帳號:guest(3.149.230.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳玟琳
作者(外文):Chen, Wen-Lin
論文名稱(中文):迴銲後期熱處理對錫銀銅銲接點衝擊可靠度、銲料微結構及錫結構方向性之影響
論文名稱(外文):Effects of Thermal Annealing during the Post-Reflow Process on Microstructure, Tin Crystallography, and Impact Reliability of Sn-Ag-Cu Solder Joints
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq-Gong
口試委員(中文):劉國全
石東益
口試委員(外文):Liu, Kuo-Chuan
Shih, Toung-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031610
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:106
中文關鍵詞:電子封裝無鉛銲料高速擺錘衝擊測試硬度微結構
外文關鍵詞:electronic packagelead free solderimpact reliabilityharndessMicrostructure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:198
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了增加銲接點強度,本研究嘗試改變迴銲的條件且利用高速撞擊測試(high-speed impact test)去評估銲接點的可靠度。在迴銲後期固化的過程中,對銲接點進行不同溫度和不同時間長度的熱處理,探討在Sn-Ag-Cu/Cu與Sn-Ag-Cu/Ni銲接點內的微結構、錫(β相)的結晶和銲料硬度的變化。
在固化過程中,對Sn-Ag-Cu/Cu 銲接點施以180度或210度的熱處理,以了解不同熱處理溫度的影響。在熱處理後,靠近界面的局部析出物,從點狀分佈轉變成網狀分佈。此外,透過電子背向散射儀(EBSD)的分析可察知析出物的分佈與錫的結晶息息相關。熱處理後,由於銲料內銅元素的再分佈,讓銲料內錫的結晶結構從多個且交織狀成長成少許大顆的錫晶粒。值得注意的是,以210度熱處理會加速上述微結構的改變,並提升銲接點的強度。
為了探討熱處理對不同的凸塊底層金屬的影響,Sn-Ag-Cu/Cu 與Sn-Ag-Cu/Ni銲接點在固化過程中經過210度的50秒或100秒的熱處理。在對照組以快速冷卻的Sn-Ag-Cu/Cu銲料中,其析出物以網狀分佈且佔據大部份的銲球體積,然而在Sn-Ag-Cu/Ni 銲料中析出物係以點狀結構佔據大部份的體積。隨著熱處理時間增加,析出物逐漸成長,界面的介金屬化合物稍微的增厚,而銲料變的較軟。Sn-Ag-Cu/Cu和Sn-Ag-Cu/Ni在熱處理50秒後,銲接點強度皆有所提升且延展性斷裂的比例也增加。然而,當熱處理達100秒後,在Sn-Ag-Cu/Ni銲接點的界面上,因相對硬脆的介金屬化合物(Cu,Ni)6Sn5增厚,導致銲接點強度下降。Sn-Ag-Cu/Cu和Sn-Ag-Cu/Ni在銲接點強度表現的差異性與銲料的微結構及銲料硬度有關。
This study aims to improve the impact performance via modified reflow conditions. A high speed shear tester was used to evaluate the impact reliability of solder joints. During solidification step of reflow process, the solder joints were annealed under various annealing temperature and heating time. The microstructure, β-Sn structure, micro-hardness of Sn-3.0Ag-0.5Cu/Cu (wt. %, SAC/Cu) and Sn-3.0Ag-0.5Cu/Ni (wt. %, SAC/Ni) solder joints were investigated.
To evaluate the effect of annealing temperature on impact performance, the SAC/Cu solder joints were annealed at 180 oC and 210 oC, respectively, during the solidification step. In the annealed solder, the precipitations in the limited region near the joint interface varied from the dot type toward the network type. Additionally, electron backscatter diffraction (EBSD) analysis indicated that the β-Sn grain structure depended on the distribution of precipitations. The β-Sn grain structure was altered from interlaced grains to larger grains due to the redistribution of Cu in the solder. Noteworthily, the annealing at higher temperature (210 oC) can accelerated the variation of above-mentioned microstructure, leading to enhancement of the impact reliability.
The effect of annealing process on various UBMs was investigated. The SAC/Cu and SAC/Ni solder joints were annealed to 210 oC for 50 s and 100 s, respectively. In the rapid-cooled solder joints, the network type precipitations were distributed in all the solder volume of SAC/Cu joint, while the dot type precipitations in the SAC/Ni joint. With increasing annealing time, these precipitations grew larger, the interfacial intermetallic compounds (IMCs) became slightly thicker, and the hardness of solder alloys gradually decreased. After annealing for 50 s, the impact toughness of both SAC/Cu and SAC/Ni solder joints was enhanced, and the fraction of ductile fracture in these solder joints increased. However, the growth of (Cu,Ni)6Sn5 at the SAC/Ni interface degraded the impact toughness as SAC/Ni was annealed for 100 s. The difference of impact toughness in SAC/Cu and SAC/Ni was correlated to the variation of microstructure and hardness in solder joints.
Contents
Contents……………………………………………………….. I
List of Tables…………………………………………………... IV
Figures Caption……………………………………………….. V
Abstract…………………………………………....................... IX
Chapter I Introduction………………………………………..1
1.1 Background…………………………………………….1
1.2 Motivations and Goals in This Study…………………..2
Chapter II Literature Review……….………………………..6
2.1 Electronic Package……………………………………..6
2.2 Solder Bump…………………………………………..8
2.2.1 Sn-Pb Solder………………………………..9
2.2.2 Pb-free Solder…………………………………….10
2.2.3 Sn-Ag-Cu Solder with 4th Minor Addition………11
2.3 Under Bump Metallization……………………………..12
2.3.1 Cu-Based UBM…………………………………..12
2.3.2 Ni-Based UBM…………………………………..13
2.3.2.1 Electroplated Ni………………………….13
2.3.2.2 Electroless Ni-P (EN)……………………14
2.3.2.3 Sputtered Ni(V)………………………….15
2.3.3 Surface Finish…………………………………….16
2.3.3.1 Organic Solderability Preservative
Surface Finish………16
2.4Interfacial Reactions in Solder Joints…………………...16
2.4.1 Interfacial Reactions between Solders and Cu-Based UBM…………………….....................17
2.4.2 Interfacial Reactions between Solders and Ni-Based UBM and Ni UBM…………………...18
2.5 Reliability Test in Solder Joint…………………………19
2.6 Orientation of β-Sn in Solder Joint……………………..21
2.7 Nanoindentation characterization………………………24
Chapter III Experimental Procedures………………………36
3.1 Reflow Profile Design and Sample Fabrication of SAC/Cu Solder joints……………………………36
3.2 Reflow Profile Design and Sample Fabrication of SAC/Cu and SAC/Ni Solder joints……………...37
3.3 Analysis Methods………………………………………37
3.3.1 Microstructure Evolution…………………………38
3.3.2 Composition Analysis…………………………….39
3.3.3 Hardness Variation………………………………..39
3.3.4 Sn structure evaluation…………………………...40
3.3.5 High speed shear testing………………………….40
Chapter IV Results and Discussion…………………………..
4.1 Microstructural and the impact toughness variation of Sn-Ag-Cu/Cu solder joints via various annealing temperature………………………………………48
4.1.1 High speed shear testing for SAC/Cu solder joints……………………………………………..48
4.1.2 Microstructural and β-Sn grain variation in the solder matrix of SAC/Cu………………………..49
4.1.3 Interfacial reactions at the SAC/Cu and SAC/Ni interface………………………………………….51
4.1.4 Mechanism and temperature effect on impact toughness improvement in annealed solder joints……………………………………………..51
4.2. Microstructure evolution and impact toughness in the Sn-Au-Cu/Ni and Sn-Ag-Cu/Cu solder joints via modified reflow conditions…………………………….60
4.2.1 Microstructural variation in the solder matrix of SAC/Cu and SAC/Ni…………………………….60
4.2.2 β-Sn grain structure in the SAC/Cu and SAC/Ni solder joints……………………………………..62
4.2.3 Hardness of the solder alloy near the SAC/Cu and SAC/Ni interfaces……………………………….64
4.2.4 Interfacial reactions at the SAC/Cu and SAC/Ni interface………………………………………….66
4.2.5 High speed shear testing for SAC/Cu and SAC/Ni solder joints……………………………………..67
4.2.6 Mechanism for the improvement of impact toughness in annealed solder joints……………...69
Chapter V Conclusions………………………………………..87
References………………………………………………….......89 
1.L. F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239.
2.D.G. Kim, J.W. Kim, J.G. Lee, H. M, D.J. Quesnal and S.B. Jung, “Solid state interfacial reaction and joint strength of Sn–37Pb solder with Ni–P under bump metallization in flip chip application”, J. Alloys Compd. 395 (2005) 80.
3.C.H. Wang, H.T. Shen and W.H. Lai, “Effective suppression of electromigration-induced Cu dissolution by using Ag as a barrier layer in lead-free solder joints”, J. Alloys Compd. 564 (2013) 35.
4.C.A. Palesko and E.J. Vardaman, “Cost Comparison for Flip Chip, Gold Wire Bond, and Copper Wire Bond Packaging”, Electronic Components and Technology Conference (2010) 10.
5.J.H. Lau, “Flip Chip Technologies”, McGraw-Hill, New York, 1996, pp. 26-30.
6.G.R. Blackwell, “The Electronic Packaging Handbook”, Boca Raton, Florida: CRC Press, 2000, pp. 4.4-4.25.
7.S.K. Kang, R.S. Rai and S. Purrshothaman, “Interfacial reactions during soldering with lead-tin eutectic and lead (Pb)-free, tin-rich solders”, J. Electron. Mater. 25 (1996) 1113.
8.A.A Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, J. Appl. Phys. 80 (1996) 2774.
9.H.K. Kim, K.N. Tu and P.A. Totta, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joint on Si wafer”, Appl. Phys. Lett. 68 (1996) 2204.
10.J.W. Nah and K.W. Paik, “Investigation of flip chip bump metallization systems of Cu pads”, IEEE Trans. Compon. Packag. Technol. 25 (2002) 32.
11.C.Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D.R. Frear and P. Elenius, “Electon microscopy of interfacial reaction between eutectic SnPb and Al/Ni(V)/Cu thin film metallization”, J. Appl. Phys. 87 (2000) 750.
12.J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology”, J. Appl. Phys. 85 (1999) 8456.
13.B.L. Young and J.G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing”, J. Electron. Mater. 30 (2001) 878.
14.D.R. Frear, J.W. Jang, J.K. Lin and C. Zhang, “Pb-free solders for flip-chip interconnects”, JOM 53 (2001) 1047.
15.T. Laurila, V. Vuorinen and J.K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Mater. Sci. Eng. R: Rep. 49 (2005) 1.
16.European Parliament: Proposal for a Directive of the European Parliament and of the Council on Waste Electrical and Electronic Equipment and on the restriction of the use of certain hazardous substances in electrical and electronic equipment, COM, 2000, pp. 347.
17.M. McCormack, S. Jin, G.W. Kammlott and H.S .Chen, “New Pb-free solder alloy with superior mechanical-properties”, Appl. Phys. Lett. 63 (1993) 15.
18.K. Suganuma, “Advances in lead-free electronics soldering”, Current Opinion Solid State Mater. Sci., 5 (2001)55.
19.K.S. Kim, S.H. Huh and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys”, Mater. Sci. Eng. A 333 (2002) 106.
20.C.S. Chang, A. Oscilowski and R.C. Bracken, “Future challenges in electronics packaging”, IEEE Circuits Devices Mag. 14 (1998) 45.
21.I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra and O. Unal, “Alloying Effects in Near-Eutectic Sn-Ag-Cu Solder Alloys for Improved Microstructural Stability”, J. Electron. Mater 30 (2001) 1050.
22.I.E. Anderson, “Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications”, J. Mater. Sci.: Mater. Electron. 18 (2007) 55.
23.I.E. Anderson, J. Walleser and J.L. Harringa, “Observations of Nucleation Catalysis Effects during Solidification of SnAgCuX Solder Joints”, JOM (2007) 38.
24.W. Liu and N.C. Lee, “The Effects of Additives to SnAgCu Alloys on Microstructure and Drop Impact Reliability of Solder Joints”, JOM (2007) 26.
25.R.S. Pandher, B.G. Lewis, R.V. and B. Singh, “Drop Shock Reliability of Lead-Free Alloys - Effect of Micro-Additives”, Electronic Components and Technology Conference (2007) 669.
26.S.C. Yang, C.E. Ho, C.W. Chang and C.R. Kao, “Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu”, J. Mater. Res. 21 (2006) 2436.
27.J.W. Kim, Y.C. Lee, S.S. Ha and S.B. Jung, J. Mater. Sci.: Mater. Electron. 20 (2009) 17.
28.S.W. Fu, C.Y. Yu, T.K. Lee, K.C. Liu and J.G. Duh, “Impact crack propagation through the dual-phased (Cu,Ni)6Sn5 layer in Sn–Ag–Cu/Ni solder joints”, Mater. Lett. 80 (2012) 103.
29.T. Laurila, V. Vuorinen and M. Paulasto-Krockel, “Impurity and alloying effects on interfacial reaction layers in Pb-free soldering”, Mater. Sci. Eng. R. 68 (2010) 1.
30.N. Zhang, Y.W. Shi, Y.P. Lei, Z.D. Xia, F. Guo and X.Y. Li, “Effect of Thermal Aging on Impact Absorbed Energies of Solder Joints Under High-Strain-Rate Conditions”, J. Electron. Mater. 38 (2009) 2132.
31.H. Ma and J.C. Suhling, “A review of mechanical properties of lead-free solders for electronic packaging”, J. Mater. Sci. 44 (2009) 1141.
32.H.T. Chen, J. Han, M.Y. Li, “Localized Recrystallization Induced by Subgrain Rotation in Sn-3.0Ag-0.5Cu Ball Grid Array Solder Interconnects During Thermal Cycling”, J. Electron. Mater. 40 (2011) 2470.
33.H. Chen, J. Li and M. Li, “Dependence of recrystallization on grain morphology of Sn-based solder interconnects under thermomechanical stress”, J. Alloys Compd. 540 (2012) 32.
34.B. Arfaei, N. Kim, and E. Cotts, “Dependence of Sn Grain Morphology of Sn-Ag-Cu Solder on Solidification Temperature”, J. Electron. Mater. 41 (2012) 362.
35.M. Lu, D.Y. Shih, P. Lauro, C. Goldsmith and D.W. Henderson, “Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders”, Appl. Phys. Lett. 92 (2008) 211909.
36.R.R. Tummala and E. J. Rymaszewski, “Microelectronics packaging handbook 2nd edition”, Van Nostrand Reihold, New York, (1997).
37.J.H. Lau, “Ball grid array technology”, McGraw-Hill, New York, (1995).
38.J.H. Lau and S.W.R. Lee, Chip scale package, CSP: Design, Materials, Process and Applications, McGraw-Hill, New York, (1999).
39.K.N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology”, 34 (2001) 1.
40.C.A. Harper, “Electronic packaging and interconnection handbook 3rd edition”, McGraw-Hill, New York, (2000).
41.R.E. Reed-Hill and R. Abbaschian, Physical metallurgy principles, PWS, Boston, 1994.
42.W.R. Lewis, Notes on soldering, Tin Research Institute, 66, 1961.
43.K. Tsukada, “Development of new surface finishing technology for PKG substrate with high bondability”, Proceeding of IEEE/CPMT Advanced Packaging Materials Symposium, 2005.
44.K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano and K.N Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, J. Appl. Phys. 97 (2005) 024508.
45.P.G. Kim, J.W. Jangm T.Y. Lee and K.N. Tu, “Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin film and Ni foils”, J. Appl. Phys. 86 (1999) 6746.
46.G. Ghosh, “Kinetics of interfacial reaction between eutectic SnPb solder and Cu/Ni/Pd metallizations”, J. Electron. Mater. 28 (1999) 1238.
47.R.M. Shalaby, “Correlation between thermal diffusivity and activation energy of ordering of lead free solder alloys Sn65-xAg25Sb10Cux rapidly solidified from molten state”, J. Mater. Sci. Mater. Electron. 16 (2005) 187.
48.X.P. Zhang, C.B. Yu, S. Shrestha, L. Dorn, “Creep and fatigue behaviors of the lead-free Sn-Ag-Cu-Bi and Sn60Pb40 solder interconnections at elevated temperatures”, J. Mater. Sci.: Mater. Electron. 18 (2007) 665.
49.K. Suganuma, “Advances in lead-free electronics soldering”, Curr. Opin. Solid State Mater. Sci. 5 (2001) 55.
50.M.R. Harrison, J.H. Vincent, and H.A.H. Steen, “Lead-free reflow soldering for electronics assembly”, Solder. Surf. Mt. Technol. 13 (2001) 21.
51.K.N. Tu, A.M. Gusak, and M. Li, “Physics and materials challenges for lead-free solders”, J. Appl. Phys. 93 (2003) 1335.
52.M.E. Loomans and M.E. Fine, “Tin-silver-copper eutectic temperature and composition”, Metal. Mat. Trans. A 31 (2000) 1155.
53.I.E. Anderson and J.L. Harringa, “Elevated temperature aging of solder joints based on Sn-Ag-Cu: effects on joint microstructure and shear strength”, J. Electron. Mater. 33 (2004) 1485.
54.F.J. Wang, Z.S. Yu, K. Qi, “Intermetallic compound formation at Sn–3.0Ag–0.5Cu–1.0Zn lead-free solder alloy/Cu interface during as-soldered and as-aged conditions”, J. Alloys Compd. 438 (2007) 110.
55.S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith and K.J. Puttlitz, “Ag3Sn plate formation in the solidification of near-ternary eutectic Sn-Ag-Cu”, JOM 55 (2003) 61.
56.G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, “A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates”, J. Mater. Sci.: Mater. Electron. 21 (2010) 421.
57.L. Zhang, S.B. Xue, L.L. Gao, G. Zeng, Z. Sheng, Y. Chen and S.L. Yu, “Effects of rare earths on properties and microstructures of lead-free solder alloys”, J. Mater. Sci.: Mater. Electron. 20 (2009) 685.
58.W. Peng, E. Monlevade and M. E. Marques, “Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu”, Microelectron. Reliab. 47 (2007) 2161.
59.F.A. Lowenheim, Modern electroplating, 2nd edition, Wiley, New York, 1974.
60.S.V.S. Tyagi, V.K. Tondon, and S. Ray, “Study of the crystallization behavior of electroless Ni-P films by electron and x-ray diffraction”, Z. Metallkd. 76 (1985) 492.
61.J.H. Yeh, “Interfacial reactions and wetting property between electroless Ni in the under bump metallurgy (UBM) and Sn-37Pb solder”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, 2000.
62.H. Roberts and K. Johal, “Lead-free soldering”, Springer, New York, 2007.
63.E.K. Chang et al., “Reflow atmosphere effects on an Organic Soderability Preservation (OSP) coating”, Surface Mount International (SMI), 1995.
64.A. Bansal, S. Yoon, J. Xie, Y. Li and V. Mahadev, “Comparison of substrate finishes for flip chip packages”, Electronic Components and Technology Conference (2005) 30.
65.T.B. Massalski; H. Okamoto, P.R. Subramanian and L. Kacprzak, “Binary alloy phase diagrams”, ASM Int., Materials Park, Ohio, (1990) 1481.
66.K. Zeng and J.K. Kivilahti, “Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems”, J. Electron. Mater. 30 (2001) 35.
67.J.Y. Kim, Y.C. Sohn and J. Yu, “Effect of Cu content on the mechanical reliability of Ni/Sn-3.5Ag system” J. Mater. Res. 22 (2007) 770.
68.K. Zeng, M. Pierce, H. Miyazaki and B. Holdford, “Optimization of Pb-free solder joint reliability from a metallurgical perspective” J. Electron. Mater. 41 (2012) 253.
69.A. Kumar and Z. Chen, “Interdependent intermetallic compound growth in an electroless Ni-P/Sn-3.5Ag reaction couple” J. Electron. Mater. 40 (2011) 213.
70.H. Kim, M. Zhang, C.M. Kumar, D. Suh, P. Liu, D. Kim, M. Xie and Z. Wang, “Improved drop reliability performance with lead free solder of low Ag content and their failure modes”, Electronic Components and Technology Conference Proceedings (2007) 962.
71.F. Song, S.W.R. Lee, K. Newman, B. Sykes and S. Clark, “High-speed solder ball shear and pull tests vs. board level mechanical drop tests: correlation of failure mode and loading speed”, Electronic Components and Technology Conference (2007) 1504.
72.C.L. Yeh, Y.S. Lai, H.C. Chang and T.H. Chen, “Correlation between package-level ball impact test and board-level drop test”, Electronic Components and Technology Conference (2005) 270.
73.Y. Xu, S. Ou and K.N. Tu, “Measurement of impact toughness of eutectic SnPb and SnAgCu solder joints in ball grid array by mini-impact tester”, J. Mater. Res 23 (2008) 1482.
74.T. Morita, R. Kajiwara, I. Ueno and S. Lkabe, “New methods for estimating impact strength of solder-ball-bonded interfaces in semiconductor packages”, Jpn. J. Appl. Phys. 47 (2008) 6566.
75.C.L. Yeh and Y.S. Lai, “Insights into correlation between board-level drop reliability and package-level ball impact test”, Electronic Components and Technology Conference (2006) 84
76.K.J. Wang and J.G. Duh, “Shear and pull testing of Sn-3.0Ag-0.5Cu Solder with Ti/Ni(V)/Cu underbump metallization during aging”, J. Electron. Mater. 38 (2009) 2434.
77.B.F. Dyson, “Diffusion of Gold and Silver in Tin Single Crystals”, J. Appl. Phys. 37 (1966) 2375.
78. D.C. Yeh, and H.B. Huntington, “Extreme Fast-Diffusion System - Nickel in Single-Crystal Tin”, Phys. Rev. Lett. 53 (1984) 1469.
79.B.F. Dyson, T.R. Anthony, and D. Turnbull, “Interstitial Diffusion of Copper in Tin”, J. Appl. Phys. 37 (1967) 3408.
80.W.P. Mason, and H.E. Bommel, “Ultrasonic Attenuation at Low Temperatures for Metals in the Normal and Superconducting States”, J. Acoust. Soc. Am. 28 (1956) 930.
81.J.A. Rayne and B.S. Chandrasekhar, “Elastic Constants of Beta-Tin from 4.2-Degrees-K to 300-Degrees-K”, Phys. Rev. 120 (1960) 1658.
82.S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih, and H.M. Lee, “The Crystal Orientation of beta-Sn Grains in Sn-Ag and Sn-Cu Solders Affected by Their Interfacial Reactions with Cu and Ni(P) Under Bump Metallurgy”, J. Electron. Mater. 38 (2009) 2461.
83.L.P. Lehman, Y. Xing, T.R. Bieler and E.J. Cotts, “Cyclic Twin Nucleation in Tin-based Solder Alloys”, Acta Mater. 58 (2010) 3546.
84.T.R. Bieler, H. Jiang L.P. Lehman, T. Kirkpatrick and E.J. Cotts, “Influence of Sn Grain Size and Orientation on the Thermomechanical Response and Reliability of Pb-free Solder Joints”, Electronic Components and Technology Conference (2006) 1462.
85.T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts and B. Nandagopal, “Influence of Sn Grain Size and Orientation on the Thermomechanical Response and Reliability of Pb-free Solder Joints”, IEEE Trans. Compon. Packag. Technol. 31 (2008) 370.
86.T.K. Lee and K.C. Liu and T.R. Bieler, “Microstructure and Orientation Evolution of the Sn Phase as a Function of Position in Ball Grid Arrays in Sn-Ag-Cu Solder Joints”, J. Electron. Mater. 38 (2009) 2685.
87.H. Chen, J. Han, J. Li and M. Li, “Inhomogeneous deformation and microstructure evolution of Sn–Ag-based solder interconnects during thermal cycling and shear testing”, Microelectron. Reliab. 52 (2012) 1112.
88.X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications”, Mater. Charact. 48 (2002) 11.
89.U. Boyuk and N. Marasli, “The microstructure parameters and microhardness of directionally solidified Sn-Ag-Cu eutectic alloy”, J. Alloys Compd. 485 (2009) 264.
90.L. Xu and J.H.L. Pang, “Nanoindentation on SnAgCu lead-free solder joints and analysis”, J. Electron. Mater. 35 (2006) 2107.
91.A.C. Fischer-Cripps, “Nanoindentation handbook 2nd edition”, New York, Springer (2002) 144.
92.W. Peng and M.E. Marques, “Effect of thermal aging on drop performance of chip scale packages with SnAgCu solder joints on Cu pads”, J. Electron. Mater. 36 (2007) 1679.
93.J.M. Song, Y.R. Liu, Y.S. Lai, Y.T. Chiu and N.C. Lee, “Influence of trace alloying elements on the ball impact test reliability of SnAgCu solder joints”, Microelectron. Reliab. 52 (2012) 180
94.P. Kuma, Z. Huang, I. Dutta, M. Renavikar and R. Mahajan, “Fracture of Sn-Ag-Cu solder joints on Cu substrates. II: Fracture mechanism map”, J. Electron. Mater. 41 (2012) 412.
95.K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello and C.A. Handwerker, “Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys”, J. Electron. Mater. 29 (2000) 1122.
96.S.J. Wang and C.Y. Liu, “Asymmetrical solder microstructure in Ni/Sn/Cu solder joint”, Scripta Mater. 55 (2006) 347.
97.S.J. Wang and C.Y. Liu, “Kinetic Analysis of the Interfacial Reactions in Ni/Sn/Cu Sandwich Structures” J. Electron. Mater. 35 (2006) 1955.
98.F. Cheng, H. Nishikawa and T. Takemoto, “Microstructural and mechanical properties of Sn–Ag–Cu lead-free solders with minor addition of Ni and/or Co”, J. Mater. Sci. 43 (2008) 3643.
99.S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih and H.M. Lee, “The crystal orientation of β-Sn grains in Sn-Ag and Sn-Cu solders affected by their interfacial reactions with Cu and Ni(P) under bump metallurgy”, J. Electron. Mater. 38 (2009) 2461.
100.G. Parks, B. Arfaei, M. Benedict, E. Cotts, M.H. Lu and E. Perfecto, “The dependence of the Sn grain structure of Pb-free solder joints on composition and geometry”, Electronic Components and Technology Conference (2012) 703.
101.H.T. Lee, Y.F. Chen, T.F. Hong and K.T. Shin, “Evolution of Ag3Sn intermetallic compounds during solidification of eutectic Sn–3.5Ag solder”, J. Alloys Comp. 509 (2011) 2510.
102.P. Yao, P. Liu, and J. Liu, “Interfacial reaction and shear strength of SnAgCu–xNi/Ni solder joints during aging at 150 oC”, Microelectron. Eng. 86 (2009) 1969.
103.C. Yu, J. Liu, H. Lu, P. Li, and J. Chen, “First-principles investigation of the structural and electronic properties of Cu6-xNixSn5 (x= 0, 1, 2) intermetallic compounds”, Intermetallics 15 (2007) 1471.
104.Z. Huang, I. Dutta, J.H.L. Pang, R. Sidhu, M. Renavikar and R. Mahajan, “Fracture of Sn-Ag-Cu Solder joints on Cu substrates: I. Effects of loading and processing conditions”, J. Electron. Mater. 41 (2012) 375.
105.Y.T. Cheng and C.M. Cheng, “Scaling, dimensional analysis, and indentation measurements”, Mater. Sci. Eng. R. 44 (2004) 91.
106.F. Gao and T. Takemoto, “Mechanical properties evolution of Sn-3.5Ag based lead-free solders by nanoindentation”, Mater. Lett. 60 (2006) 2315.
107.F. Song and S.W.R. Lee, “Investigation of IMC thickness effect on the lead-free solder ball attachment strength: comparison between ball shear test and cold bump pull test results”, Electronic Components and Technology Conference (2006) 1196.
108.C.Y. Yu, W.Y. Chen and Duh J.G., “Improving the impact toughness of Sn-Ag-Cu/Cu-Zn Pb-free solder joints under high speed shear testing”, J. Alloys Compd. 586 (2014) 633.
109.N. Chawla and R.S. Sidhu, “Microstructure-based modeling of deformation in Sn-rich (Pb-free) solder alloys”, J. Mater. Sci. - Mater. Electron. 18 (2007) 175.
110.H.Y. Fei, K. Yazzie, N. Chawla and H.Q. Jiang, “ Modeling Fracture of Sn-Rich (Pb-Free) Solder Joints Under Mechanical Shock Conditions”, J. Electron. Mater. 41 (2012) 2089.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *