramanathan, and S.-H. Wei, “Defect properties of Sb- and Bi-doped CuInSe 2 : The effect of the deep lone-pair s states,” Applied Physics Letters, vol. 105, no. 24, p. 243901, Dec. 2014.
[86] Q. Guo, G. M. Ford, R. Agrawal, and H. W. Hillhouse, “Ink formulation and low-temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se) 2 solar cells from sulfide nanocrystal inks,” Progress in Photovoltaics: Research and Applications, vol. 21, no. 1, pp. 64–71, 2013.
[87] R. N. Bhattacharya, M.-K. Oh, and Y. Kim, “CIGS-based solar cells prepared from electrodeposited precursor films,” Solar Energy Materials and Solar Cells, vol. 98, pp. 198–202, Mar. 2012.
[88] T. K. Todorov, O. Gunawan, T. Gokmen, and D. B. Mitzi, “Solution-processed Cu(In,Ga)(S,Se) 2 absorber yielding a 15.2% efficient solar cell,” Progress in Photovoltaics: Research and Applications, vol. 21, no. 1, pp. 82–87, 2013.
[89] Q. Cao, O. Gunawan, M. Copel, K. B. Reuter, S. J. Chey, V. R. Deline, and D. B. Mitzi, “Defects in Cu(In,Ga)Se 2 Chalcopyrite Semiconductors: A Comparative Study of Material Properties, Defect States, and Photovoltaic Performance,” Advanced Energy Materials, vol. 1, no. 5, pp. 845–853, 2011.
[90] D. Lincot, J. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyrite thin film solar cells by electrodeposition,” Solar Energy, vol. 77, no. 6, pp. 725–737, Dec. 2004.
[91] M. Bodeg ̊Ard, K. Granath, and L. Stolt, “Growth of Cu(In,Ga)Se 2 thin films by coevaporation using alkaline precursors,” Thin Solid Films, vol. 361–362, pp. 9–16, Feb. 2000.
[92] A. Rockett, J. Britt, T. Gillespie, C. Marshall, M. Al Jassim, F. Hasoon, R. Matson, and B. Basol, “Na in selenized Cu(In,Ga)Se 2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances,” Thin Solid Films, vol. 372, no. 1–2, pp. 212–217, Sep. 2000.
[93] M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films, vol. 361-362, pp. 527–532, Feb. 2000.
[94] D. Rudmann, A. F. da Cunha, M. Kaelin, F. Kurdesau, H. Zogg, A. N. Tiwari, and G. Bilger, “Efficiency enhancement of Cu(In,Ga)Se 2 solar cells due to post-deposition Na incorporation,” Applied Physics Letters, vol. 84, no. 7, pp. 1129–1131, Feb. 2004.
[95] R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films, vol. 517, no. 7, pp. 2187–2190, Feb. 2009.
[96] M. A. Contreras, M. J. Romero, and R. Noufi, “Characterization of Cu(In,Ga)Se 2 materials used in record performance solar cells,” Thin Solid Films, vol. 511–512, pp. 51–54, Jul. 2006.
[97] T. Eisenbarth, T. Unold, R. Caballero, C. A. Kaufmann, and H.-W. Schock, “Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se 2 thin film solar cells,” Journal of Applied Physics, vol. 107, no. 3, pp. 034 509–034 509–12, Feb. 2010.
[98] A. O. Pudov, A. Kanevce, H. A. Al-Thani, J. R. Sites, and F. S. Hasoon, “Secondary barriers in CdS–CuIn 1-x Ga x Se 2 solar cells,” Journal of Applied Physics, vol. 97, no. 6, p. 064901, Mar. 2005.
[99] M. Igalson, M. Bodeg ̊ard, and L. Stolt, “Reversible changes of the fill factor in the ZnO/CdS/Cu(In,Ga)Se 2 solar cells,” Solar Energy Materials and Solar Cells, vol. 80, no. 2, pp. 195–207, Oct. 2003.
[100] M. Topiˇc, F. Smole, and J. Furlan, “Examination of blocking current-voltage behaviour through defect chalcopyrite layer in ZnO/CdS/Cu(In,Ga)Se 2 /Mo solar cell,” Solar Energy Materials and Solar Cells, vol. 49, no. 1–4, pp. 311–317, Dec. 1997.
[101] M. Igalson, P. Zabierowski, D. Przado, A. Urbaniak, M. Edoff, and W. N. Shafarman, “Understanding defect-related issues limiting efficiency of CIGS solar cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1290–1295, Aug. 2009.
[102] M. Maciaszek, P. Zabierowski, and K. Decock, “Modeling of the impact of Se-vacancies on the electrical properties of Cu(In,Ga)Se 2 films and junctions,” Thin Solid Films, vol. 535, pp. 371–375, May 2013.
[103] F. Pianezzi, P. Reinhard, A. Chiril ̆a, S. Nishiwaki, B. Bissig, S. Buecheler, and A. N. Tiwari, “Defect formation in Cu(In,Ga)Se 2 thin films due to the presence of potassium during growth by low temperature co-evaporation process,” Journal of Applied Physics, vol. 114, no. 19, p. 194508, Nov. 2013.
[104] H. Y. Park, D. G. Moon, J. H. Yun, S. K. Ahn, K. H. Yoon, and S. Ahn, “Efficiency limiting factors in Cu(In,Ga)Se 2 thin film solar cells preparedby Se-free rapid thermal annealing of sputter-deposited Cu-In-Ga-Se precursors,” Applied Physics Letters, vol. 103, no. 26, p. 263903, Dec. 2013.
[105] M. D. Archer and M. A. Green, Clean Electricity from Photovoltaics. World Scientific, Oct. 2014.
[106] I. Repins, W. Metzger, C. Perkins, J. Li, and M. Contreras, “Correlation Between Measured Minority-Carrier Lifetime and Device Performance,” IEEE Transactions on Electron Devices, vol. 57, no. 11, pp. 2957–2963, Nov. 2010.
[107] T. Maeda, A. Kawabata, and T. Wada, “First-principles study on alkali-metal effect of Li, Na, and K in CuInSe 2 and CuGaSe 2 ,” Japanese Journal of Applied Physics, vol. 54, no. 8S1, p. 08KC20, Aug. 2015.
[108] W.-J. Yin, Y. Wu, R. Noufi, M. Al-Jassim, and Y. Yan, “Defect segregation at grain boundary and its impact on photovoltaic performance of CuInSe 2 ,” Applied Physics Letters, vol. 102, no. 19, p. 193905, May 2013.
[109] M. Kiskinova, L. Surnev, and G. Bliznakov, “Oxygen adsorption on an alkali metal-covered Ni(100) surface,” Surface Science, vol. 104, no. 1, pp. 240–252, Mar. 1981.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *