|
1.L. F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239. 2.D.G. Kim, J.W. Kim, J.G. Lee, H. M, D.J. Quesnal and S.B. Jung, “Solid state interfacial reaction and joint strength of Sn–37Pb solder with Ni–P under bump metallization in flip chip application”, J. Alloys Compd. 395 (2005) 80. 3.C.H. Wang, H.T. Shen and W.H. Lai, “Effective suppression of electromigration-induced Cu dissolution by using Ag as a barrier layer in lead-free solder joints”, J. Alloys Compd. 564 (2013) 35. 4.C.A. Palesko and E.J. Vardaman, “Cost Comparison for Flip Chip, Gold Wire Bond, and Copper Wire Bond Packaging”, Electronic Components and Technology Conference (2010) 10. 5.J.H. Lau, “Flip Chip Technologies”, McGraw-Hill, New York, 1996, pp. 26-30. 6.G.R. Blackwell, “The Electronic Packaging Handbook”, Boca Raton, Florida: CRC Press, 2000, pp. 4.4-4.25. 7.S.K. Kang, R.S. Rai and S. Purrshothaman, “Interfacial reactions during soldering with lead-tin eutectic and lead (Pb)-free, tin-rich solders”, J. Electron. Mater. 25 (1996) 1113. 8.A.A Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, J. Appl. Phys. 80 (1996) 2774. 9.H.K. Kim, K.N. Tu and P.A. Totta, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joint on Si wafer”, Appl. Phys. Lett. 68 (1996) 2204. 10.J.W. Nah and K.W. Paik, “Investigation of flip chip bump metallization systems of Cu pads”, IEEE Trans. Compon. Packag. Technol. 25 (2002) 32. 11.C.Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D.R. Frear and P. Elenius, “Electon microscopy of interfacial reaction between eutectic SnPb and Al/Ni(V)/Cu thin film metallization”, J. Appl. Phys. 87 (2000) 750. 12.J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology”, J. Appl. Phys. 85 (1999) 8456. 13.B.L. Young and J.G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing”, J. Electron. Mater. 30 (2001) 878. 14.D.R. Frear, J.W. Jang, J.K. Lin and C. Zhang, “Pb-free solders for flip-chip interconnects”, JOM 53 (2001) 1047. 15.T. Laurila, V. Vuorinen and J.K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Mater. Sci. Eng. R: Rep. 49 (2005) 1. 16.European Parliament: Proposal for a Directive of the European Parliament and of the Council on Waste Electrical and Electronic Equipment and on the restriction of the use of certain hazardous substances in electrical and electronic equipment, COM, 2000, pp. 347. 17.M. McCormack, S. Jin, G.W. Kammlott and H.S .Chen, “New Pb-free solder alloy with superior mechanical-properties”, Appl. Phys. Lett. 63 (1993) 15. 18.K. Suganuma, “Advances in lead-free electronics soldering”, Current Opinion Solid State Mater. Sci., 5 (2001)55. 19.K.S. Kim, S.H. Huh and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys”, Mater. Sci. Eng. A 333 (2002) 106. 20.C.S. Chang, A. Oscilowski and R.C. Bracken, “Future challenges in electronics packaging”, IEEE Circuits Devices Mag. 14 (1998) 45. 21.I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra and O. Unal, “Alloying Effects in Near-Eutectic Sn-Ag-Cu Solder Alloys for Improved Microstructural Stability”, J. Electron. Mater 30 (2001) 1050. 22.I.E. Anderson, “Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications”, J. Mater. Sci.: Mater. Electron. 18 (2007) 55. 23.I.E. Anderson, J. Walleser and J.L. Harringa, “Observations of Nucleation Catalysis Effects during Solidification of SnAgCuX Solder Joints”, JOM (2007) 38. 24.W. Liu and N.C. Lee, “The Effects of Additives to SnAgCu Alloys on Microstructure and Drop Impact Reliability of Solder Joints”, JOM (2007) 26. 25.R.S. Pandher, B.G. Lewis, R.V. and B. Singh, “Drop Shock Reliability of Lead-Free Alloys - Effect of Micro-Additives”, Electronic Components and Technology Conference (2007) 669. 26.S.C. Yang, C.E. Ho, C.W. Chang and C.R. Kao, “Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu”, J. Mater. Res. 21 (2006) 2436. 27.J.W. Kim, Y.C. Lee, S.S. Ha and S.B. Jung, J. Mater. Sci.: Mater. Electron. 20 (2009) 17. 28.S.W. Fu, C.Y. Yu, T.K. Lee, K.C. Liu and J.G. Duh, “Impact crack propagation through the dual-phased (Cu,Ni)6Sn5 layer in Sn–Ag–Cu/Ni solder joints”, Mater. Lett. 80 (2012) 103. 29.T. Laurila, V. Vuorinen and M. Paulasto-Krockel, “Impurity and alloying effects on interfacial reaction layers in Pb-free soldering”, Mater. Sci. Eng. R. 68 (2010) 1. 30.N. Zhang, Y.W. Shi, Y.P. Lei, Z.D. Xia, F. Guo and X.Y. Li, “Effect of Thermal Aging on Impact Absorbed Energies of Solder Joints Under High-Strain-Rate Conditions”, J. Electron. Mater. 38 (2009) 2132. 31.H. Ma and J.C. Suhling, “A review of mechanical properties of lead-free solders for electronic packaging”, J. Mater. Sci. 44 (2009) 1141. 32.H.T. Chen, J. Han, M.Y. Li, “Localized Recrystallization Induced by Subgrain Rotation in Sn-3.0Ag-0.5Cu Ball Grid Array Solder Interconnects During Thermal Cycling”, J. Electron. Mater. 40 (2011) 2470. 33.H. Chen, J. Li and M. Li, “Dependence of recrystallization on grain morphology of Sn-based solder interconnects under thermomechanical stress”, J. Alloys Compd. 540 (2012) 32. 34.B. Arfaei, N. Kim, and E. Cotts, “Dependence of Sn Grain Morphology of Sn-Ag-Cu Solder on Solidification Temperature”, J. Electron. Mater. 41 (2012) 362. 35.M. Lu, D.Y. Shih, P. Lauro, C. Goldsmith and D.W. Henderson, “Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders”, Appl. Phys. Lett. 92 (2008) 211909. 36.R.R. Tummala and E. J. Rymaszewski, “Microelectronics packaging handbook 2nd edition”, Van Nostrand Reihold, New York, (1997). 37.J.H. Lau, “Ball grid array technology”, McGraw-Hill, New York, (1995). 38.J.H. Lau and S.W.R. Lee, Chip scale package, CSP: Design, Materials, Process and Applications, McGraw-Hill, New York, (1999). 39.K.N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology”, 34 (2001) 1. 40.C.A. Harper, “Electronic packaging and interconnection handbook 3rd edition”, McGraw-Hill, New York, (2000). 41.R.E. Reed-Hill and R. Abbaschian, Physical metallurgy principles, PWS, Boston, 1994. 42.W.R. Lewis, Notes on soldering, Tin Research Institute, 66, 1961. 43.K. Tsukada, “Development of new surface finishing technology for PKG substrate with high bondability”, Proceeding of IEEE/CPMT Advanced Packaging Materials Symposium, 2005. 44.K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano and K.N Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, J. Appl. Phys. 97 (2005) 024508. 45.P.G. Kim, J.W. Jangm T.Y. Lee and K.N. Tu, “Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin film and Ni foils”, J. Appl. Phys. 86 (1999) 6746. 46.G. Ghosh, “Kinetics of interfacial reaction between eutectic SnPb solder and Cu/Ni/Pd metallizations”, J. Electron. Mater. 28 (1999) 1238. 47.R.M. Shalaby, “Correlation between thermal diffusivity and activation energy of ordering of lead free solder alloys Sn65-xAg25Sb10Cux rapidly solidified from molten state”, J. Mater. Sci. Mater. Electron. 16 (2005) 187. 48.X.P. Zhang, C.B. Yu, S. Shrestha, L. Dorn, “Creep and fatigue behaviors of the lead-free Sn-Ag-Cu-Bi and Sn60Pb40 solder interconnections at elevated temperatures”, J. Mater. Sci.: Mater. Electron. 18 (2007) 665. 49.K. Suganuma, “Advances in lead-free electronics soldering”, Curr. Opin. Solid State Mater. Sci. 5 (2001) 55. 50.M.R. Harrison, J.H. Vincent, and H.A.H. Steen, “Lead-free reflow soldering for electronics assembly”, Solder. Surf. Mt. Technol. 13 (2001) 21. 51.K.N. Tu, A.M. Gusak, and M. Li, “Physics and materials challenges for lead-free solders”, J. Appl. Phys. 93 (2003) 1335. 52.M.E. Loomans and M.E. Fine, “Tin-silver-copper eutectic temperature and composition”, Metal. Mat. Trans. A 31 (2000) 1155. 53.I.E. Anderson and J.L. Harringa, “Elevated temperature aging of solder joints based on Sn-Ag-Cu: effects on joint microstructure and shear strength”, J. Electron. Mater. 33 (2004) 1485. 54.F.J. Wang, Z.S. Yu, K. Qi, “Intermetallic compound formation at Sn–3.0Ag–0.5Cu–1.0Zn lead-free solder alloy/Cu interface during as-soldered and as-aged conditions”, J. Alloys Compd. 438 (2007) 110. 55.S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith and K.J. Puttlitz, “Ag3Sn plate formation in the solidification of near-ternary eutectic Sn-Ag-Cu”, JOM 55 (2003) 61. 56.G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, “A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates”, J. Mater. Sci.: Mater. Electron. 21 (2010) 421. 57.L. Zhang, S.B. Xue, L.L. Gao, G. Zeng, Z. Sheng, Y. Chen and S.L. Yu, “Effects of rare earths on properties and microstructures of lead-free solder alloys”, J. Mater. Sci.: Mater. Electron. 20 (2009) 685. 58.W. Peng, E. Monlevade and M. E. Marques, “Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu”, Microelectron. Reliab. 47 (2007) 2161. 59.F.A. Lowenheim, Modern electroplating, 2nd edition, Wiley, New York, 1974. 60.S.V.S. Tyagi, V.K. Tondon, and S. Ray, “Study of the crystallization behavior of electroless Ni-P films by electron and x-ray diffraction”, Z. Metallkd. 76 (1985) 492. 61.J.H. Yeh, “Interfacial reactions and wetting property between electroless Ni in the under bump metallurgy (UBM) and Sn-37Pb solder”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, 2000. 62.H. Roberts and K. Johal, “Lead-free soldering”, Springer, New York, 2007. 63.E.K. Chang et al., “Reflow atmosphere effects on an Organic Soderability Preservation (OSP) coating”, Surface Mount International (SMI), 1995. 64.A. Bansal, S. Yoon, J. Xie, Y. Li and V. Mahadev, “Comparison of substrate finishes for flip chip packages”, Electronic Components and Technology Conference (2005) 30. 65.T.B. Massalski; H. Okamoto, P.R. Subramanian and L. Kacprzak, “Binary alloy phase diagrams”, ASM Int., Materials Park, Ohio, (1990) 1481. 66.K. Zeng and J.K. Kivilahti, “Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems”, J. Electron. Mater. 30 (2001) 35. 67.J.Y. Kim, Y.C. Sohn and J. Yu, “Effect of Cu content on the mechanical reliability of Ni/Sn-3.5Ag system” J. Mater. Res. 22 (2007) 770. 68.K. Zeng, M. Pierce, H. Miyazaki and B. Holdford, “Optimization of Pb-free solder joint reliability from a metallurgical perspective” J. Electron. Mater. 41 (2012) 253. 69.A. Kumar and Z. Chen, “Interdependent intermetallic compound growth in an electroless Ni-P/Sn-3.5Ag reaction couple” J. Electron. Mater. 40 (2011) 213. 70.H. Kim, M. Zhang, C.M. Kumar, D. Suh, P. Liu, D. Kim, M. Xie and Z. Wang, “Improved drop reliability performance with lead free solder of low Ag content and their failure modes”, Electronic Components and Technology Conference Proceedings (2007) 962. 71.F. Song, S.W.R. Lee, K. Newman, B. Sykes and S. Clark, “High-speed solder ball shear and pull tests vs. board level mechanical drop tests: correlation of failure mode and loading speed”, Electronic Components and Technology Conference (2007) 1504. 72.C.L. Yeh, Y.S. Lai, H.C. Chang and T.H. Chen, “Correlation between package-level ball impact test and board-level drop test”, Electronic Components and Technology Conference (2005) 270. 73.Y. Xu, S. Ou and K.N. Tu, “Measurement of impact toughness of eutectic SnPb and SnAgCu solder joints in ball grid array by mini-impact tester”, J. Mater. Res 23 (2008) 1482. 74.T. Morita, R. Kajiwara, I. Ueno and S. Lkabe, “New methods for estimating impact strength of solder-ball-bonded interfaces in semiconductor packages”, Jpn. J. Appl. Phys. 47 (2008) 6566. 75.C.L. Yeh and Y.S. Lai, “Insights into correlation between board-level drop reliability and package-level ball impact test”, Electronic Components and Technology Conference (2006) 84 76.K.J. Wang and J.G. Duh, “Shear and pull testing of Sn-3.0Ag-0.5Cu Solder with Ti/Ni(V)/Cu underbump metallization during aging”, J. Electron. Mater. 38 (2009) 2434. 77.B.F. Dyson, “Diffusion of Gold and Silver in Tin Single Crystals”, J. Appl. Phys. 37 (1966) 2375. 78. D.C. Yeh, and H.B. Huntington, “Extreme Fast-Diffusion System - Nickel in Single-Crystal Tin”, Phys. Rev. Lett. 53 (1984) 1469. 79.B.F. Dyson, T.R. Anthony, and D. Turnbull, “Interstitial Diffusion of Copper in Tin”, J. Appl. Phys. 37 (1967) 3408. 80.W.P. Mason, and H.E. Bommel, “Ultrasonic Attenuation at Low Temperatures for Metals in the Normal and Superconducting States”, J. Acoust. Soc. Am. 28 (1956) 930. 81.J.A. Rayne and B.S. Chandrasekhar, “Elastic Constants of Beta-Tin from 4.2-Degrees-K to 300-Degrees-K”, Phys. Rev. 120 (1960) 1658. 82.S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih, and H.M. Lee, “The Crystal Orientation of beta-Sn Grains in Sn-Ag and Sn-Cu Solders Affected by Their Interfacial Reactions with Cu and Ni(P) Under Bump Metallurgy”, J. Electron. Mater. 38 (2009) 2461. 83.L.P. Lehman, Y. Xing, T.R. Bieler and E.J. Cotts, “Cyclic Twin Nucleation in Tin-based Solder Alloys”, Acta Mater. 58 (2010) 3546. 84.T.R. Bieler, H. Jiang L.P. Lehman, T. Kirkpatrick and E.J. Cotts, “Influence of Sn Grain Size and Orientation on the Thermomechanical Response and Reliability of Pb-free Solder Joints”, Electronic Components and Technology Conference (2006) 1462. 85.T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts and B. Nandagopal, “Influence of Sn Grain Size and Orientation on the Thermomechanical Response and Reliability of Pb-free Solder Joints”, IEEE Trans. Compon. Packag. Technol. 31 (2008) 370. 86.T.K. Lee and K.C. Liu and T.R. Bieler, “Microstructure and Orientation Evolution of the Sn Phase as a Function of Position in Ball Grid Arrays in Sn-Ag-Cu Solder Joints”, J. Electron. Mater. 38 (2009) 2685. 87.H. Chen, J. Han, J. Li and M. Li, “Inhomogeneous deformation and microstructure evolution of Sn–Ag-based solder interconnects during thermal cycling and shear testing”, Microelectron. Reliab. 52 (2012) 1112. 88.X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications”, Mater. Charact. 48 (2002) 11. 89.U. Boyuk and N. Marasli, “The microstructure parameters and microhardness of directionally solidified Sn-Ag-Cu eutectic alloy”, J. Alloys Compd. 485 (2009) 264. 90.L. Xu and J.H.L. Pang, “Nanoindentation on SnAgCu lead-free solder joints and analysis”, J. Electron. Mater. 35 (2006) 2107. 91.A.C. Fischer-Cripps, “Nanoindentation handbook 2nd edition”, New York, Springer (2002) 144. 92.W. Peng and M.E. Marques, “Effect of thermal aging on drop performance of chip scale packages with SnAgCu solder joints on Cu pads”, J. Electron. Mater. 36 (2007) 1679. 93.J.M. Song, Y.R. Liu, Y.S. Lai, Y.T. Chiu and N.C. Lee, “Influence of trace alloying elements on the ball impact test reliability of SnAgCu solder joints”, Microelectron. Reliab. 52 (2012) 180 94.P. Kuma, Z. Huang, I. Dutta, M. Renavikar and R. Mahajan, “Fracture of Sn-Ag-Cu solder joints on Cu substrates. II: Fracture mechanism map”, J. Electron. Mater. 41 (2012) 412. 95.K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello and C.A. Handwerker, “Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys”, J. Electron. Mater. 29 (2000) 1122. 96.S.J. Wang and C.Y. Liu, “Asymmetrical solder microstructure in Ni/Sn/Cu solder joint”, Scripta Mater. 55 (2006) 347. 97.S.J. Wang and C.Y. Liu, “Kinetic Analysis of the Interfacial Reactions in Ni/Sn/Cu Sandwich Structures” J. Electron. Mater. 35 (2006) 1955. 98.F. Cheng, H. Nishikawa and T. Takemoto, “Microstructural and mechanical properties of Sn–Ag–Cu lead-free solders with minor addition of Ni and/or Co”, J. Mater. Sci. 43 (2008) 3643. 99.S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih and H.M. Lee, “The crystal orientation of β-Sn grains in Sn-Ag and Sn-Cu solders affected by their interfacial reactions with Cu and Ni(P) under bump metallurgy”, J. Electron. Mater. 38 (2009) 2461. 100.G. Parks, B. Arfaei, M. Benedict, E. Cotts, M.H. Lu and E. Perfecto, “The dependence of the Sn grain structure of Pb-free solder joints on composition and geometry”, Electronic Components and Technology Conference (2012) 703. 101.H.T. Lee, Y.F. Chen, T.F. Hong and K.T. Shin, “Evolution of Ag3Sn intermetallic compounds during solidification of eutectic Sn–3.5Ag solder”, J. Alloys Comp. 509 (2011) 2510. 102.P. Yao, P. Liu, and J. Liu, “Interfacial reaction and shear strength of SnAgCu–xNi/Ni solder joints during aging at 150 oC”, Microelectron. Eng. 86 (2009) 1969. 103.C. Yu, J. Liu, H. Lu, P. Li, and J. Chen, “First-principles investigation of the structural and electronic properties of Cu6-xNixSn5 (x= 0, 1, 2) intermetallic compounds”, Intermetallics 15 (2007) 1471. 104.Z. Huang, I. Dutta, J.H.L. Pang, R. Sidhu, M. Renavikar and R. Mahajan, “Fracture of Sn-Ag-Cu Solder joints on Cu substrates: I. Effects of loading and processing conditions”, J. Electron. Mater. 41 (2012) 375. 105.Y.T. Cheng and C.M. Cheng, “Scaling, dimensional analysis, and indentation measurements”, Mater. Sci. Eng. R. 44 (2004) 91. 106.F. Gao and T. Takemoto, “Mechanical properties evolution of Sn-3.5Ag based lead-free solders by nanoindentation”, Mater. Lett. 60 (2006) 2315. 107.F. Song and S.W.R. Lee, “Investigation of IMC thickness effect on the lead-free solder ball attachment strength: comparison between ball shear test and cold bump pull test results”, Electronic Components and Technology Conference (2006) 1196. 108.C.Y. Yu, W.Y. Chen and Duh J.G., “Improving the impact toughness of Sn-Ag-Cu/Cu-Zn Pb-free solder joints under high speed shear testing”, J. Alloys Compd. 586 (2014) 633. 109.N. Chawla and R.S. Sidhu, “Microstructure-based modeling of deformation in Sn-rich (Pb-free) solder alloys”, J. Mater. Sci. - Mater. Electron. 18 (2007) 175. 110.H.Y. Fei, K. Yazzie, N. Chawla and H.Q. Jiang, “ Modeling Fracture of Sn-Rich (Pb-Free) Solder Joints Under Mechanical Shock Conditions”, J. Electron. Mater. 41 (2012) 2089.
|